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A short history of repetition-free words

YUuJi KOBAYASHI

Department of Information Science, Toho University,
Funabashi 274-8510, Japan

1 Introduction

The word "repetition” contains a 2-repetition (square) titi = (ti)?> and a 3/2-
repetition epe = (ep)®/2. The word ”homomorphism” contains a 5/2-repetition
omomo = (om)/?, and "peeped” contains a 5/3-repetition peepe = (pee)®/3.

Tt is Thue [43, 44] who first studied systematically repetition-free infinite
words, but his pioneering works had been forgotten for a long time. Morse and
Hedlund (28] developed the theory of symbolic dynamics without knowing his
results. It was 60 years later when Hedland reported Thue’s works in [19] (see
Berstel [4]). The subject has become popular since the book by Laitare [24] was
published. Berstel [5] gave a survey on the subject.

The words Thue constructed found important applications, for example, to
the solution of the Burnside problem by Novikov [30], [31] (he used a result
by Arson [2] without noticing Thue’s works, see Adjan [1]) and the study of
semigroup varieties (Burrie & Nelson [9], Sapir [39)).

2 X-free words

Let ¥ be an alphabet (a finite set of letters), and let £* be the free monoid
generated by ¥. X* is the set of finite words over ¥ including the empty word
1. Furthermore, we consider the set £¢ of words of w-words (one-sided infinite
words). Set L# = B*UX¥. For z € %, z is a subword (or factor) if y € £#
if y=wuzv (u€ T*,v e X#). Hereif u = 1 (resp. v = 1), = is a prefiz (resp.

suffiz) of y.
Define a distance § on I# as

5(1,’ y) — 2—min{n]an;ébn}.
forr=a,---ap--- andy =05y b, . It satisfies
0(z,y) < max{d(z, z), 6(z,y)}.

Proposition 2.1. (X¥,4) and (3#, o) are compact totally disconnected metric
spaces.
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For X C X*, z € ©# is X-free (or avoids X), if any subword of z is not
in X. A language L is X-free if any word in L is X-free. Let L(Z, X) be the
language of X-free words and L“ (X, X) be the set of X-free w-words over X.
Set L¥(L,X) = L(Z, X)UL¥(Z, X).

Proposition 2.2. L#(Z, X) is the closure of L(X, X) in £#, and L¥ (X, X) is
the set of limit points of L(¥, X).

Corollary 2.3. L¥ (X, X) is nonempty if and only if L(X, X) is infinite.

As easily seen, L¥(Z, X) is perfect (there is no isolated points) if and only
if any prefix of an w-word z € L¥(%, X) is a prefix of two distinct w-words in
L¥(Z, X). If L¥(%, X) is perfect, then it is homeomorphic to the Cantor ternary
set and is uncountable.

We define

L(n)=L(E, X;n)=L(E, X)n¥"

and
d(n) =d(X, X;n) = |L(Z, X;n))|.
Lemma 2.4. We have
d(n +m) < d(n) - d(m)
form,n e N.
Proposition 2.5 (see Kobayashi [22]). The limit p = p(E,X) = lim d(n)*/n
n—

exists, and it equals hrl;f d(n)}™. Either u=0 or 1 < u < |Z| holds.

We say L(X, X) grows ezponentially if there is C > 1 such that d(n) > C",

and L(Z, X) grows polynomially if there is a polynomial p such that d(n) < p(n).
X is avoidable on X, if L(X, X) is infinite, otherwise it is unavoidable.

Proposition 2.6. (1) u =0 if and only if L(E, X) is finite.
(2) u> 1 if and only if L(X, X) grows exponentially.

We call u the growth rate, complezity or entropy of L(X, X).

3 Avoiding a finite set of words

Let X be a finite subset of £*. Let L = L(X, X), £ = max{|z||z € X} and
V =LNX! = {v,...,v,}. Define the characteristic matrizr M = (m,;) of X
by

I 1 if v; is a suffix of v;a € L for somea € ¥
Y71 0 otherwise.

