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p-ADIC SIEGEL-EISENSTEIN SERIES OF DEGREE TWO

SHO TAKEMORI (71& #)
DEPARTMENT OF MATHEMATICS, KYOTO UNIVERSITY

1. INTRODUCTION

In this note, we introduce an explicit formula for Fourier coefficients of Siegel-
Eisenstein series of degree two with a primitive character of any conductor. More-
over, we introduce that there exists the p-adic analytic family which consists of
Siegel-Eisenstein series of degree two and a certain p-adic limit of Siegel-Eisenstein
series of degree two is actually a Siegel-Eisenstein series of degree two.

2. STATEMENT OF THE MAIN THEOREMS
For a field K and positive integer g, we put
Spg(K) = {(I € MZQ(K) ‘ tm?a = 77} ]

P(K) = {(‘C" Z) € Sp,(K) | a,b,c,d € My(K),c= o} ,

where n = ((1)9 _019 ) . We denote by £, the Siegel upper half space of degree g.
g Ysg

Let N be a positive integer. We define Sp,(Z) and I'o(N) by
Spy(Z) = Sp,(Q) N GL,(Z),

rO(N)z{(i 2)GSpg(Z)]a,b,c,deMg(Z),cEO modN}.

Let 3 be a Dirichlet character mod N and k be an integer such that ¥(—1) = (—1)*.
We define Siegel-Eisenstein series E,(c%(z) of degree g, weight k, character ¢ and
level N by

E,(cgi)(z) = Z P(det(d)) det(cz + d) 7%, z € Hy.

* %
( )EP(Q)OTO(N)\FO(N)
c d

The right hand side is absolutely convergent when k > g+ 1. Let

EG() = Y alh,EF))exp(@niTr(hz))
0<heSym}(Z)

be the Fourier expansion of E,(cgz,(z) Here we denote Symg(Z) by the set of half

integral symmetric matrices of size g and denote h > 0 if h is positive semi-definite.

First, we state the theorem about an explicit formula of a(h, EIE21)b)
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Theorem 2.1. Let ¢ be a primitive Dirichlet character mod N and h € Sym3(Z)
be a half integral positive-definite symmetric matriz. We denote the h-th Fourier
coefficient of Siegel-Eisenstein series of degree two by a(h, E,(fl)p) Suppose k > 3.
Then we have

L(N) (2 - k: Xh,‘/))
L =k, $)L™(3 — 2k, 4?)

x I FO®Bw@e* ) [ colhsvi %)
q:prime g:prime
gtN alN
The notations are as follows. For a Dirichlet L-function L(s, x) and a positive inte-
ger M, we put LM (s, x) = quM(l—x(q)q")L(s, x). The conductor of a Dirichlet

character x is denoted by f(x)- Fq(z)(h; T) is a polynomial of (4.4), which is explic-
itly calculated by Kaufhold [4], and xp is the primitive Dirichlet character associated
with Q(1/— det(2h))/Q. For a prime g|N, we define cg(h,¥;T) € Q(¥)(T) as fol-
lows.

(1) If (g, g, h) satisfies the condition (i) or (ii) below, then we define cq(h,¥;T) =
0.
(2) If (g,%q, h) satisfies the condition meither (i) nor (i), and ¢35 # 1, then we
define cq(h, ¢, T) = 1.

(3) If (g,%q,h) satisfies the condition neither (i) nor (ii), and Y2 = 1, then we
define cg(h,v¥; T) by

cq(ha wa T) =

a(h, E()) =2

1 — xp(q)g2T! 3,2 2\ By ~ng+1
= (¢**(q)T%) e~ met
(1= (0)a™*T7*)(1 - xnb(a)aT)
where ng and B, = B4(h) are given by
ng = ordy (§(¥)),
2)2
28, = 20,(h) = ord, (i%%%)—)—) + ord,(det 2A).
The conditions (i) and (i) are as follows.

(i) g =2, f(xbq) > 4 and §(,) # 8, and h € Sym3(Z) \ Sym,(Z).
(i) q =2, f(1,) = 8 and h is GL2(Z3)-equivalent to a matriz of the form;

a 0 m( 0 1/2 m( 1 172
(o ﬂ)’ 2 (1/2 0) or 2 (1/2 1)’
with , B € Z3 and m € {0, 1}.

