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The matrix coefficients of the large discrete series of SU(3,1)
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1. INTRODUCTION

This is an announcement of the forthcoming paper [HKO3]. In this paper we present
the explicit formula of matrix coefficients of the large discrete series representations of
SU(3,1), the unitary group of signature (3+, 1—) without proofs.

In the theory of automorphic forms, the dimension formula is of a great concern. In
the situation of hermitian symmetric domains of type I, there is a result of Suehiro
Kato [K1, K2] when the group is the special unitary group of signature (p+, 1—) which
treats a dimension formula of holomorphic automorphic forms. This form stems from
so-called (anti-)holomorphic discrete series representations of this Q-rank 1 semi-simple
Lie group. With representation theoretical view, there is a non-holomorphic discrete
series, or “large” discrete series representation. The Selberg-Godement’s formula [Go],
which computes the dimension of bounded automorphic forms, requires no assumption
for discrete series except integrability. However, the computation of kernel function at the
“large” case seems still open. This is because we think the combinatorics of the weight
basis of U(3) would remain hard. On the other hand, in the papers [HiO, HiO2] there is
a nice way to treat these basis in very concrete fashion. By using this, we calculate the
matrix coefficients of SU(3, 1) in this paper.

The content of this paper is as follows. In Section 2 we treat the matrix coefficients
of the discrete series in general. Then the Dirac-Schmid equations are introduced. In
Section 3, we introduce the unitary group SU(3,1) and its Lie algebra. Then the discrete
series of SU(3,1) is introduced concretely. We need the Harish-Chandra parameter, the
Blattner parameter and the associated non-compact roots.

In Section 4, the canonical basis of GL(3) is introduced. It is described using Gel’'fand-
Tsetlin pattern, and also called Gel’fand-Zelevinsky basis. Since the matrix coefficients
reflect detailed geometric nature of weight basis, we investigate the weight diagram very
closely. _

In Section 5, we specify the Dirac-Schmid equality by the SU(3, 1)-data. We compute
the injectors in a very concrete way. In Section 6 the main results of this paper are given.
We select the Q-generating set of matrix coefficients, which we call standard functions
(Theorem 6.3). Then the problem to compute matrix coefficients is reduced to that of
standard functions. The standard functions are described by the hypergeometric functions
2F1 (Proposition 6.8 and Lemma 6.12). We state these main results without proofs. The
detailed ingredients are discussed in forthcoming paper [HKO3].

Notation. Z, Q, R and C are the ring of integers, the fields of rational numbers, real
numbers and complex numbers. Let M,(C) be the space of complex square matrices of
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degree n. Then E;; denotes the matrix units with 1 at the (, j)-th entry and zeros at the
other entries.

2. GENERALITIES

2.1. Spherical functions or matrix coefficients belonging to the discrete series.
Let G be a real semi-simple Lie group of finite center. Let K be a maximal compact
subgroup of G. We assume that G has a compact Cartan subgroup 7. Let L?(G) be the
L2-space of measurable functions on G with respect to the Haar-Hurwitz measure, which
is a G x G bi-module with the action

L(g1)R(g2)p(x) == p(g7'zg2) (p € L*(G), z€G, (91,92) € G x G).
The discrete series representations are, by definition, in the sum of the closed invariant
subspace under this action of G x G. With this definition and from the results of Harish-
Chandra, we have the discrete series
LYG)a =P mBm
AEE

as G x G bi-module, with parameters ) in the dominant regular integral weights = with
respect to a compact Cartan subalgebra t = Lie ' (Harish-Chandra parameters).

Let (my, Hy) be a discrete series representation with Harish-Chandra parameter A. Let
T : 73 ® 7, — L?(G) be the unique G x G homomorphism up to constant multiple. If we

denote by
(, ) HyxHy—=C
be the G-equivariant canonical coupling, then 7 is given as
T(v* Rv)(z) = (v*,n(z)v) for v € H) and v* € Hj,
because we can check the intertwining property
L(91)R(g2) T (v* Bo)(z) = T((m3(g1)v" & ma(92)v)(2)

immediately.
Let .: W, — H, and «*: W,» — H} be K modules and K-injections. Then we define
the matriz coefficients of s with K-type T at vector f & f' by

o(f B ff2) =T (f) W e(f)(2)
Since G has a Cartan decomposition G = K AK, where A is the connected component

of split R-torus of G, the matrix coefficients ¢(f ® f’;z) can be determined by the value
at a, € A, which we call the radial component.

