On the Igusa modular form of weight 10

Bernhard Heim and Atsushi Murase

Abstract. This paper is related to the authors' talk at the RIMS conference 2011 on: Automorphic forms, trace formulas and zeta functions in Kyoto. The Igusa modular form of weight 10 is the unique Siegel modular form which is a Borcherds and a Saito-Kurokawa lift.

Mathematics Subject Classification (2000): 11F41 Keywords: Borcherds lifts, Saito-Kurokawa lifts, modular polynomials, Heegner divisors.

1 Introduction

The Igusa modular form χ_{10} appeared first in the famous theorem of Jun-ichi Igusa about the generators of graded algebra of Siegel modular forms of even weight and degree 2 (see [Ig1]). The algebra is equal to

(1.1)
$$\mathbb{C}[E_4^2, E_6^2, \chi_{10}, E_{12}^2].$$

We normalized the Siegel type Eisenstein series E_k^2 of weight k such that the Fourier coefficient related to 0-dim cusp at infinity is one. The Igusa modular form χ_{10} is a cusp form of weight 10. Igusa introduced the form in terms of Eisenstein series ([Ig1], page 192).

$$\chi_{10} := -43867 \cdot 2^{-12} \cdot 3^{-5} \cdot 5^{-2} \cdot 7^{-1} \cdot 53^{-1} (E_4^2 E_6^2 - E_{10}^2).$$

It is known that χ_{10} is a Saito-Kurokawa lift ([Za]) and a Borcherds lift ([GN1], [GN2]).

The square root of this modular form is related to the denominator formula for a generalized Borcherds-Kac-Moody super algebra (Gritsenko, Nikulin). Moreover it is as a partition function of BPS dyons in the toroidally compactified heterotic string theory. To study a generalized Kac-Moody algebra one has to know the imaginary simple roots and the multiplicities of all positive roots. It is absolutely crucial that the underlying modular form has a degenerate Fourier expansion (Saito-Kurokawa lift) and an infinite product (Borcherds lift). We refer to ([CD], [CV]) for more details. The following theorem states that there are no other Siegel modular forms of degree 2 which are Borcherds and Saito-Kurokawa lifts.

Theorem Let F be a Siegel modular form of degree 2. If F is a Borcherds lift and a Saito-Kurokawa lift, then F is proportional to the Igusa modular form.

We note that the Borcherds lift is multiplicative and the Saito-Kurokawa lift additive.

The first author was partially supported by a grant of Prof. T. Ishikawa a Grants-in-Aids from JSPS (21540017)). Part of the notes had been written at his stay in the summer of 2011 at the Max-Planck-Institut für Mathematik in Bonn. The second author was partially supported by Grants-in-Aids from JSPS (20540031).

2 Siegel modular forms, Witt operator and Taylor expansions

For an introduction to the theory of Siegel modular forms we refer to Klingen's book ([Kl]). Let Γ_n be the Siegel modular group and \mathfrak{H}_n the upper half space of degree n:

$$\Gamma_n := \left\{ \gamma \in \operatorname{GL}_{2n}(\mathbb{Z}) \mid {}^t \gamma \begin{pmatrix} \mathbf{0}_n & \mathbf{1}_n \\ -\mathbf{1}_n & \mathbf{0}_n \end{pmatrix} \gamma = \begin{pmatrix} \mathbf{0}_n & \mathbf{1}_n \\ -\mathbf{1}_n & \mathbf{0}_n \end{pmatrix} \right\}$$

$$\mathfrak{H}_n := \left\{ Z \in \operatorname{M}_n(\mathbb{C}) \mid {}^t Z = Z, \operatorname{Im}(Z) > 0 \right\},$$

where $\mathbf{0}_n$ (respectively $\mathbf{1}_n$) is the zero (respectively identity) matrix of degree n. Then we denote by $M_k(\Gamma_n)$ the space of Siegel modular forms of weight k on Γ_n and by $S_k(\Gamma_n)$ the subspace of cusp forms. In the case n = 1 we usually drop the index and for n = 2 which we are mainly interested in we often write (τ_1, z, τ_2) for a point

$$\left(egin{array}{cc} au_1 & z \ z & au_2 \end{array}
ight)\in\mathfrak{H}_2$$

Next we introduce two useful operators. Let $F \in M_k(\Gamma_2)$. Define

$$\begin{split} \Phi(F)(\tau) &:= \lim_{y \to \infty} F(\tau, 0, iy) \qquad (\tau \in \mathfrak{H}_1), \\ \mathcal{W}(F)(\tau_1, \tau_2) &:= F(\tau_1, 0, \tau_2) \qquad (\tau_1, \tau_2 \in \mathfrak{H}_1). \end{split}$$