Remark 2.1. Mizuno [§] calculated a(h,E,(f?p) explicitly when N is square-free

and odd. Gunji [1] calculated the p-Euler factor of a(h, E,(czi,) explicitly when p is
an odd prime and p | N.

1+¢*(1-gq)

Next, we state the theorems about a p-adic limit of Eisenstein series and a p-adic
analytic family of Eisenstein series. From now on, we fix a prime p and embeddings
Q@—C,Q,—Cp

For p-adic interpolation of Siegel-Eisenstein series, we need to define a Eisenstein
series whose p-Euler factor is equal to one.
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Let M,Eg) (Co(N), ) be the space of Siegel modular forms of degree g, weight k,
level N and character . Suppose f € M,gg) (To(N), ). Then f has the following

Fourier expansion.
fy= Y a(h fe(ha).
0<heSym?(Z)
We define a Hecke operator U(p) as follows.

(FI1Um)(z) = Z a(ph, f)e(hz).

OShGSym;(Z)
By the definition of U(p), we have

ME (To(pN),9) ifptN,
J1vp) e {M,ig)<ro<zv),w> itp|N.

We define Hecke operators V(p) and W (p) as follows.

= \2, 3-2k

1—9(p)p _ fsz(p) if p o 2

1-v (p)p°~
Up)? - 1{)_(217)21933‘22’;(1 @ tp=o2

1-¢ (p)p*
W(p) = (Up) — ¥(p)p* 1) (U(p) — v(p)p*~2) (U(p) — ¢*(p)p**~¥)
(1= w(p)p"=1) (1 - v(p)p*—3) (1 — ¥ (p)p2(*=9))

Let N be a positive integer divisible by p and ¥ be a Dirichlet character mod
N. Put N = Ngp" with p{ Ng and r > 1. Suppose that 9, is primitive for all q|Ng
and v, is primitive if » > 1. We put

E,,=E2, | ]V,

Vip) =

glN
and
2
¢?) =
sL(1 = k) L3 - 2k, y?)E}, if 4, is primitive,
$L(1 ~ k, ) LN (3 — 2k, 4?) " e | W(p) if ¥, is the trivial character mod p.

Here § = [],n, ¥- Let 0 < h € Sym3(Z) be a half integral positive semi-definite
symmetric matrix and suppose that ¥ > 3. Then we can prove the following
assertions by Theorem 2.1.

(i) If rank h =0,

a(h, GZ)) = SL(1 ~ k, )L (3 ~ 2k, y?).
(ii) If rank h =1,

a(h,GO)) = LN —2k,47) T FV(e(h);v(g)d"?).
g:prime
gtNp
Here Fél) (m; T) is 14-qT + - - -+ (qT)°"%e(™) and e(h) is defined as follows.
e(h) = max {m € Zxq | m™'h € Sym}(Z)} .
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(iii) If rank h = 2,
a(h,G2) = LM @~ kxww) [ FP vl ™) [I calhidid*™).

g:prime g:prime

afNp q|No
Theorem 2.2. Let N be a positive integer divisible by p and 1 be a Dirichlet
character mod N. Put N = Nop™ with p 4+ No and r > 1. Suppose that g is
primitive for all g|No and ¥, is primitive if r > 1. We fiz a topological generator u
p z‘fp 2 We denote by w the Teichmuiiller
4 ifp=2.
character. For a half integral positive semi-definite symmetric matriz h € Syms(Z),

there exists a(h,;T) € Frac(Z,[y][T]) which satisfies the following interpolation
property.

of 1+pZ,. Here, p is given by p =

a(h, ¥; e(u)uf - 1) = a(h, chz,lww—k)’
for any finite order character € of 1 + pZ, and integer k such that k > 3.
We define X and X by
X =1Zp x Z/$(p)Z = Homeors (Z, , Z5 ),
Xy ={(s,a) € X | (-1)* = y(~1)}.