2.2. The Dirac-Schmid equations. Let 7 be a multiplicity-one K-type of 7, and
let 7® be a constituent of Ad(K) ® 7 and I®: 7®) — pc ® W, be an injective K-
homomorphism. If 7(® is not a constituent of 74| K then for each I®(f) = ¥, X; ® v,

we have
S R T () Bu(w)) =0 (v* € Hy,)

since 7(¢) — pc ® W, — H, becomes also a K-homomorphism. We call this the (right)
Dirac-Schmid equations.
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3. THE UNITARY GROUP SU(3,1), ROOT SYSTEMS AND THE HARISH-CHANDRA
PARAMETERS

3.1. The Lie group and the Lie algebra. The Lie group G := SU(3, 1) is realized as
{9 € My(C) | *gl319 = 13, detg =1}

with 13; = diag(1, 1,1, —1), and its Lie algebra g := su(3, 1).
We choose a Cartan involution

8:9eG'gl eq,
and the induced involution on the Lie algebra:
6: Xecg— -Xeg.

Fix a compact Cartan subgroup T in K = G? consisting of the diagonal matrices in G,
and let g = €®p be the Cartan symmetric decomposition. The adjoint action of a central
elements diag(z, z, z, 2~%) with z = exp(7mv/—1/8) defines the canonical complex structure
on p. Then the (+1,—1) part p, and the (—1,+1) part p_ in p ® C is given by

p+ =CE4 O CEy ®CEsy, p_-=CEy @CEgpn & CEys.

Let a be a maximal abelian subalgebra in p generated by H, = Ej4 + Ey. We set
A = exp(a).
We put M := Zx(A) the centralizer of A in K:

Uy
M= U, | ug € U(1), Us € U(2),us = ug, uldet(Us) = 1} ,

Uy

which is isomorphic to U(1) x U(2).

3.2. The root systems. The unitary characters of the compact Cartan subgroup
T := {t := diag(u1, ug, us, us) | u; € U(1), ug = (uuguz)™*}

are expressed as

3
x: T3t~ [Jul eUQ),

i=1

with some triple of integers (I3, 3, l3) € Z3.

The root system ®(gc, tc) is given by {8;; (i # j)} with 5;;(t) = u;/u; (1 <i,5 < 3)
which is of type As.

From now on we fix as a positive system ®* := {£;; (¢ < 5)}. Then two compact roots
B2 = (1,-1,0) and B3 = (0,1,—1) and a non-compact root B34 = (1,1,2) form the
simple roots in this positive system. Note that p the half sum of positive roots is given
by p=(3,2,1).

The root system ®(g, a) is the restricted root system of type A; with multiplicities.
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3.3. Harish-Chandra parametrization. We recall here the Harish-Chandra parametriza-
tion of the discrete series representations for SU(3,1) and their minimal K-types.

The set of finite-dimensional irreducible representations of K is parametrized by a
subset = of integral weights Ly = Hom(T, U(1)) of the representations of K, which are
dominant, i.e., its parameter is of the form (I1,1s,13) € Z* satisfying l; > Iz > I3.

Since T is also a Cartan subgroup of G, the Killing form on g restricted to t defines
the natural inner product on Lr:

3 1 3 3
(L1 =Yl = 70k

=1 4=l
The set of equivalence classes of the discrete series representations of G is parametrized
by a subset of Ly+p = Ly, which is positive with respect compact positive roots {2, Bas}.
There are 4 different positive systems in ®(g, t) compatible with the positive system of
compact roots generated by simple roots {12, B23}; these are specified by 4 simple root
systems Ay (J € {I,II,III,IV}):
(@) :{Br2,Bes, Bas}; (L) : {Br2, a4, Bas}s
(I11) : {Ba, Baz, Bas}; (IV)  :{Ba, b2, Bas}

with the corresponding sets of positive non-compact roots ®;,:

(I) : 87, = {Bua; B2, Baal; (1) : @Fp, = {Bua, Bos, Bas}s
(1) : &, = {Bua, Baz, Buz}; (IV) : @Fy, = {Bar, Baz, Bes}-
And the half sum of positive roots p; for each J is given by
pr=p= (3’ 2, 1); pir = (2’ 1, _1); prrr = (1, -1, "2); prv = (_11 -2, —3)'
Here we set
E=EUEgUENUEw.
with
Sre={l=(l,lp,s) € Lr| i >l > 13 >0}, Ep:={le€Ly|li>1l>0>1l},
Eur={le Lyl >0> 1 >3}, Ewvi={l€Lr| 0>l > >3}

For each element A € =, there is the unique discrete series representation m, which
is specified by its character formula of 7. The minimal K-type p of m is given by
p= A+ pa(X) — pc = A+ p()) — 2p.. Note here that 2p. = (2,0, —2), i.e., p. = (1,0, -1).

4. THE GEL'FAND-ZELEVINSKY BASIS FOR SIMPLE GL(3)-MODULES

Recall the paper [GZ] of Gel’fand-Zelevinsky and the previous papers [HiO, HiO2].

Given a highest weight u, we get a highest weight module (7,,, W,,) of GL(3). Let W (u)
be the set of weights in (7,, W,). For its weight basis, we can associate the set G(u) of
the Gel’fand-Tsetlin patterns M:

Hi, H2, M3
M = | mya, ma (u1 > mig > g > Mog > p3, Mig > My = Ma2)
mn
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Then according to [GZ], the simple K-module V,, of highest weight u has a basis { f,(M)|M €
G(p)}, which is called a Gel’fand-Zelevinsky basis.
From now on, we use the offset notation for Gel’fand-Tsetlin patterns (i.e., GT-patterns):

; M1, M2, U3 H1, M2, U3 b
M (“; ) = | miz+a, mep+b| for M =] my, mg and the offset (aé ) :
my +¢ mii

Moreover the symbol M|a] means M (“’0_ a). We also denote y; = my3 (i = 1,2, 3).
The weight wt(M) of the GT-pattern M is given as

3
(ma1, Mg + moe — My, Z pi — (Mg + maa))

=1

Note that wi(M[a]) = wt(M). We sometimes identify the basis f,(M) with the GT-
pattern M when the highest weight u is clear from the context.

4.1. Decomposition of the weight polygon. Given a dominant integral weight u =
(11, 2, p3) € Z® (u1 > jig > p3), the convex closure of all the permutations (tq, s, ttc) of
three components of p ({a,b,c}={ 1, 2, 3 }) generically makes a hexagon Hex(u) in the
plane {(z;,23,23) € R® | 3,2 = >, pu;} of the Euclidean 3-space. If u; = uy = g, this
is a point, and when either pu; > po = ug or p; = pe > g it is a triangle.

Then the intersection Hex(u) N Z3 coincides with the set of weights W (u) belonging to
the highest weight ;1. We divide this set into seven parts in the following manner.

D(1) : = {w = (w1, wa, w3) € W(u) | w1 > po, we < pg, and wz < po},
D(@3) : = {w = (w1, wo, ws3) € W(p) | w1 > pa, we < pig, and wz > po},
D(6) : = {w = (w1, w2, ws) € W(u) | w1 > p2, we > po, and wy < po},
D(4) : = {w = (w1, w2, w3) € W(p) | wy < pg, wy > po, and ws < po},
D(5) : = {w = (w1, wz,w3) € W(u) | wy < po, wa < g, and wsg > pa},
D(2) : = {w = (w1, wa,ws) € W(u) | wy < pa, wa > p2, and wg > pa},

D(77) : = {w = (w1, wq,ws) € W(u) | w; > py, for all i},

D(77) : = {w = (w1, wa, ws) € W(u) | w; < pa, for all 4}.