Then $\Phi(F) \in M_k(\Gamma)$ and $W(F) \in \text{Sym}^2(M_k(\Gamma))$. The operator Φ (respectively W) is called the *Siegel* (respectively *Witt*) operator. Then $S_k(\Gamma_2) = \{F \in M_k(\Gamma_2) \mid \Phi(F) = 0\}$.

Let f_1, f_2, \ldots, f_d be a basis of newforms of S_k and $f_0 = e_k$. Here e_k denotes the elliptic Eisenstein series with constant term a(0) = 1.

Then we define

(2.1)
$$\operatorname{Sym}^{2}(M_{k}(\Gamma))^{D} := \left\{ \sum_{i=0}^{d} \alpha_{i} f_{i} \otimes f_{i} \mid \alpha_{i} \in \mathbb{C} \right\}.$$

By $\operatorname{Sym}^2(S_k(\Gamma))^D$ we denote the cuspidal part.

A Siegel modular form $F \in M_k(\Gamma_2)$ admits the Fourier expansion

$$F(\tau_1, z, \tau_2) = \sum_{n, r, m \in \mathbb{Z}} A_F(n, r, m) \mathbf{e}(n\tau_1 + rz + m\tau_2),$$

where we put $\mathbf{e}(z) = \exp(2\pi i z)$ for $z \in \mathbb{C}$. Note that $A_F(n, r, m) = 0$ unless $n, m, 4nm - r^2 \ge 0$. We also use the following shortcuts: $q := \mathbf{e}(\tau), q_1 := \mathbf{e}(\tau_1), \zeta := \mathbf{e}(z), q_2 := \mathbf{e}(\tau_2)$. It is easy to see that:

(2.2)
$$\Phi(F)(\tau) = \sum_{n=0}^{\infty} A_F(n,0,0) q^n$$

(2.3)
$$\mathcal{W}(F)(\tau_1,\tau_2) = \sum_{n,m=0}^{\infty} \left(\sum_r A_F(n,r,m)\right) q_1^n q_2^m.$$

We define the order of the q-expansion of a modular form $F \in M_k(\Gamma_2)$ by

$$ord(F) := min \{ n \in \mathbb{N}_0 \mid A_F(n,r,m) \neq 0 \}.$$

Remark 2.1. If $ord(F) \geq 2$, then $F \notin \operatorname{Sym}^2(M_k(\Gamma))^D$.

Let k be even. Then $F \in M_k(\Gamma)$ has the Taylor expansion

(2.4)
$$F(\tau_1, z, \tau_2) = \sum_{l=0}^{\infty} \Psi_{2l}(\tau_1, \tau_2) z^{2l}.$$

It is clear that Ψ_0 is the image of the Witt operator and an element of $\operatorname{Sym}^2(M_k(\Gamma))$. Moreover if Ψ_0 is identically zero then $\psi_2 \in \text{Sym}^2(S_{k+2}(\Gamma))$.

Finally let E_k^n denote the Siegel-type Eisenstein series on Γ_n , normalized by $\Phi^n(E_k^n) = 1$. Here Φ^n denotes the *n*-th iteration of the Φ operator. Let $E_k^n(f)$ denote the Klingen Eisenstein series attached to $f \in S_k(\Gamma), f \neq 0$. Note that $\Phi^{n-1}(E_k^n(f)) = f$. Let further $M_k^{2,0}$ be the 1-dim space generated by Siegel Eisenstein series of weight k and degree 2, let $M_k^{2,1}$ be the space generated by all Klingen type Eisenstein series of weight k and degree 2 and let $M_k^{2,2} = S_k(\Gamma_2)$. Then

