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1 Definitions and preamble

1.1 (g,6)-Freudenthal Kantor triple systems

We are concerned in this paper with triple systems which have finite dimension
over a field ® of characteristic # 2 or 3, unless otherwise specified.

In order to render this paper as self-contained as possible, we recall first
the definition of a gencralized Jordan triple system of second order (for short
GJTS of 2nd order).

A vector space V over a field ® endowed with a trilinear operation V x V' x
V =V, (z,y,2) — (zyz) is said to be a GJTS of 2nd order if the following
conditions are fulfilled:

(ab(zyz)) = ((abr)yz) — (z(bay)z) + (zy(abz)), (1.1)
K(K(a,b)z,y) — L{y,z)K(a,b) — K(a,b)L(z,y) =0, (1.2)
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where L(a,b)c := (abc) and K (a,b)c := (ach) — (bca).
A Jordan triple system (for short JTS) satisfies (1.1) and the following
condition

(abc) = (cba). (1.3)

We can generalize the concept of GJTS of 2nd order as follows (see [13],
(14], [17]-[21], [52] and the earlier references therein).
For ¢ = 1 and § = %1, a triple product that satisfies the identities

(ab(zyz)) = ((abx)yz) + e(x(bay)z) + (zy(abz)), (1.4)
K(K(a,b)z,y) — L(y,z)K(a,b) + eK(a,b)L{z,y) = 0, (1.5)

wher
o L(a,b)c := (abc), K(a,b)c:= (acb) — §(bca), (1.6)

is called an (e, 0)- Freudenthal Kantor triple system (for short (g, 6)-FKTS).
Remark. We note that

K(ba) = —6K (a, b). (1.7)

Remark. The concept of GJTS of 2nd order coincides with that of (—1,1)-
FKTS. Thus we can construct the simple Lie algebras by means of the standard
embedding method ([6], [13]-[17], [21], [24], [26], [35], [52])-

For an (e,4)-FKTS U we denote

Ala,b) := L(a,b) — eL(b,a), (1.8)

where L(a,b) is defined by (1.6). Then A(a,b) is an anti-derivation of U since
we notice that

[A(a,b), L(c,d)] = L(A(a,b)c,d) — L(c, A(a, b)d). (1.9)

An (,6)-FKTS U is called unitary if the identity map Id is contained in
k= K(U,U) i.e., if there exist a;, b; € U, such that

If U is an (g, d)-FKTS and a,b € U then (a,b) is called a left neutral pair
if L(a,b) = Id.
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For 6 = =£1, a triple system (a,b,c) — [abc],a,b,c € V is called a é-Lie
triple system (for short 6-LTS) if the following three identities are fulfilled

[abc] = —d[bac],
labe] + [bea] + [cab] = 0, (1.11)

|ablzyz]] = [[abz]yz] + [z[aby]z] + [zylabz]],

where a,b,z,y,2 € V. An 1-LTS is a LTS while a —1-LTS is an anti-LTS, by
[14].

1.2 ¢-structurable algebras

The motivation for the study of such nonassociative algebras is as follows. The
existence of the class of nonassociative algebras called structurable algebras is
an important generalization of Jordan algebras giving a construction of Lie
algebras. Hence from our concept, by means of triple products, we define
a generalization of such class to construct Lie superalgebras as well as Lie
algebras.

Our start point briefly described in a historical setting is the construction
of Lie (super)algebras starting from a class of nonassociative algebras. Hence
within the general framework of (¢,)-FKTSs (¢,d = +1) and the standard
embedding Lie (super)algebra construction studied in [6],[7],[13]-[15], [26] (see
also references therein) we define d-structurable algebras as a class of nonasso-
ciative algebras with involution which coincides with the class of structurable
algebras for 6 = 1 as introduced and studied in {1], [2]. Structurable alge-
bras are a class of nonassociative algebras with involution that include Jordan
algebras (with trivial involution), associative algebras with involution, and al-
ternative algebras with involution. They are related to GJTSs 2nd order (or
(—=1,1)-FKTSs) as introduced and studied in [33], [34] and further studied in
3], [4], [32], [41]-]44], [49] (see also references therein). Their importance lies
with constructions of five graded Lie algebras

L(U) = L(E, 5) =L o®L_1& Ly® L1 D Lo, [LZ,LJ] - Li_,_j. (112)

For § = —1 the anti-structurable algebras defined here are a new class of
nonassociative algebras that may similarly shed light on the notion of (—1, —1)-
FKTSs hence (by [6], [7]) on the construction of Lie superalgebras and Jordan
algebras as it will be shown.
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Let (A, ) be a finite dimensional nonassociative unital algebra with invo-
lution (involutive anti-automorphism, i.e. T = z,T§ = ¥, 2,y € A) over ®.
The identity element of A is denoted by 1. Since char® # 2, by [1] we have
A=H®S, where X = {a € Alg = a} and 8 = {a € Alg = —a}.

Suppose z,y,2 € A. Put [z,y] := zy — yz and [z,y, 2] := (2y)z — z(y2).
Note that

[z,y, 2] = —[Z,7,Z). (1.13)

The operators L, and R, are defined by L,(y) := zy, R;(y) = yx.