Let w = (w;, ws, ws) be a weight belonging to a highest weight u. Then the set of
GT-patterns belonging to w is of the form

G(u;w) = {M[-t]|t € ZNa,b]}

with some G-pattern M and some integers a, b. In particular, we may choose M and
a such that @ = 0. Then M is called the leading GT-pattern belonging to the weight
w. Moreover we call the difference b — a the meson number m(w) > 0 of the weight w.
Therefore the cardinality of G(u; w) is m(w) + 1. We have m(w) < inf{p — po, uo — ps},
and the equality m(w) = inf{y; — ug, us — ps} is valid if and only if w € D(7) or
w € D(T7).
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Let w = (wy, wy, ws) € W(u) be a weight belonging to x. Then we call 1 := p; —w
the level of the weight w. Let L(i) be the set of weights of level ¢ in W (). Then this is
a line segment of at most length &+ [+ 1.

We spell out explicitly all the weights belonging to each domain D(J) (J =1,---,7).
The result is different depending on the cases:

the case (@): wy —pe =k po—pus=1+1;
the case (B): w1 —pe=k>pp—puz=10+1.

In the former case we denote p = (k+1+1,1+1,0) € (a), and in the second case p € (B).

If the first component w; = k + 1+ 1 — i of the weight w € W(u) belongs to the range
such that 0 < ¢ < inf{k,[ + 1}, we say that the weight belongs to the top range, and
denote this by w € T symbolically; if i satisfies inf{k,l+ 1} < ¢ < sup{k,!+ 1}, then the
weight belongs to the middle range (w € M); lastly if sup{k,! + 1} < ¢, we say that the
weight belongs to the bottom range (w € B).

4.2. Parametrization of the leading GT-patterns. We write the exhaustive list of
the leading GT-patterns on each D(J) (1 < J < 7). In what follows,we define the highest
M1, M2, U3
weight vector mg := p1, g2 |. Wealso set c(i) = |l +1 —14.
(231
On D(6):
(1) If p € (a), or p € (B) and w € T, the leading GT-patterns in D(6) is exhausted by
Mg = mo (°* 7)) 0<a<i<imf{ki+1})

with wt(M)) = (k+1+1—14i,l+1+a,i—a), §(My) = a, and the meson number

m(M(a)) =1—aqa.
(2) The case p € () and w € M:

My :=mg (0’“",”") (+1<i<k 0<b<l+1)

with wt(My)) = (k+1+1—1%,b+1,1+1-b), 6(M)) = —I—1+i+b, and m(Mgy)) = l+1-a.
On D(3):
(OHIfpe(a),orif pe (B)andweT:

Ma =m0 (™7)  (0<a<i<h)

with wi(Mg)) = (k+1+1—i,i—a,l+1+a), 6(M)) = —l—1+i—a and m(M,)) = i—a.
(2) if p € (B) and w € M:

My = my (‘““"A”'“"l) (+1<i<k 0<b<I+1)

with wt(Mp) = (k+1+1—-4,l+1~bi+ b), (M) = —b, and m(Mp) =1+1-0b.

On D(4):
(1) Ifpe(a)and we M:

Mgy =mo (*7F)  (0Sesk<i<i+l)

-2



case (a):

mof0, =1 —1
0

mof —k, 1~ 1
~k

case (B):

~

E<l+1

D(3)

E>1+1

0,-1~1
0

D(5)

~

—-k,~1-1
~k-1-1

)

s

leveli _ 1=0

0,——1
—k—-1-1

FIGURE 1. the weight polygons and leading GT-patterns

81
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with wt(M(a)) =(k+l+1-0l+14+a,i— a), 5(M(a)) = q, m(M(a)) =k —a.
(2) If p € (o) and w € B, or if p € (B):

i §

My =mo ("7 (k<iSk+1+1,0<b<k+1+1-0)
with wt(Mp) = (k+1+1 —4,b+4,l+1-0b), 0(My) =—l—1+i+b, and m(M(b)) =
k+l+1-i-b.
On D(5):
(1) (@) and w € M:

M = my (‘“”’.") 0<a<k<i<l+l)

—1

with wt(M(a)) = (k+l+1—z’,z’—a,l+1+a) and (5(M(a)) =—-l—-14i—a, m(M(a)) =k—a.
(2) If (o) and w € B, or if pu € (B):

Mgy i=mo (‘150 (0<i— (4 1) Sk 0<b<k+I+1-1)

—1

with wt(M(b)) = (k+l+1—d,l+1-b,i+D), (5(M(b)) = —b, and m(M(b)) =k+Il+1-:-b.