(2.5)
$$M_k(\Gamma_2) = M_k^{2,0} \oplus M_k^{2,1} \oplus M_k^{2,2}.$$

The direct sum is related to the Petersson scalar product. Moreover this decomposition is respected by the Siegel Φ operator. Let $F \in M_k(\Gamma_2)$ with decomposition $F_0 + F_1 + F_2$. Then

(2.6)
$$\Phi(F) = \Phi(F_0) + \Phi(F_1) + \Phi(F_2)$$

(2.7)
$$= c_1 E_k + c_2 f \quad (c_1, c_2 \in \mathbb{C}, f \in S_k(\Gamma)).$$

3 Saito-Kurokawa lifts

One can find an overview in Zagier's Bourbaki article [Za]. Let k be an even integer. Then there exists an injective linear map

$$(3.1) SKL: M_{2k-2}(\Gamma) \longrightarrow M_k(\Gamma_2),$$

where Hecke eigenforms f map to Hecke eigenforms F = SKL(f). For a Hecke eigenform f, the spinor L-function Z(SKL(f), s) is given by

$$Z(SKL(f),s) = \zeta(s-k+1)\,\zeta(s-k+2)\,L(f,s),$$

where L(f,s) is the Hecke L-function of f and $\zeta(s)$ denotes the Riemann zeta function. We are interested in the image of the lifting, which is given by the so-called Maass Spezialschar:

`

(3.2)
$$M_k^{Spez} := \left\{ F \in M_k(\Gamma_2) \ \middle| \ A_F(n,r,m) = \sum_{d \in \mathbb{N}, d \mid (n,r,m)} d^{k-1} A_F\left(\frac{nm}{d^2}, \frac{r}{d}, 1\right) \right\}.$$

Here (n, r, m) denotes the greatest common divisor of n, r, m (We put 1:=(0,0,0)). To prove our main result we use the following properties of the Maass Spezialschar. If $F \in M_k^{Spez}$, then F is non-trivial iff Ψ_0^F or Ψ_2^F is not identically zero. Moreover

(3.3)
$$\Psi_0^F \in \operatorname{Sym}^2(M_k(\Gamma))^D$$

If Ψ_0^F is identically zero then

(3.4)
$$\Psi_2^F \in \operatorname{Sym}^2(S_{k+2}(\Gamma))^D.$$

Remark 3.1. Let $F \in M_k(\Gamma_2)$ has the decomposition $F_0 + F_1 + F_2$ as described before. If F_1 is non-trivial, then F is not in the Spezialschar.

4 Borcherds lifts

Roughly speaking a Borcherds lift BL is a correspondence between modular forms of weight $1 - \frac{m}{2}$ on \mathfrak{H} with possible singularities at the cusps and certain meromorphic automorphic forms with possible character on symmetric domains of type IV related to orthogonal groups O(2, m) $(m \in \mathbb{N})$ ([Bo1],[Bo2], [Bo3]). We note that

$$BL(f+g) = BL(f) \cdot BL(g).$$

Lifts to Siegel modular forms of degree 2 are related to the case m = 3, where the image is uniquely (up to a scalar) determined by the divisor

(4.1)
$$div (BL(f)) = \sum_{d \in \mathcal{D}} n_d H_d.$$

Here \mathcal{D} is the set of all positive integers congruent to 0 or 1. The sum is finite and $n_d \in \mathbb{Z}$. The H_d are the Humbert surfaces (see also the following subsection), for general m they are called Heegner divisor. The image could be an element of $M_k(\Gamma_2, v)$, a Siegel modular form with the unique non-trivial character v on Γ_2 .

Remark 4.1. The coefficients of the principal part of the input function are related to the n_d . A priori it is not clear when the nontrivial character in the image occurs. Moreover even when not all coefficients in the principal part are non-negative, the image could be holomorphic.