Here ¢ is Euler’s phi function , Homcont(Z;‘,Z;,‘) is the set of continuous group
homomorphisms from ZX to Z;. X is equipped with the p-adic topology. We
embed Z in X by Z > m — (m mod ¢(p),m) € X. Let

Glal={f= 3 ahfers)|ah) €Cy},
0<heSym3(Z)
be the space of formal Fourier expansions, where C, is the completion of @p. We
pUt lf‘P = SupOS_hGSym;*)(Z) |a(h': f)IP
Theorem 2.3. Let N be a positive integer such that pt N and i be a primitive
Dirichlet character mod N. Suppose (k,a) € X, and let k be an integer such that

k > 3. For any sequence {ln}m C Xy such that I, > 3, limpmaco lm = +00 € R
and limy, o0 lm = (a, k) € Xy, we have

lim |G2, - GP =0.

m—oo k,pwe=k |P—

Here we regard 1w®™* as a Dirichlet character mod Np.

Remark 2.2. Katsurada and Nagaoka [3] proved the modularity of lim; an{w
when N =1, pis an odd prime and 1 is the quadratic character by using the genus
theta series.

Since Theorem 2.2 and Theorem 2.3 can be deduced from Theorem 2.1, we sketch
the proof of Theorem 2.1 in the following sections.
3. THE FOURIER EXPANSION OF SIEGEL-EISENSTEIN SERIES

Let ¢ be a primitive Dirichlet character mod N and w be idele class character
of finite order corresponding to 9.
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For o = Z s, ESpgWitha,b,c,deMg,wewriteazaa,b=ba,c=ca,d=

do. The Siegel upper half plane of degree g is defined by
= {z € Sym (C) | Im(z) > 0} .
For a € Sp,(R), z € $y, we define
a-z=(agz+by)(caz+dy) ", J(a, z) = det(cqz + dq).

Put Sp,(Z) = Sp,(Q) N GLzy(Z). Let T C Sp,(Z) be a congruence subgroup
and x : I' —» C* be a character. For an integer k € Z and a C-valued function f
on §g, we set

(fleM(@) = F(v-2)i(v,2) 7.
We denote by Fi (T, x) the space of functions on ), satisfying the following auto-
morphic property:

(3.1) (flev)(z) = x(v)f(2) for vy €T,

Let A be the adele ring of Q. We denote by f (resp. 0o) the set of finite places
of Q (resp. the infinite place). The adelization of Sp,(Q) is denoted by Sp,(A).
We put Sp,(A¢) = Sp,(A) N[],c¢ Sp,(Qy). For a E Sp,(A), we put

(3.2) & = QfQo, of € 8py(Af), oo € Sp,(R).
For a place v of Q, a maximal compact subgroup C, of Sp,y(Qy) is defined by
_ J{a€eSp,R) |ai=i} fv=00
"7 18p,(Qu) N GLgy(Z,) ifvef.

Here i =1il, € H,. Then, a maximal compact subgroup C of Sp,(A) is defined by
C=Il,ee C We define algebraic subgroups P, Qg, Ry of Sp, by

Pg={a€Spg|Ca=0}: Q,;:{(g t__l)'aEGL}

1 4%
B {(1 %) lbesim,).

Then the Iwasawa decomposition holds:
Sp,(A) = Py(A)CCc, Sp,y(Q) = Py(Q)Sp,y(Z).
For 0 <4 < g, we put

0; 0 |-1, O
@10 1| 0 0 _
n e 1i O Oi 0 ’ J=g ?
0 0;] 0 1
Then the Bruhat decomposition holds:
g
(3.3) Spy(Q) = [T P (@0 P,(Q).
i=0

For an open subgroup of D of C, we put
I'=DnNSp,(Z).
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Then I is a congruence subgroup of Sp,(Z). Conversely, we obtain every congruence
subgroup in this way.

Let x : D — C* a group homomorphism. We denote the restriction to I' of x
by the same letter. For a C-valued function f on ), satisfying (3.1), we define a
C-valued function ¢5 on Sp,(A) by

(3.4) 67 (€) = f(goo - )i (goo, 1) ¥ x71(8),
where { = adgoo, @ € Spy(Q),d € D, g € Spg(R).