Lemma 3.1. For £ >0, d(n + £ — 1) is the number of paths of length n in the
graph with adjacent matriz M.



Theorem 3.2. The growth rate u = p(X, X) is equal to the Frobenius root (the
largest real eigenvalue) of M, and

(1) if u =1, L grows polynomially and L* s finite,

(2) if u> 1, L grows exponentially and L“ is perfect.

Corollary 3.3. For a finite set X, it is decidable whether X is unavoidable, L
grows polynomially, or L grows exponentially.

Example 3.4. Let ¥ = {a,b}. X1 = {aa,ab,bb}, Xo = {aa,ab} and X3 =
{aa}. Then, X; is unavoidable, L(X2,X) grows polynomially, L(X3, ) grows
exponentially. The graphs associated with them are shown as follows respec-
tively:

D a+—=b (2a+—=>bd) @) axb)

The following gives a way to give a good upper bound of u(X, X) for an

infinite X (see Shur 2008 [40]).

Theorem 3.5. Let X be an infinite subset of ¥*. Let X, = X N 5" =
{z € X ||z £ n} and p,, = (X, X). Then, the sequence {un} is decreasing
and converges to (X, X).

4 TUnavoidable Patterns

Let V be an alphabet disjoint with X. A word p in V* is called a pattern. An
instance of p is a word in ¥* obtained by substituting every variable in p by a
nonempty word in ¥* (see Bean, Ehrenfeught & McNulty 1979 [3]). For a set
P of patterns, z € £* is P-free (or avoids P), if z is free from any instance of a
pattern in P. Let L(X, P) denote the set of P-free words over ¥ and L“ (%, P)
be the set of P-free w-words over X. v

Example 4.1. (1) For P, = {u"}, u € V, a P,-free word is n-power free
(square-free if n = 2, cube-free if n = 3).

(2) For Q = {u,uvvuvu},u,v € V, a Q-free word is nothing but a overlap-
free word.

P is unavoidable on ¥, if the set of the instances of patterns in P is unavoid-
able, that is, L(X, P) is finite. P is absolutely unavoidable if it is unavoidable
on any (finite) alphabet Z.

Example 4.2. (1) The square u? is unavoidable on the two-letter alphabet,
but it is not absolutely unavoidable.
(2) The pattern uvu is absolutely unavoidable.

The adjacency graph A(p) of p € V= is the bipartite graph (V¢ U V", E),
where V¢ U V" is the union of two copies of V and (uf,v") € E if uv appears in
p. A free set F is a subset of V such that there is no path in A(p) from u* to
v" for any u,v € F. A pattern p reduces to a pattern ¢ (denoted as p = q), if ¢
is obtained from p removing all letters in some free set.
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Theorem 4.3 (Zimin 1982 [45], see Lothaire 2003 [25]). A pattern p is ab-
solutely unavoidable if and only if it is reduced to 1 using a finite number of
reductions.

Example 4.4. The pattern uvuwuvu is absolutely unavoidable because
UVUWUVY = VWY = w = 1.

Corollary 4.5. It is decidable whether a given pattern is absolutely unavoidable.

5 Repetition-free words and morphisms

Let x be a nonempty word in £*, y a prefix of z, and s € N. In this situation
the word z*y is called a t-repetition of x, where

t=s+[yl/lzl.

For t € R, z € T# is t-repetition-free if x contains no s-repetition with s > ¢,
and z is weakly t-repetition-free if x contains no s-repetition with s > ¢.
To treat these two kinds of repetition-freeness commonly we introduce the

ordered set
R:=RUQ", Q* ={t"|teQ},
in which a < a* < b for a € Q, b € R with a < b. For a € R, z is a-repetition-
free if it has no t-repetition with ¢ > «a as subword. A 2%*-repetition is an
overlap.
Let L(X,a) = L(k,a) denote the set of all a-repetition-free words over X
with || = k. Define

d(Z,a;n) = d(k,;n) = |L(k,a) N T,

and
w(E, o) = pk,0) = lim d(k,o;n)t/™.