4.1 Humbert surfaces

 \mathbf{Let}

$$Q := egin{pmatrix} & & 1 \ & & 1 \ & & -2 \ & & \ 1 \ & & & \ 1 \ & & & \ \end{pmatrix}.$$

Put $Q(X,Y) := {}^{t}XQY$ and Q[X] := Q(X,X) for $X,Y \in \mathbb{C}^{5}$. For $Z = (\tau_{1}, z, \tau_{2}) \in \mathfrak{H}_{2}$ put $\widetilde{Z} := {}^{t}(-\tau_{1}\tau_{2}+z^{2}, \tau_{1}, z, \tau_{2}, 1) \in \mathbb{C}^{5}$. Note that $Q[\widetilde{Z}] = 0$ and $Q(\widetilde{Z}, \overline{\widetilde{Z}}) = 4 \det(\operatorname{Im}(Z)) > 0$. There exists a homomorphism $\iota : \operatorname{Sp}_{2}(\mathbb{R}) \to O(Q)_{\mathbb{R}}$ such that $\widetilde{g\langle Z \rangle} = j(g, Z)^{-1}\iota(g)\widetilde{Z}$ for $g \in \operatorname{Sp}_{2}(\mathbb{R})$ and $Z \in \mathfrak{H}_{2}$.

Let $L := \mathbb{Z}^5, L^* := Q^{-1}L$ and $L^*_{\text{prim}} := \{\lambda \in L^* \mid n^{-1}\lambda \notin L^* \text{ for any integer } n > 1\}$. For an integer $d \in \mathbb{Z}$, let

$$\mathcal{H}_d := \sum_{X \in \mathcal{L}_d} \left\{ Z \in \mathfrak{H}_2 \mid Q(X, \widetilde{Z}) = 0 \right\},\,$$

where $\mathcal{L}_d := \{X \in L_{\text{prim}}^* \mid Q[X] = -d/2\}$. Note that $\mathcal{H}_d = 0$ unless d > 0 and $d \equiv 0$ or 1 (mod 4). Since L_d^* is $\iota(\Gamma_2)$ -invariant, \mathcal{H}_d is Γ_2 -invariant. Denote by H_d the image of \mathcal{H}_d in $\Gamma_2 \setminus \mathfrak{H}_2$ by the natural projection $\mathfrak{H}_2 \to \Gamma_2 \setminus \mathfrak{H}_2$. The divisor H_d of $\Gamma_2 \setminus \mathfrak{H}_2$ is called the *Humbert surface* of discriminant d. It is known that H_d is nonzero and irreducible if $d \equiv 0$ or 1 (mod 4) (see [Ge2], page 212, Theorem 2.4; see also [GH], Section 3). Note that

$$\mathcal{H}_1 = \bigcup_{\gamma \in \Gamma_2} \gamma \left\{ (\tau_1, 0, \tau_2) \mid \tau_1, \tau_2 \in \mathfrak{H}
ight\}$$

 $\mathcal{H}_4 = \bigcup_{\gamma \in \Gamma_2} \gamma \left\{ (\tau, z, \tau) \mid \tau \in \mathfrak{H}, z \in \mathbb{C}
ight\}.$

4.2 Properties of Borcherds lifts and examples

Recently [HM] we found an explicit description of the Borcherds lifts related to single Heegner divisors. As a by-product one can see that the character is only related to the divisors H_1 and H_4 .

Theorem 4.2.

- (i) For each positive integer d with $d \equiv 0$ or 1 (mod 4), there exists an $F_d \in M_{k_d}(\Gamma_2, v^{\alpha_d})$ with $\alpha_d \in \{0, 1\}$ satisfying div $(F_d) = H_d$.
- (ii) We have $F_1 \in S_5(\Gamma_2, \upsilon), F_4 \in S_{30}(\Gamma_2, \upsilon)$ and $F_d \in M_{k_d}(\Gamma_2)$ if d > 4.
- (iii) A Borcherds lift $F \in M_k(\Gamma_2, v^{\alpha})$ ($\alpha \in \{0, 1\}$) is a constant multiple of $\prod_d F_d^{A(d)}$, where d runs over the positive integers with $d \equiv 0$ or 1 (mod 4), and A(d) is a nonnegative integer (A(d) = 0 except for a finite number of d) satisfying $A(1) + A(4) \equiv \alpha \pmod{2}$.