On D(1), the forms of the leading GT-patterns are the same in the both cases (a), (8).
But the range of the parameters are different.

My = mg (0’—".-“) (0<i<inf{k,l+1}, 0<a<l+1—1)

with wt(Mjg) =(k+1+1—-4,l+1-a,i+ a), 6(M)) = —a, m(M)) = t.

On D(2) we have the same form of GT-patterns with different ranges of parameter
depending on the () case or (f) case.

MP .=m, (‘”“*““”"“1) (sup{k,l +1} <i<k+I1+1,0<b<i—(1+1))

-1

with wt(M®) = (k+1+1—4,1+1+bi~b), S(ME)=b m(M®)=k+1+1—i.
On D(7) we have the following selections:

?

(@) : M[a]=mo(°"j.‘“) (k<i<l+1,0<a<l+1-1),

(B) : Mibl=mo(—"+<’+”?“°’-‘*1) (I+1<i<k, 0<b<i-(+1)).

~1

The weights and § are given in the formulas in the domains D(1) and D(2). Moreover
the meson number is inf{k, [+ 1}.

5. DIRAC-SCHMID EQUATIONS ON SU(3,1)

Let (7,,W,) be the minimal K-type of (7, H)). The action of the basis E;; (i,j =
1,2,3) of ¢ can be computed as the following Proposition.
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Proposition 5.1 (Gel'fand-Zelevinsky). Let f,(M) be the basis with GT-pattern M €
G(u). The action of the siz weight vectors E;; (i # j) is given as follows:

Brafu(M) = (maz = man) fu(M (%)) + (mas = maa)xs (M) fu(M (%) [-1)),
Ean fu(M) = (ma1 = mag) fu(M (%)) + (msz = mas)x— (M) £u(M (%) [-1]),
Bza fu(M) = (mag —mua) fu(M (30)) + (mas = maz = S(M)x- (M) £,(M (') [-1)),
Es2fu(M) = (maz — ma3) fu(M (0 _1) (maz — maz + (M) x+(M) fu(M (0’0-1) [-1]),
) =
) =

0
Ewzfu(M) = (my3 — myg) fu(M (1’10) - (M) fu (M (1’10) [-1]),
By fu(M) = =(mzz = maa) fu(M (*31)) + es(m) £u(M (*31) [-1)).
Here we set
(M) := myg + Mgz — My — Moz,

and

_ )L, dife(M)>0 )1, ifé(M) <0

xX+(M) = {O, otherwise P x-(M) = {0, otherwise

Moreover

c1(M) = inf{my; — mo, myy — My}, C1(M) = inf{mas — mag, M1z — My}
The actions of Eyy, Fsy and Ess are given by
Enf,u(M) mllfu( )7 E22fu(M) = (m12 + Moy — mu)fu(M),

Essfu(M) = (Z Mg — Mag — Maz) fu(M).

=1
For our later purpose, we introduce more piecewise linear functions:
(M) m12—m13—-5(M) D(M) =m33-—m22+(5(M), OQ(M)=C]_(M)61(M)

Proposition 5.2. Let (7,,,V),) be the simple K-module with a dominant integral weight
p = (ma3, mas, ma3) € Z3, which is equipped with an Gel'fand-Zelevinsky basis { f,(M)|M €
G(n)}. Set p®D =p+e; and u=9 = p—e; (i =1,2,3), and let {fE(M)|M e G(u*)}
be a Gel'fand-Zelevinsky basis of V(.

(1) Up to a scalar multiple, the injector Ve, — Ve, ® V,, is given by

fures M) = () ® 1 (m (°5)) = (5) @ {fu (m (*57)) + x= (1) £, (m (39)) }
+ (%) o5 (m (%))

for each M' = (4 es;m) € G(u + e3).
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(2) Up to a scalar multiple, the injector V4o, < Vo, ® V, is given by
(2 + 1) furea (M) = (1) @ (=i = ) fum (7)) + x- (MDY fum (%))}
+ (%) ® {(mhe — o) fulm (°5")) ~ (M) fulm (75°)))
+ (%) @ ((ms — mig)fulam () + x- (M@ (M) fulen (T4}

for each M’ = (i + ex;m) € G(u + e2). Here D(M') = —(mi, — mis) + 6(M').
(3) The injector V,ie, — Ve, ® V,, is given by