By strong approximation theorem, we have Sp,(A) = Sp,(Q) DSpy(R). Therefore,
¢5 is defined on Sp,(A) and is well-defined by (3.1). ¢ = ¢y satisfies the following
three conditions.

(3.5) p(ag) = ¢(€),  for a € Sp,(Q),
(3.6) o(£8) = x"1(8)p(€), fordeD
(3.7) o(Eu) = j(u,i) (),  for u € Coo.

We denote the space of C-valued functions on Sp,(A) satisfying (3.5),(3.6) and (3.7)
by Fi(D, x). For ¢ € Fi(D, x), we put
(38) f¢(2) = ¢(€OO)J(£OOai)k: where z= Eoo : i? EOO e Spg(R)
Then f — ¢y is a bijection from Fi(T,x) to Fix(D, x), and ¢ — f; is its inverse.
We define an open subgroup Co(N) of C by
Co(N) = [[ Co(N)p, Co(N)p = {a €Spy(Z;) | ca =0 mod N}.
pef
Let w be the character of A*/Q* corresponding to Dirichlet character . For
v € f U {00}, the v-component w, satisfies the following.
If v = 00, weo () = sgn® ().
Ifvef,o=p,ptN, wp(p)=1v({), wp(u)y=1 forueZ;.
fvef,u=p,p| N, wy(p)=1v,(p), wp(u)= Ep(u), for u € Z,;.
Here, 1, is the Dirichlet character mod p™ such that ¢ = Hp, ~ ¥p and ¢y is

(3.9) 4 =[] v

q|N
g#p

If p| N, then we consider wy a character of Co(N), by
wp(Y) = wp(detdy), v € Co(N)p.

Then the restriction of HZJ,, to ['o(N) = Co(N) NSp,(Z) is equal to 1.
p|N
For v € f U {00}, we define C-valued function f.f,k) on Sp,(Q,) as follows. Note

that the Iwasawa decomposition holds.
(1) If v = o0,

&) = j(€,1) 7 = | det ag|¥ woo (det ag) det(u + iv) 7%,
for € = ay,a € Py(Qoo), ¥ = (u —U) € Cw.

v u



(2)Ifv=pefandptN,

FR(E) = |det anl¥Tp(det an), for € = ay,a € Py(Qp), 7 € Cp.
B)Ifv=pefandp|N,

$0(E) =
0 if € & Py(Qp)Co(N)p,
| det aal’;o'u'p(det aa)wp(v) € =0y, a € Py(Qp),y € Co(N),.

We define a function fi on Sp,(A) by
few@®= I £Pe)

vefU{oco}

We define Eisenstein series £ ,Eg%(f) on Sp,(A) as follows.
56 = >, few(af).

The right hand side is absolutely convergent when Re(s)+k > g+ 1. By definition,

S,E’gi(é) satisfies (3.5), (3.6) and (3.7) for T' = Co(N),x = pr. We can prove
pIN

that 6,&% (€) corresponds to E,(ﬁ(z) by (3.4) and (3.8).
Next we consider the Fourier coefficients of Eisenstein series.
For a place v of Q, we define a character e, of Q, by

o(e) = {e(-bv(x)) vef,

e(z) v = 00.

Here ¢, is the inclusion ¢y, : Qy/Z,, — @, cf Qu/Z, = Q/Z when v is a finite place.
By definition, e, is trivial on Z, when v € f. A character ey of A/Q is defined by

ealx) = H e, ().
vEfU{oc}
For X € §,(A) or X € 5,(Qy), we put
ea(X) =ea(Tr(X)),  ey(X)=e,(Tr(X)).

Next we define Haar measure on Sy(A). If v € f, we take a Haar measure dz,
on Sy3(Q,) such that f 8, (Zo) dz, = 1. If v = o0, we take a Haar measure dz., on

Sg(R) such that dzo, = Hd:cgf,j). Here 259 is the (4,7) component of z,,. Then
i<y
we define a Haar measure dz on S;(A) by

This measure satisfies the following.