Here $S_k(\Gamma_2), \upsilon$ denotes the cuspidal subspace of $M_k(\Gamma_2), \upsilon$

It is well-known that dim $S_{10}(\Gamma_2) = 1$ (see also [Kl]). Hence χ_{10} is proportional to F_1^2 .

Remark 4.3. The Borcherds lifts in $M_k(\Gamma_2)$ with $k \leq 60$ are listed as follows:

Borcherds lift	weight	divisor
$F_1^{2a} (1 \le a \le 6)$	10a	$2aH_1$
$F_1^{2a+1}F_4 \ (1 \le a \le 2)$	10a + 35	$(2a+1)H_1 + H_4$
$F_1^{2a}F_5 \ (1 \le a \le 3)$	10a + 24	$2aH_1 + H_5$
F_4^2	60	$2H_4$
F_5^2	48	$2H_5$
F_8	60	H_8

The table shows that every Borcherds lift of weight less than or equal to 60 is a monomial of F_1, F_4, F_5 and F_8 . We also see that there is no holomorphic Borcherds lift of weight 12.

Assume that $F \in M_k(\Gamma_2)$ is a Borcherds lift. Then $\Phi(F)$ is proportional to a power Δ^r of the modular discriminant Δ with $r \geq 0$.

5 Proof of the Theorem

In the following we give a sketch of the proof of the main theorem. The complete proof will appear elsewhere. Let $F \in M_k(\Gamma_2), F \neq 0$. Let F be a Borcherds lift (BL) and Saito-Kurokawa lift (SKL). First of all we can assume that the weight is even (SKL). This implies that $k \geq 4$. The structure theorem (BL) leads to

(5.1)
$$F \sim \prod_{d \in \mathcal{D}} F_d^{n_d}.$$

The product is finite, $n_1 + n_4 \equiv 0 \pmod{2}$ and $n_d \in N_0$. The symbol ~ indicates that two function are equal up to a non-zero constant.

Remark 5.1. A refined analysis of the modular forms F_d shows that

$$ord(F_1) = \frac{1}{2}, ord(F_4) = \frac{3}{2}$$

If $d \ge 5$ then $ord(F_d) \ge 2$ iff d is a square and $ord(F_d) = 0$ otherwise.

Since F is also a SKL we have $ord(F) \leq 1$. This leads to

(5.2)
$$F \sim F_1^{\alpha} \cdot \prod_{d \ge 5, \ d \text{ not a square}} F_d^{n_d} \quad (\alpha = 0, 2).$$

Put $G := F/F_1^{\alpha}$. Since G is a BL and not a cusp form we have [HM]

$$\Phi(G) \sim \Delta^r \quad (r = \frac{k - 5\alpha}{12} \in \mathbb{N}).$$

Then it is easy to see that

$$\mathcal{W}(G) \sim \Delta^r \otimes E_k + E_k \otimes \Delta^r + \text{cuspidal}.$$

Let in the following $F \sim F_1^2 \dot{G}$, with $\Phi(G) = \Delta^r \ (r \ge 1)$. Then Ψ_0^F is identically 0. Since F is a SKL and not identically zero, we can assume that $\Psi_2^F \ne 0$ and that

(5.3)
$$\Psi_2^F \in \operatorname{Sym}^2(S_{k+2}(\Gamma))^D.$$

Since the second Taylor coefficient of F_1^2 is proportional to $\Delta\otimes\Delta$ we obtain

(5.4)
$$\Psi_2^F \sim (\Delta \otimes \Delta) \cdot \mathcal{W}(G).$$

On the other hand $\mathcal{W}(G)$ can be expressed in terms of the modular function j and the primitive modular polynomial. This can be directly proven by comparing the weights and the divisors on $\mathfrak{H} \times \mathfrak{H}$.