(dy +1)(dy + d2 + 1) fyre, (M)
= (5 ® {~(my = mi)(my — i) fulm (*51)) + EOM)fu(mn (-
+ (%) ® {(mis — min) (i — mig) fulm (*5")) = FM)fulem (5
+ (M) fum (5))}
+ (%) ® {(miy — mig)(mis = mip + D fulm) — cx(M) fu(m (751}
(4) The injector V,_e, = V_e; ® V,, is given by
e M) = (%) @ 2 (4 () = (") & {1 (4 () + - 00 £ (1 (7)) }
&V ACIH)E
(5) The injector V,_e; — V_e; ® V), is given by
(dh + 1) fumes (M) = (%) @ {(mt = i) (M (%)) + X (Mer (M) £u(M (T57)))
+ (%) @ (e = mi) £u(M () = 01 1uM (%))
+(°5Y) © {(=(mls = mip) fulM () + X (M) DS ()]
(6) The injector Vy_e, > Vy_oy @ V,, is given by
(di + 1)(d1 + d2 + 1) fu—ey (M)
= (%) @ {(mfz = mis + 1)(map —mis) fu(M (%)) = oMY fu(M[-1])}
~ (°57) ® {~ (s = mia) iy — mig) fu(M () + PO £u(M (%))
— x-(Mex (M) fu(M () [-2D)}
+(°37) ® {=(mts = mha)(m, — i) (M (1)) + BOL)£(M ()}

5.1. The annihilators of the minimal K-types. In what follows, we restrict ourselves
to the case when the discrete series is from Zp;.

Let 1 be the Blattner parameter of m) € Z;;. Then by the Blattner formula (proved
generally by Hecht-Schmid [HS]), the K-types u — 8 (8 € ®J,,) do not occur.

i
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Here we consider the action of pc = p.®p_ on the K-finite elements in the represenation
space of my, more specifically on the minimal K-type (7,,W,) — m», Hr x. Then the
image pcW, is the canonical image of the K-module pc ® W,,.

We regard E;y (i = 1,2, 3) are elements in p.,, and Ey (1 =1,2,3) in p_.

Proposition 5.3. We have the following Dirac-Schmid equations:
(1) Vyte; @ det does not occur in 7y, i.e., we have a set of relations:

Brafulm (*37)) = B {£utm (°51) 45 00 fulom (T5°)) } + Busfum (%)) =0
(2) V,—e, ® det™ does not occur in 7, i.e., we have relations:
Buafu(m (%)) + Bao { fulm (%)) + x- () fu(m (%) } + Buafulm () =0
(3) V,_e, ® det™ does not occur in 7y, i.e., we have relations:
Bug {(mhy = m3a) fu(m (%)) + x4 (Mex (M) futm (T57)) }
By {=(mis —mip)fum (%)) + e (M) £ (m (%))}
+Eq {~(mhy = mia)fu(m (1)) + x: ()DOM) fu(m (1)) } = 0.
Remark. Note that m), — mjs = k + 1 — (m)g — m},) and D(M’) = —(k + 1) + co(M').

6. MAIN RESULTS

In the following we announce our main results of this paper. The proofs are to be
described in detail in [HKO3].

Firstly the following Proposition asserts that the nontrivial matrix coefficients happens
only around the “diagonal” entries.

Proposition 6.1. Let w, w' € W(u) be two distinct weights of the highest weight module
Ty. Then the radial component of matriz coefficients becomes trivial, namely

(MRIM)A=0 for MeG(uw), M € Gu,w).
This is the direct consequence of “M-compatibility”:
Ad(X)e(M R M;a,) = o(7,(X)M R M'; a,) + o(M R m3(X)M'; a,) = 0.
for X e tNm.

6.1. Standard functions. In order to show the explicit formulas of matrix coefficients,
we firstly try to fix a Q-generating subset of the vector space generated by the matrix
coefficients as is indicated in Theorem 6.3.