Let A be another alphabet. A morphisin @ : ¥* — A* of monoids is growing
if |®(a)| > 1 for all a € L, and |®(a)| > 2 for some a € X. & is strictly growing
if |®(a)| > 2 for all a € £. ® is uniformly growing if there is p > 2 such that
|®(a)| = pforalla € X. ® is a-repetition preserving if x € £* is an a-repetition,
then so is ®(x). D is a-repetition-free if x € T* is a-repetition-free, then so is
®(z). A nontrivial uniform morphism is a-repetition preserving for any a.

The existing of morphisms with above properties gives information about
repetition-free words.

Theorem 5.1 (Thue 1906 [43], Kobayashi 1986 [22]). Leta € R and @ : &* —
Z* be a uniformly growing a-repetition-free morphism. Then, L¥ (X, o) contains
a nonempty perfect subset, in particular, L* (X, o) is uncountable.

Theorem 5.2 (Brandebberg 1983 [7]). Suppose that |Z| < |A| and & : A* —
£* is a uniformly growing injective a-free morphism. If L(Z,a) # {1}, Then
L(X, a) grows exponentially.



Theorem 5.3 (Restivo & Salemi 1985 [35], Kobayashi 1986 [22]). Let & :
X* — X* be a strictly growing a-repetition preserving morphism. If 3N > 0 s.t.
Ve e L(¥,a), Ju,v,y € X* s.t. |u|,|v]| < N, z =ud(y)v. Then, L(X,a) grows
polynomially.

6 Binary words
The Thue morphism © : {a,b}* — {a,b}" is defined by
©(a) = ab, ©(b) = ba.
It produces the Thue words
a, ©(a) = ab, ©%(a) = abba, ©3(a) = abbabaab, ....

Theorem 6.1 (Thue 1906 [43]). © is overlap-free. So, the Thue words are
overlap-free.

Corollary 6.2. L“(2,2%) contains a nonempty perfect set and uncountable.
More strongly, we have
Theorem 6.3 (Fife 1983 [18]). L“(2,2%) is perfect.
Though L“(2,2%) is uncountable, L(2,27) grows very slowly.
Lemma 6.4. For any z € L(2,27), 3u,v,y € =* s.i.
z =ud(yv, Jv| <2,|v| L2
Theorem 6.5 (Restivo & Salemi 1985 [35]). L(2,2%) grows polynomially.

Though L(2,27) grows polynomially, d(n) = |L(2,2%7) N £"| cannot be ap-
proximated by a single polynomial (see (3) below). The estimation of d(n) has
been impoved as follows.

(1) Restivo & Salemi 1985 [35]: d(n) < C - n3:90-
(2) Kobayashi 1988 [23]: C; - n!1%% < d(n) < Cp - n1:587,
(3) Cassaigne 1993 [11]: 0~ < 1.276 < 1.332 < o, where
o~ =limlogd(n)/logn, ¢¥ = limlogd(n)/logn.
(4) Jungers, Protasov & Blondel 2009 [20]:
1.2690 < 0~ < 1.2736 < 1.3322 < 0™ < 1.3326,

and logd(n)/logn — o on a set of density 1 of » with 1.3005 < o < 1.3098.

Define a morphism 8 : {a,b,c}* — {a,b}" by
B(a) = aababb, 3(b) = aabbab, B(c) = abbaab.
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Theorem 6.6 (Brandenburg 1983 [7]). (3 is cube-free, and L(2,3) grows ezpo-
nentially.

The estimation of x(2,3) has been improved as follws.

(1) Brandenberg 1983 [7]: 1.08 < u(2,3) < 1.522.

(2) Edlin 1999 [16]: u < 1.4576.

(3) Shur 2008 [40] 2009 [41] 2010 [42]: 1.45757131 < u(2,3) < 1.457577286.
(4) Shur 2009 [41]: 1.82109999323 < u(2,4) < 1.8210999324.