/ dx
Sg(Q\Sg(A)

Il
=

35
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For z € §,, we put

T(z) = ((1) T) € Sp,.

For £ € Spy(R), we see that the function S,(cf’i)p(r(x)foo) on Sy(A) is Sy(Q) invariant
by (3.5). Therefore, the following equations hold.

(310)  EO(r(2)wo) = 3. blh,k,Ex)en(hz), T € Sy(A),€0 € Spy(R).
heS,(Q)

(3.11)  bhk, ) = EE) (7(2)€w0)er(—ha)dz.

/;'g(Q)\Sg(A)

By (3.8), £%)(€) corresponds to EP)(2).

1/2
Therefore if we put {oc = (y y_(i /2) in (3.10), we have the following.

0
(3.12) ES(2)= Y a(hkve(ha),
heSy(Q)
y1/2 0
(3.13) ol k) = et 20k (V| 2]

We can prove the following proposition by the standard argument. We omit the
proof.

Proposition 3.1. Let b(h, k,£x) be as above. If det h # 0, then we have

b(h,k,foo)=/ )fk,,,,(nr(x){w)eA(—hx)dw.

o

By Proposition 3.1 and the definition of fi , we have.
(3.14) b(h, k,&e0)

- /S gy [ @es)e( ooz > [ /S o B grlaen(- byl

pef

4. EULER FACTORS OF FOURIER COEFFICIENTS OF SIEGEL-EISENSTEIN SERIES

The Euler factor of b(h, k, £ ) is examined by several authors. We recall some
of their results.
First we introduce the result for the Euler factor at the infinite place.

For a, 8 € C, we define a function £ by

(4.1) &y, by, B8) = /s ® det(z + iy)~° det(z — iy)~Pe(~hz)dz.

By the definition of fgf), we have

(4.2) /S .

9
Theorem 4.1 ([6] (4.34K),(4.35K); [7] (7.11),(7.12) ). Suppose y, h € Sym(R) be
symmetric matrices and y is positive definite. Let p and g be the number of positive
and negative eigenvalue of h respectively and put t = g — p —q. We denote by

78 (n7(2)éo0Ye(—hz)dz = det(y) ¥+ 2¢(y, hi k + 5/2, 5/2)
)
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0. (hy) (resp. 6_(hy)) the product of all positive (resp. negative) eigen values of
y'/2hy'/2. For m € Zx, we put

Trn(s) = { - A
m\$) = Wm(m-1)/4nzr;51p(s_%) ifm>1.

Then, there exists a function w(y, h; o, B) holomorphic with respect to o and 8 and
satisfies the following equation.

. hie,8) = P22 (0t - TEID, (@), (0)

X det(y)(g"l)/z“"ﬂ6+(hy)a‘(9+1)/2+‘J/45_(hy)ﬁ‘(9+1)/2+”/4w(y, h; o, B).

Here 1,0 is

1
T=pa+qﬁ+t+§{t(t—1)—pq},

tHg+1
0=02p-gla+(20-g)8+g+ (92 )_‘_%q.

If h is positive definite, then the following equation holds.
E(y, h; @, 0) = 290179)/2j=9%(27)94T ()1 det(h)>~ 9+ D/ 2g(iyh).

Next we introduce the result for the Euler factor at unramified places, which is
called the singular series.

Let p be a prime. For z € S;(Q;), we define v(z) € Q5o by v(z) = |detc|;?, z =
c~'d, where ¢ € GLy(Z,),d € My(Z,) and c,d is co-prime. Here c,d € My(Z,)
is said to be co-prime if there exist unimodular matrices u € GL4(Z,) and v €
GLz2y(Zp) such that u(c djv = (1, 05). By the next lemma, v is well-defined.