Notation 6.2. We define the standard functions S;4(r) of level i, offset a, b by
o If Moy € (D6)NT)U(DE)NM)U(DB)NT)U(D(5)UM),
Sia(r) = (Mg ® Ma); ar)
o If M) € (D(6) N M) U (D(4)NB)U (D(3)yN M) U (D(5) U B),
Sip(r) = (M) M; a,)
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Theorem 6.3. Let M,, M. € G(u,w) be GT-patterns of weight w. Then any matriz
element (M, R M ;a,) on A is a Q-linear combination of the standard functions, with
explicitly determined these coefficients.

We sketch the procedure to show this by the following: first the case where w’ belongs
to D(6) U D(4) is handled. Also we have a similar result for w' € D(5) U D(3) in terms
of the co-standard functions; next we consider the case where w' € D(1) U D(7) U D(2),
and this second result make a bridge between the standard functions and the co-standard
functions, and we have done.

Actually, we find the case D(6)U D(4) is enough since the other cases can be expressed
by the formers up to sign. Thus we need only (k + 1)(I + 2) standard functions.

The precise coefficients referred in Theorem 6.3 are discussed below.

6.2. The non-standard parts. Let us define the double binomial coefficient { dd_;_f s
withd < fand0 < s <dby df 1. d f Let [2}¢q; be the Pochhammer
= == d-sf[  \d-s/\d—s)’ td}
d

symbol defined by [2](q} := H(z+l —1). For our purpose, it is convenient to introduce the
double Pochhammer symbc:ﬁl[[z]]{dl;dz} 1= [z]{dl}[z]{gz}. When d = 0, we set [z]{0} = 1.
Notation 6.4. (1) (the upper case) Assume that 0 < i <1+ 1. Then we define

: c(i) if wt(My)) € D(6)U D(4),
V(i) = {o if wt(My € D(3)U D(5).
(2) (the lower case) Assume that k+1+1>i>1+ 1= ps — ps. Then we define

(@) = 0, if wt(Mp)) € D(6) U D(4),
! (@), i wi(Mp) € D(3)L D(5).

Theorem 6.5. Let S, ,, S;p be standard functions and let w € W(u) be the weight of 7,,.
(1) (The upper non-central cases) For d < f < m(w), we have

(M(a)[—d] M@y ~f);ar) = (M)~ f] 8 Ma)[~d}; a,)
= (- l)f Z( 1) { 3 f } [[[[’7(7') +a+d—s+ 1]]{s;f-d+5} . 1 Sia—s(T).

=0 c(i) +2(a+d — 5 + D] (arf—dsa) (COH2+24-25)

(2) (The lower non-central cases)
(Mol % My [~ fl; &) = (M- f] R My |~d]; a)

— (_ s [[7(7') +b+d—s+ 1]]{8 d+s} 1
= (~1)f g( 1) { } (lc(d) +2(b+d— s+ 1)]]{; dre} (C(Z)+2b+2d—2s)s i bd—s(T)-
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(3) (The upper central cases)
o(Migy[~d) & M|~ fl; ar) = o(Miu[~f] B Mig[~d];a,)

d .
= (1) Z(_l)s {dd.;_fs} le(i) — a+d — s+ 1)]{si5-d+s} ! Sia—s(r).

[[c(@) + 2(d — 5 + Dl)gsi-assy (759

(4) (The lower central cases)

o(MP[~d] R MB[f]; a,) = o(MP[~ f] & MB[-d]; a,)

— + ’ s ) d; f [[b +d—-s+ 1]]{s;f—d s} 1
= (02 ) {d - s} 0+ 2025+ 2lgogery () o)

s=0 b+d—s

6.3. The Cartan decomposition. By the previous section, it is enough to detect the
standard functions. As mentioned before, the matrix coefficients are defined by its radial
components. We specify the coordinate expression of A as follows now.

Notation 6.6. Let t = logr with r > 0, and let sh(t), ch(¢) are hyperbolic (co)sine func-
ch(t) 0 0 sh(¢)

tions. We define a(t) = 51%’ B(t) = sﬁg; and put a, = a(t) = 8 (1) (1) 8
sh(t) 0 0 ch(¢)

Proposition 6.7. Let Hy = E4 + E4;. Then we have

1 1 1
By = §Ha + 501(275) Ad(a,; ") Hia — §ﬁ(2t)Hl4’

1 1 1
Eq = 5Ha — 50(2t) Ad(e; ") Hia + 58(2t) Ha.