For 4 = +1 and z,y € A define

Vi = Liug) + 6(ReRy — Ry Ra) (1.14)

°Ba(z,y,2) :=° Voy(2) = (27)2 + 0[(27)z ~ (2T)y), 2,9, 2 € A (1.15)

*Ba(z,y, 2) is called the triple system obtained from the algebra (A,” ). We

will call “By(z,y, 2) the anti-triple system obtained from the algebra (A, ).
We write for short )

Vey :=°V,y, Ba:=(°Bg,A). (1.16)

Remark. The upper left index notation is chosen in order not to be mixed
with the upper right index notation of [1] which has a different meaning.

A unital non-associative algebra with involution (A, ) is called a struc-
turable algebra if the following identity is fulfilled

[Vu,w Vz:,y] = VVu‘,,(m),y - Va:,Vv,u(y)a (1'17)

for Vup = "Vau, Voy = "Vau,u, 0,2,y € A, and we will call (A,”) an anti-
structurable algebraif the identity (1.17) is fulfilled for Vy, , = "Vyw, Vay = Vay-

If (A,7) is structurable then, by [34], the triple system B, is called a
generalized Jordan triple system (abbreviated GJTS) and by [8], B4 is a GJTS
of 2nd order, i.e. satisfies the identities (1.4) and (1.5). If (A,”) is anti-
structurable then we call B, an anti-GJTS.

2 Several properties

2.1 Properties satisfying the second order condition

From now on we assume 6 = —1 and let (A, ) be an anti-structurable algebra.
Define C(a,b,c) € End A by

C(a,b,c)d := [ab,d,c] — [a,b,d]c, a,b,c,d € A. (2.18)
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We say that A satisfies condition C if
C(z,y,w) — C(w,y,z) = Clw,z,y) - Cly,z,w), z,y,w€A  (2.19)

Theorem 2.1 Let (A,”) be an anti-structurable algebra. Then the second
order condition (1.5) and condition C are equivalent.

Remark. An anti-structurable algebra satisfying the condition Cisa (-1, —1)-
FKTS.

2.2 Lie admissible structures

Theorem 2.2 Let (A,”) be an anti-structurable algebra such that ~ = Id.
Then A is a LTS with respect to the new product [z,y,z2] = Ba(z,y,2) —
BA(y,x,z), z,Y,2 € A.

Theorem 2.3 Let (A,”) be an anti-structurable algebra satisfying the second
order condition (1.5). Then
i) A is a Lie admissible, i.e. the Jacobi identity is fulfilled:

[l 2] + [ly, 2], 2] + [[2, 2], 4] = 0, 2,9, 2 € A,

i) [z,y,2] + [2,y, x] is totaly symmetric in any exchanges of ,y,z € A,
i) [h,z,y] = [z, h,y] = [2,y,h] =0, for allh € H,z,y € A.

Theorem 2.4 Let (A,” ) be an anti-structurable algebra satisfying the second
order condition (1.5) and let F(z,y, z) € End.A be defined by

F(z,y,2)w = [zg, w, 2] + [2, 27, w] + ([z,y,w] = [y, 2, w])z, Z,y,2,w € A.
(2.20)
Then it satisfies
i) F(z,y,2) = =F(y,3,2), =,y,2 €A,
i) F(z,y,2) + Fly,z,z) + F(z,z2,y) =0, z,y,2 € A.

Remark. We have also K (u,v)K(z,y) + K(z,y)K(u,v) = K(K(u,v)z,y) +
K(z,K(u,v)y, for z,y,u,v € A so the set of K(z,y),z,y € A form a Jordan
algebra (see [30] for details).
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3 Examples of anti-structurable algebras with
left neutral pairs

We give examples of anti-structurable algebras with left neutral pairs and
invertible elements.

Let U := My (®) denote the space of square matrices of order k over ®.
Then, by [29]), U with the product (zyz) = zy'z — 2y 'z + 2z'y, where z"
denotes the transposed matrix of z is an anti-structurable algebra satisfying
the second order condition (1.5).

Let (u,v),u,v € U be a left neutral pair, i.e. L(u,v) = Id, and denote

GLi(®) := {A € My ()| det A # 0}

If u € GLy(®) then set v = (u')™!, where the involution is transposition
and so L{u,v)z = uvu~lz — zu~u + zu" (u7)~! = 2. Thus there exists a left
neutral pair (u, (u")™!). Also we have

Uuz=u 2zu—u'2ut+u’uz, Upry-1 = @) () ) z=(u")"u'z

thus by straightforward calculation follows U,U,7)-12 = 2. Then the map U,
is invertible. This implies that with any element v € GLi(®) there can be
constructed a left neutral pair (u, (u')~1).

Set O(®) := {A € Myx(®)|AAT = Id}. Then in the example above, if any
element v € O(®) it follows that (u,u) is a left neutral pair, i.e. u is a left
unit element.

Theorem 3.1 Let U be a (—1,—1)-FKTS. Then, the following are equivalent
i) (u,v) is a left neutral pair,
i) (v,u) is a left neutral pair.

Proof. We shall prove that L(u,v) = Id if and only if L(v,u) = Id.

If L(u,v) = Id then [L(u,v), L(v,x)] = 0 so L((uvv),z) — L(v, (vuz)) =0,
by (1.4), hence L(v,x — (vux))v = 0, since L(u,v) = Id. Now, since U, is
invertible follows from the last identity that (vuz) = z, hence L(v,u) = Id.

Conversely, if L(v,u) = Id follows then that L(u,v) = Id, by an analogous
proof. [J
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