Lemma 4.1 ([8] 3.6 Proposition (3)). Suppose ¢,/ € My(Z,) N GLy(Q,) and
d,d' € My(Z,). Assume c~'d = c''d’ and (c,d), (¢',d’) are co-prime. Then there
exists u € GLy(Zp) such that ¢ = uc/,d = ud'. Therefore, if we put

M = {(c,d) € My24(Z) | detc#0,c-d=d-c, (c,d) is co-prime}.
Then (c,d) — z = c™'d is a bijection from GL,(Z,)\M to S,(Q,)

Definition 4.1. Let p be a prime and ¢ be a Dirichlet character mod p™. Suppose
h € S;(Zp). We define a Dirichlet series S,(h,%, s) by

> v(z)"*ey(—hz) ifn=0,
Sy(h, 1, s) = x€Sg(Qp)/So(Zp) _
() Y, (v(z)det(z))v(z) *ep(—hz) ifn > 1.

z€854(Qp)’/Sg(Zp)
Here S,(Qp)' = {cd|(c,d) €M, c=0mod N} and M is as in Lemma 4.1.
This Dirichlet series is called the singular series. If n = 0, then S,(h, 1, s) does not
depend on 9. Therefore we denote Sp(h, ¥, s) by Sy(h,s) when n = 0. We define
the formal power series Ap(h,);T) corresponding to Sp(h, %, s) by

Ap(h,;p7°) = Sp(h, ¢, 8).
We denote A,(h,¥;T) by Ay(h;T) when n = 0.
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Suppose a € Z} and u € GLy(Z,). By the definition of the singular series, we
have

Sp(aha S, 1/)) = ;‘—z;p(a’)gsp(h’ ¢7 S), Sp(h[U], S, ’Qb) = EZP((det U)z)Sp(h, ’w, ,5‘),
“3) f 19 (rr(e)Jep(~ha)dz = Ap(h, by Tp(p)P™*"*).

9(Qp)
Proposition 4.1 ([8] 14.9.Proposition). Suppose h € Symy(Z,) and det h # 0.
Then A,(h;T) is Z-coefficient polynomial with constant term 1 and divisible by
a polynomial v,(h; T) defined as follows.

1-T ik 22y if s
WH(I—p T“) if g is even,
Yp(h; T) = (g-1)/2
(1-T) H - p?T?) if g is odd.

Here, when g is even, we define d = (—1)9/2 det(h), Ky = Q,(Vd) and
1 Kh = Qpa
A(h) = -1 K/Qp ts unramified quadratic extension.
0 Kn/Qp is ramified extension.
Moreover if h satisfies the following condition,
det(2h) € Z;  if g is even,
det(2h) € 2Z; if g is odd,
then
A,(h;T) = yp(h; T).

We define F{9(h; T) by F$(h;T) = Ap(h;T)/v»(h; T). By Proposition 4.1,
if h € Sym?(Z,) and deth # 0, then F3? (h;T) is Z-coefficient polynomial with
constant term 1 and if & € Symg(Z), then Fég) (h;T) = 1 for all but a finite prime.

We introduce the result for Féz)(h; T).

Proposition 4.2 ([4] Hilfssatz 10). Let h € Symy(Z) be a half-integral positive
definite symmetric matrir. We put D(h) = —det(2h), K(h) = Q(1/D(h)). We
denote the discriminant of K(h) by Do(h). Then there exists a positive integer

f(h) € Zsg such that D(h) = Do(h)f(h)2. We denote by X1, the primitive quadratic
character associated with K(h)/Q. We put

e(h) = max{m € N| m™'h € Sym3(Z)},
and
oy = ordp(e(h)), a = ordp(f(h)).

Then the explicit form of F,gz) (h;T) is as follows.

a1 a—1 a—1—1

(44) FOWT) =Y 0D T ~xap)eT) Y, F°T?)}.
j=0

=0 3=0
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Moreover, F (h T) satisfies the following functional equation.
FP (b T) = (0 *T)** F{P (hp~°T 7).

Remark 4.1. Katsurada [2] proved an explicit formula and a functional equation
for F$9 (h; T) for all degree g.