For $m \in \mathbb{Z}_{>0}$, let \mathcal{M}_m^* be the set of primitive matrices in $M_2(\mathbb{Z})$ of determinant m. As is well-known, there exists a polynomial Φ_m^* in $\mathbb{Z}[X, Y]$, called the primitive modular polynomial of degree m, such that

$$\prod_{M\in {\rm SL}_2(\mathbb{Z})\backslash \mathcal{M}_m^*} (X-j(M\langle \tau\rangle)) = \Phi_m^*(X,j(\tau)).$$

Here $\tau \mapsto M\langle \tau \rangle$ denotes the action on \mathfrak{H} . The degree of $\Phi_m^*(X,Y)$ in X is larger than m for m > 1. Then

(5.5)
$$\mathcal{W}(G)(\tau_1, \tau_2) \sim (\Delta^r(\tau_1) \otimes \Delta^r(\tau_2)) \prod_{n>0} \Phi_n^*(j(\tau_1), j(\tau_2))^{a(n)},$$

where $a(n) \in N_0$. Hence we obtain

(5.6)
$$\Psi_2^F(\tau_1, \tau_2) \sim (\Delta^{r+1}(\tau_1) \otimes \Delta^{r+1}(\tau_2)) \prod_{n>0} \Phi_n^*(j(\tau_1), j(\tau_2))^{a(n)}.$$

Combining this property with (5.3) leads to a contradiction by employing well-known properties of the modular polynomial, multiplicative properties of the Fourier coefficients of primitive Hecke eigenforms and the explicit Fourier expansion of the Δ -function.

References

- [Bo1] R. E. Borcherds, Automorphic forms on $O_{s+2,2}(\mathbb{R})$ and infinite products, Invent. Math. 120 (1995), 161–213.
- [Bo2] R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), 491-562.

- [Bo3] R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math.
 J. 97 (1999), 219-233.
- [CV] M. Cheng, E. Verlinde, Wall Crossing, Discrete Attractor Flow, and Borcherds Algebra, SIM 4 (2008).
- [CD] M. Cheng, A. Dabholkar, Borcherds-Kac-Moody symmetry of $\mathcal{N} = 4$ dyons, Communications in Number Theory and Physics, Volume 3, 1 (2009), 59–110.
- [EZ] M. Eichler and D. Zagier, *Theory of Jacobi forms*, Progress in Math. 55 (1985), Birkhäuser.
- [Ge1] G. van der Geer, On the geometry of a Siegel modular threefold, Math. Ann. 260 (1982), 317–350.
- [Ge2] G. van der Geer, Hilbert modular surfaces, Springer, 1988.
- [GH] V. A. Gritsenko and K. Hulek, Minimal Siegel modular threefolds, Math. Proc. Camb. Phil. Soc. 123 (1998), 461–485.
- [GN1] V. A. Gritsenko and V. V. Nikulin, The Igusa modular forms and "the simplest" Lorentzian Kac-Moody algebra, Matem. Sbornik 187 (1996), 1601–1643.
- [GN2] V. A. Gritsenko and V. V. Nikulin, Siegel automorphic form correction of some Lorentzian Kac-Moody Lie algebras, Amer. J. Math. 119 (1997), 181-224.
- [GN3] V. A. Gritsenko and V. V. Nikulin, Automorphic forms and Lorentzian Kac-Moody algebra, part II, Int. J. Math. 9 (1998), 201–275.
- [HM] B. Heim and A. Murase, Borcherds lifts on $Sp_2(\mathbb{Z})$, to appear in Geometry and Analysis of Automorphic Forms of Several Variables, Proceedings of the international symposium in honor of Takayuki Oda on the Occasion of his 60th birthday, World Scientific.
- [Ig1] J. Igusa, On Siegel modular forms of genus two, Amer. J. Math. 84 (1962), 175–200.
- [Ig2] J. Igusa, On Siegel modular forms of genus two (II), Amer. J. Math. 86 (1964), 392– 412.
- [Kl] H. Klingen, Introductory lectures on Siegel modular forms, Cambridge Univ. Press, 1990.
- [Za] D. Zagier, Sur la conjecture de Saito-Kurokawa (d'aprè H. Maaβ), Séminaire Delange-Pisot-Poitou 1979–1980, Progress in Math. 12, 371–394, Birkhäuser 1980.

Bernhard Heim

German University of Technology in Oman, Way No. 36, Building No. 331, North Ghubrah, Muscat, Sultanate of Oman e-mail: bernhard.heim@gutech.edu.om

Atsushi Murase

Department of Mathematics, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan e-mail: murase@cc.kyoto-su.ac.jp