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An Extension of Automorphisms of a Petri Net
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Abstract

A Petri net is a mathematical model which is applied to descriptions of parallel processing systems. So
Jfar, a some types of morphisms related to Petri nets (or condition/event net) in terms of the category theory,
in order to simplify the behavior of more complicated Petri nets and understand the concurrency in other
computation models [2][8].

Studying how the structure of Petri nets have an effect on Petri net languages and codes, we often realize
that the ratio between the number of tokens in a place and the weights of edges connected to the place
is important and essential. So we give our definition of morphims between Petri nets focusing on the
connection state/level of edges which come in or go out a place. This is an extension of an automorphism
which we used to introduce to a net in [3][4].

We introduce a morphims between two Petri nets. The set of all morphisms of a Petri net forms a monoid
expressed by a semi-direct product. Especially, the set of all automorphisms of a Petri net forms a group.
We investigate the inclusion relations among such monoids and groups. Next, we deals with a pre-order
induced by a surjective morphism. Two diamond properties is proved.

1. Preliminaries

Here we give our definition of morphisms of a Petri net and state the properties of some monoids com-
posed of these morphisms.

1.1 Petri Nets and Morphisms

In this section, we give definitions and fundamental properties related to Petri nets. We denote the set of
all nonnegative integers by N, that is, Ny = {0,1,2,...}.

First of all, a Petri net is viewed as a particular kind of directed graph, together with an initial state yg,
called the initial marking. The underlying graph N of a Petri net is a directed, weighted, bipartite graph
consisting of two kinds of nodes, called places and transitions, where arcs are either from a place to a
transition or from a transition to a place.

DEFINITION 1.1 (Petrinet) A Petri net is a 4-tuple (P, T, W, po) where
(1) P={p1,p2,...,pm} is a finite set of places,
(2) T = {t1,tz,...,t,} is afinite set of transitions,
3 wW: EPT) — {0,1,2,3,...}, i.e,W € NoB®BT) is a weight function, where E(P,T) =
(PxT)U(T x P),
(4 po:P —{0,1,2,3,...},ie., uo € No¥, is the initial marking,
) PNT=0and PUT #0.
A Petri net structure (net, for short) N = (P, T, W) without any specific initial marking is denoted by
N, a Petri net with a given initial marking o is denoted by (N, o). 0

In the graphical representation, the places are drawn as circles and the transitions are drawn as bars or
boxes. Arcs are labeled with their weights(positive integers), where a k-weighted arc can be interpreted
as the set of k parallel arcs. Labels for unity weights are usually omitted. A marking (state) assigns a
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nonnegative integer k to each place. If a marking assigns a nonnegative integer & to a place p, we say that
p is marked with k tokens. Pictorially, we put & black dots (tokens) in place p. A marking is denoted by u,
an n-dimensional row vector, where 7 is the total number of places. The p-th component of p, denoted by
u(p), is the number of tokens in place p.

EXAMPLE 1.1 Figure 1 shows a graphical representation of a Petri net. This Petrinet P = (P, T, W, uq)
represents a process that a bicycle is assembled from one body and two wheels. The places are P =
{body, wheel, bicycle} and the transitions are T = {assembly}. Arcs f; = (body, assembly),
fo = (wheel, assembly) and f; = (assembly, bicycle) have the weights of 1, 2 and 1, respectively.
The other arcs have the weights of 0, and they are not usually drawn in the picture. Note that the weights of
f1 and f3 is omitted since they are unity. Thatis, W(f1) = W(f3) = 1,W(f2) = 2, W(f) = 0 for each
fe(PxT)U(T x P)\ {f1, fo, fa}.

The initial marking p is often denoted by a vector ug = (4, 3,0). The place body is marked with three
tokens. Then we usually put the number of tokens in a place, instead of black dots(tokens). O

wheel

2 assembly bicycle
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-
o =

Figure 1. Graphical representation of a Petri net

Now we introduce a Petri net morphism based on place connectivity. We denote the set of all positive
rational numbers by Q..

DEFINITION 1.2 Let Py, = (P, Th, W1, p1) and Po = (Py, T, Wy, pg) be Petri nets. Then a triple
(f, (a, B)) of maps is called a morphism from P, to P, if themaps f : P, —» Q4+, a : P, — P, and
B : Ty — T satisfy the condition that forany p € P, andt € T,

Wa(a(p), B(2)) = f(p)Wi(p, 1),
W2(B(t), a(p)) = f(p)Wi(t,p), (1.1)
u2(a(p)) = f(p)ia(p)-

In this case we write (f, (a,3)) : P1 — P,. Moreover, a morphism (f, (o, 3)) is said to be strong if
f(p)=1foranype P. O

The morphism (f, (a, 8)) : P1 — P2 is called injective (resp. surjective) if both a and 3 are injective
P is said to be isomorphic to P, and we write P; ~ P,. Moreover, in case of P; = P,, an isomorphism
is called an automorphism of P;.