By proposition 4.1, we have the following theorem.
Theorem 4.2. Suppose k > g+ 1 and deth # 0. For a Dirichlet L-function
L(s, x) and a positive integer N, we put LN)(s,x) = [T 15 (1 = x(p)p~*)"1. Then

a(h, E(g)) is given as follows.
(1) Ifg is even,

— (a-2)/2
L(N)(k - 9/25 th) gH L(N) (2k — 9 a2)_1

Lk P)LM (2% - 9,37 i
X HF<2) (h )P~ [ Ap(hs ¥ B, 0)p7).

p|N

(2) If g is odd,

(g—1)/2
£(y, b k,0)e(—igh) LM (k,3)"" [ L™ (2k-2i,3")!
=1

x Hw) B 9(p)p™*) [T Ap(h, vpi 5 (P)P7F).

p|N

5. EULER FACTORS AT RAMIFIED PLACES

In this section, we introduce the result for the singular series at ramified places.
For simplicity, we state the result only for singular series at an odd prime.

- By the definition of the singular series, it is sufficient to calculate S,(y, h) for
each representative h of GLy(Zpa)-equivalent class of Symy(Z,). Let m be the
maximum integer which satisfies p™™h € Sym,(Z,)* and put A’ = p~™h.

If p # 2, then A’ is GL2(Z,)-equivalent to the matrix of the form;

The explicit forms of S,(v, h) are as follows.

Proposition 5.1. Let v be a primitive Dirichlet character mod p™. Suppose p # 2

and put h = p™ ((g p(t)ﬁ)’ with m > 0 and o, 8 € Z,;. We denote the quadratic

character mod p by xp-. Then the following assertions hold.
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(1) Suppose 3 = xp-, then

( m+t/2
w(—l){(p— 1) Z p(3-26)i-2 _p(3—2s)(m+t/2+1)—2} if t is even,
i=1

Sy(w, ) = 4 mat/2+1/2 '
p(¥; k) w(—l){(p-l) z p(3—2s)z-—2

i=1

+xp (aB)pP-2m /240321 if ¢ is odd.

\
(2) Suppose ¢ # xp-, then

Yv(aB)G (E)2 p(3-28)(mtn+t/2)=5/2n if n —t is even,
ep(WXp+ ) (aB)G ()G (Wbxp- )pB-2)mAn+t/2=5/2n  if p — ¢ is odd.

Here, €, is given by

Sp(d)’ h) = {

. = 1 ifp=1 mod 4,
P7 )i ifp=3 mod 4.

By the same computation in [1], we can prove this proposition. We omit the
proof.

6. SKETCH OF THE PROOF OF THEOREM 2.1

For a place v of Q and a quasi character x : Q) — C*, we denote e-factor and
y-factor from the local functional equation in Tate’s thesis by £,(x, s) and v,(Xx, s)
for fixed additive character e,. '

By the explicit form for £(y, k; k, 0) in Theorem 4.1, and the duplication formula
of the Gamma function : T'(s)['(s + 1/2) = 2!~2571/2I'(2s), we can prove the
following Proposition.

Proposition 6.1. Suppose that h € Sym (R) is positive definite and put x =
sgn®, p =sgn. Then £(y, h,k,0)e(—iyh) is given as follows.
(1) If g is even,

9/2

. _ k) )
00/2497/4(get ohyk-(s+1)/2___Yeo(Xs wo(x, 2k — 24).
( ) %o(px,k—g/2)il;117 ( )

(2) If g is odd,
) (9-1)/2
200+ 1)/2(_ 1) -D/8(2=1 det 2h) k=0T 2 (x, k) [ oo (x, 2k — 2).
i=1
Next let us consider the Euler factor at a finite place. For a Dirichlet character
x mod p", we define Aj(h, x;T) as follows.

, Ap(h, x;T) if x? # 1,
(61) A (h,X’T) = -1 -n-1 3T2 n .
v Aghy i T) ~x(-D) 2Ty 2y,
p
Proposition 6.2. Let ¢ be a primitive Dirichlet character mod N. Let w denote
the character of A*/Q* corresponding to ¢ and py denote the character of Q)




corresponding to Q,(1/— det(h))/Q, by local class field theory. Suppose p | N,
h € Symy(Z,) N GL2(Qyp) and Ap(h,w;T) # 0. Then the following equation holds.
Yp(Wp, 3)710(5;2;, 2s - 2)

Yo(prip, s — 1) ep(pp, s — 1)p3-2)es,
P y2R]

AL (B, Yp; U, (D)%) = Ty, (det(2h))

Furthermore if 2 =1,

* — 8 L(U.)2. 3 - 2S)L(phw 8§ - 1)
A’ I X7 P 5) — — Ny (5 2y,.3—-28\Fr p’ boB .
p( iy 1/)pi p ( )p ) Wp( l)p (wp(p )p ) ( 2, ) ( , )

Here n, = ord,(f(wp)) and ay, B, is given by
1 1
ap = Eordp(det(2h)/f(Ph)), Bp = §ordp (Fwp)§(w2)?/§(wppn)) + %ordp det(2h).