Moreover fori=2 ori =3,
Ey = a(t)Ad(a;)Ey — B(t)Ex, Ey =—o(t)Ad(a")Ey + B(t) Exs.
We have the obvious realization: H, — &, 1= r%.

6.4. Solutions of the Dirac-Schmid equations for the standard functions. In this

section we find two results.
(1) any standard function is a isobaric Q[gi(%]—linear combination of certain (k + [ + 2)

"backbone’ functions Fi(r) (0 < ¢ < k+ 1+ 1), which are Gaussian hypergeometric
functions with adequate parameters modulo some simple multipliers. Here we note only
that

E(r):=({1+2-1)S;o(t)
if ¢ <1+ 1 (the upper case). For i > [ + 2, we give the definition later; (2) for each
1=0,--+,k+ 1, the vector of pair F;, F;,; satisfies a differential equation

d (F\ _ F
i (FHJ = Alr) (E’H) '
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which is equivalent to a hypergeometric equation. Thus any standard function S;,(r) of
level j is a Q-linear combination of the isobaric functions

F), (2) Fma) (£) Brado)
of adequate length s.

We have a definite result when we restrict ourselves to treat the case ¢ < inf{k,{+ 1}.
For other cases, see [HKO3]. As for the result (1): we have the following:

Proposition 6.8. Assume that 0 <7 < inf{k, [+ 1}, j+d<l+1andd <k. Then we

have
f[(k+l+2 Jj—s)
_nifk B()
(1) Sirastr) =2 > (4)ara-s-aen) — (55 Sienot
= H(l+2+d—]—s)
s=0

So we only consider the standard functions of the form S;o(r). The results correspond-
ing to (2) is given below. We show the standard functions are actually the hypergeometric
functions.

6.5. Constrution of hypergeometric pairs. We deduce pairs of differential relations
between two matrix coefficients associated with the G-patterns my ( ) and my ( _:'_—11)

(0 < i <) with weights (k+1+1—14,l+1,7) and (k+1 —14,l+ 1,7+ 1) respectively.
Among others when i = 0, this gives a differential equation of rank 2 for ¢(mg X iny; ar).

Corollary 6.9. Let 0 < i <. Then we have a pair of the forward relation:
. I+1-
(+D):  {pa(Re,) + (i +1)B(t)} Sio(r) = I T2= (k +14+2—9)Sit1,0(r)
and the backward equation:
. [+2-
(=D): {pa(Rew) + (k+1+2 = 9B()} Sitr0(r) = 5 1o (Z + 1a(t)Sio(r).

Proof.) These are immediate consequences of Pr0p0s1t10n 5. 3 a
Put m = k+1+2, and let ¢, be the Euler operator r4- %= Then formulas in the previous
Corollary is rewritten in the following form.

Notation 6.10. We introduce the atomic functions Fi(r) by
F;,(’I‘) = (l + 2 - 'i)Si,O(T)

for0<i<l+1.

Lemma 6.11. Recall r = exp(t), and let m = k+ 1+ 2. For i satisfying 0 < i <[ +1,
we have a pair of equations

Ser = (m — i = 1)a(2e) + (m — i — 1)B(21) + 20 + DBEOIA() = (m — )alt) Fua 1),

%{s, +(m —i — 2)a(2t) — (m — i — 2)B(2t) + 2(m — $)B()} Forr (r) = (6 + Da(t) Fi(r).
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Now we introduce new variables p and z by
pi=ch®(t)=1- 2

This system has three regular singularities at p = 0, = 1, = co. We determine the
exponents of the characteristic equations at these points.

Lemma 6.12. The function Fi(p) belongs to the Riemann’s P-scheme :

0 1 00
P —im—i-1) 0 %(m+i+1)
+5(m—i—1) —(m+1) ;(m~-i+3)
Among others the unique solution regular at r = 1 for F; is of the form
Fy(r) = const. - ch(t)™ Dy Fi(m —i+1,m,m+2;1 - p)

with the Gaussian hypergeometric function o F1(a, B;v; z) with parameters a = m —i+ 1,
B=mandy=m+2.
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