7 Repetition threshold

Define the repetition threshold RT(r) and the exponential repetition threshold
ERT(r) for r > 2 by

RT(r) = sup{ € R| L¥(r, ) = 0},

and
ERT(r) = inf{a € R| L(r, a) grows exponentially}.

By Corollary 6.2, Corollary 6.5 and Theorem 6.6, we see
2 = RT(2) < ERT(2) < 3.

Theorem 7.1 (Karhméki & Shallit 2004 [21]). ERT(2) = 7/3 = 2.333....
Moreover, d(2,7/3) < C-n*%4 and C; - 1.011" < d(2,71/3) < Cy - 1.23™.
The estimation of d(2,7/3) has been impoved as follows, where

o~ = limlogd(2,7/3;n)/logn, ¢t = limlogd(2,7/3;n)/logn.

——

(1) Karhmiiki & Shallit 2004 [21): o* < 4.644.
(2) Blondel, Cassaigne & Jungers 2009 [6]:

1.2690 < 0~ < 2.0035 < 2.0121 < o™ < 2.1050.

The estinmation of u(2, 7*/3) has been developed as
(1) Karhméki & Shallit 2004 [21]: 1.011 < p(2,7+/3) < 1.23.
(2) Shur 2008 [40] 2009 [41]: 1.22062539 < u(2,7+/3) < 1.22064486.

Define a morphism £ : {a,b,c,d}* — {a,b,c}* by
B’ (a) = abacabcacbabebache,

B’ (b) = abacabcacbacabache,
B'(c) = abacabcacbcabcbabe,
B'(d) = abacabcbacabacbabe.
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Theorem 7.2 (Brandenburg [7]). (3’ is square-free, and L(3,2) grows exponen-
tially.
The estimation of u(3,2) has been improved as follows.

(1) Brinkhuis 1983 [8]: 1.0293 < u(3,2) < 1.316.
(2) Brandebberg 1983 [7]: 1.032 < u(3,2) < 1.38.

(3) Richard & Grimm 2004 [37]: u(3,2) < 1.301762.
(4) Shur 2008 [40] 2009 [41]: 1.30175824 < 1(3,2) < 1.3017619138.

About the perfectness of L“(r, o) we have
Theorem 7.3 (Shelton 1981, 1982 [38]). L“(3,2) is perfect.

Theorem 7.4. (1) (Currie & Shelton 1996 [14]) L“ (r, a) is perfect, if 1 < o < 2
and r s sufficiently large.

(2) (Mignosi, Restivo & Salemi 1995 [26]) L“(r, a) is perfect, if o > 2 and
r> (5++/5)/2=23618....

By Theorem 7.2 we see 1 < RT(3) < ERT(3) < 2.

Define a morphism 4§ : {a,b,c}* — {a,b,c}* by
d(a) = abeacbeabcbacbeacha,
0(b) = bcabacabcacbacabach,
d(¢c) = cabcbabeabacbabebac.

Theorem 7.5 (Déjean 1972 [13]). & is 7T /4 repetition-free, and
RT(3) =7/4 =1.75.
Conjecture 7.6 (Déjean). RT(4) = 7/5, and RT(r) =r/(r — 1) forr > 5.

The conjecture has been finally proved to be true. The following is its history.
r = 3: Déjean 1972 [15],

r = 4: Pansiot 1984 [34],

5 < k < 11: Moulin-Ollagnier 1992 [29],

12 < k < 14: Mohammad-Moori & Currie 2007 [27],

33 < k: Carpi 2007 [10],

27 < k: Currie & Rampersad 2009 [12].

8 < k < 38: Rao 2011 [36], Currie & Rampersad 2011 [13].

Theorem 7.7 (Ochen 2006 {32]). L(3,7%/4) and L(4,7% /5) grow ezponentially,
that is, RT(3) = ERT(3), RT(4) = ERT(4).

Conjecture 7.8 (Ochen). RT(r) = ERT(r) for all r > 3.

If this conjecture is true, the case r = 2 is very exceptional.
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