We can prove Proposition 6.2 by Proposition 5.1 and the next lemma.

Lemma 6.1. Suppose p # 2. Let i be a primitive Dirichlet character mod p™. For
d € Q*, we denote the primitive Dirichlet character associated with Q(\/E) /Q by
Xd- Then the following assertions holds.
If n is even,
G(¥)? = $(4)GW*)p">.
Ifn is odd and ¢ # 1,

G(W)G(¥xp) = (4G,

Remark 6.1. If n = 1, then this lemma is the special case of Davenport-Hasse’s
product formula.

Proof. For simplicity, we assume n is odd and %2 # 1. In the first place, we shall
show

(6.2) > pla+ %) = xpr (B)ed(Wxpr (@) G(Y)G(Wxp-) ' pE,

z mod p™

for a € Z, 8 € Z with (8,p) = 1. Let a € Z/p™Z, (a,p) = 1. Then by induction on
n, we can prove

(6.3) Y e(E5) = epxpe (a)p?

where €, = 1 if p = 1 mod4 and ¢, = 7 if p = 3 mod 4. Since ¢ is a primitive
character, we have

ve) = 6w Y Tlele(-23).

a€(Z/pnZ)*
By this, we have
2
S wPta)=p6w) Y Blaje(-2ETY)
z mod p™ z,a mod p” p
(a,p)=1
— 2 -—
=p"CW) Y w(a)e(-%)e( pia)'

41



42

By (6.3), we have
S W@ +a)=p"GW) Y epxp (—a)pEBla)e(-27)

z mod p™ a mod p"

=6 Y @x)a)e(-23).
a mod p"
(a,p)=1

= 5ﬁ(¢Xp‘ ) G(¥)G(Yxpr )—113% :

Thus we obtain (6.2). For primitive Dirichlet characters x,% mod p”, we denote
by J(x,%) the Jacobi sum. By (6.2), we have

Jw, )= Y, vl-zy@)= >, ¥(1/4-a?)

z mod p* z mod p™
= Xp (~1)E3P(4)G ()G (vxp-) "0,

Since J (1, ¥) = G(v)%/G(¥?), we obtain the assertion of the lemma. O

Proof of Theorem 2.1. For simplicity, we assume N is odd and wg #1forallp| N.

Let w be the character of AX/Q* corresponding to 1. By Theorem 4.2, a(h, E(z) )
is given by

LW (k — 1, xn9)
L(k,¥) LN (2k — 2, ¥ )
x [T F2 (s 6@)p™*) [ | Ap(h, 3 8, (B)P75)-
PN

p|N

é(ya h; k’ 0)9(—iyh)

By Proposition 6.1, Proposition 6.2 and the functional equations of the Dirichlet
L-function and F(z)(h; T),

a(h, B{)) = 2i det(2h)*=3/2 T[] @o(det 2h)ep (o, p, k — 1)pB~2K)
pIN

X H 5p(Ph,pwp, k- 1)a)_p(p2°‘p)p(3—2k)ap
ptN

LN(2 — k, Xk, ¥) . -
T —k, )L™ (3 — 2k, ¢2)l—][va (R; %(p)p™™°).

Here pp, » is v-component of the character corresponding to xx. From this and the
following equations, we obtain the assertion of the theorem.

ep(P,p@p, k — 1) = Bp(H(ph,p))ep(Php, k — 1),
H ep(onp k= 1) = —§(xn) EG(xn) = —if(xn)*?7F,

p:prime

det2h =f(x») []

p:prime
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