Let P; = (P;, T;, Wi, pi) (i = 1,2, 3) be Petri nets, (f, (a,8)) : P» — Pz and (g, (7,9)) : P2 — Ps
be morphisms. Then, since

Ws(v(a(p)), 6(B(t))) = g(a(p)) Wa(a(p), B(t))

= g(a(p))f (@)W1 (p: 1),
W3(8(B(1)), v(a(p))) = g(a(p)) W2(B(t), a(p))

= g(a(p)) f ()W (t, p),
us(v(a(p))) = gla(p))uz(clp)) = 9(a(p)) f (p) 111 (p).



hold, (f ®p, (ag), (ary, 35)) is a morphism from P; to P, which is called the composition of morphisms
(f, (@, B)) and (g, (y,4)). In this manuscript compositions of maps like g o &, y o a and § o § are written
in the form of multiplications like ag, ay and 34. f ®p, (a g) is the map from P; to Q. sending a place

p€ Pito f(p)g(alp)) € Q.
2. Binary Relation J on Petri nets

For Petri nets P; and P,, we write P; 2 P, if there exists a surjective morphism from P; to P,. We
show that this relation forms a pre-order and satisfies two diamond properties.

2.1 Basic Properties of the Relation J

The relation 3 forms a pre-order (a relation satisfying the reflexive law and the transitive law) as shown
below. Of course, the pre-order is regarded as an order by identifying isomorphisms.

PROPOSITION 2.1  Let P;, Py, P5 be Petri nets. Then,
(1) P123P.

(2) P12 P, and Pg AP, — Pl jad Pz.

(3) P12 Pyand P, J P3 imply P, J Ps.

Proof) LetP; = (P, Ty, W;, i) (i = 1,2,3) through the proof. The proof complete in the order (1),
(3), (2).
(1) Trivial.
(3) There exist surjective morphisms (fi, (c;, 3i)) : Pi — Piy1 (i = 1,2). We defineamap f: P, —
Q. by f(p) = f1(p) - fo(e(p)). Then (f, (a1a2, B152)) is a surjective morphism from P; to Ps.
(2) (=) There exist surjective morphisms (f, (¢, 3)) : P1 — P2 and (g, (¢/,3')) : P2 — P1. Since
o0/ is surjective by (3) above and P, is finite, both o and o’ are bijections. 3 and 3’ are also. Therefore
P] ~ 'P3.

(<) If (£, (o, B)) be a isomorphism from 7, to Py, then it is easily shown that (o' f~1, (a™1,871))
is a isomorphism from P, to Py, where £~ : P — Q4.,p— 1/f(p). O

EXAMPLE 2.1 Let P; = (P;, T;, W, ;) (1 < i < 3) be Petri nets shown in Figure 2. The four mor-
phisms z; = (f;, (e, 8:)) (0 < 7 < 3) are from P; to P, where

fo = n Pz), op = P1 P2 ’

12 1 o g
A=(gz 1) 2=\t o)
o (T T ) e (5 2,
A= (B, m ) wm (B2

and By = B1 = P2 = B3 : Th — Ta,t; — s, ta +— s. Especially only zo and z; are surjective morphisms.
Only one morphism y = (g, (7,4)) exists from P, to P3, where

g:PZ'—’Q-HQIH]-a Q2'—’1/3,
v:P,— P3,q1 1,92 — T,
0: Ty — T3,8— u.

This is a surjective morphism. The composition of morphisms z; (0 < 4 < 3) and y is the surjective
morphism (h, (o, 7)) from P; to Pz, where

h:P,— Qq,pr— 1/2,p2— 1/3,
c=a;y: P - P3,pr—=r,p2r,
T=00:T — T3,t1 — u,ta — u.

for any i = 1,2, 3,4. Note that A is expressed as A = f; ® (a9). (]
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q1 q2 T
1 3 1
—_—— u
(a) Petrinet P, (b) Petrinet P, (c) Petrinet Ps3

Figure 2. Petri nets P,, P, and P; with P; J P, J Ps.

2.2 Diamond Properties of the Relation 2

Here we show the diamond property of the relation J. The following notation of some equivalence

relation is used in the manuscript.
Let P be a set and f, g maps whose domain is P. The relation ~; on P defined by (Vz,y € P){x ~;

y &b f(z) = f(y)} . Then (~y U ~g)* is the smallest equivalence relation on P which includes both

~¢ and ~g, where (~; U ~)* is the reflexive and transitive closure of ~; U ~.

PROPOSITION 2.2 (Diamond Property I) Let P; = (P;, T;, W;, ;) (¢ = 0,1,2) be Petri nets with
Py 3 P; and Py 3 P,. Then there exists a Petri net P53 such that P; 3 Pz and P, 3 Ps.

Proof) Let (fi, (a:,5;)) : Po — P; (i = 1,2) be surjective morphisms. To prove the claim, we construct
the Petri net P53 satisfying the condition above. Next set

P = PO/(Nou u ""az)*’ I3 = TU/(Nﬁl U Nﬂz)*’

and let o be a canonical surjection from Py onto P, 3 a canonical surjection from 75 onto T3, and f : Py —
Q. the map defined as follows: If all of uo(p), Wo(p, t1), ... Wo(p,tn), Wo(t1,p), ..., Wo(tn,p) are
0’s (in this case we say that p is 0-isolated), then f(p) = 1. Otherwise,

f(p) = 1/90d(IJ-0(P), Wﬂ(pvtl)’ sy WO(P, t'n)v WO(tlap)a veey WO(tnvp))’

where Ty = {t1,t2,...,t,} and the function gcd returns the greatest common divisor of its arguments.
Before showing that (f, (a, 3)) is a surjective morphism from P, to P3, we show the following lemma.

LEMMA 2.1 Leti € {1,2},p,p' € Py witha;(p) = a;(p’) and t,t' € Ty with §3;(t) = Bi(t).
(1) If neither p nor p' is O-isolated, then f(p) f:(p') = f(©') fi(p)-

(2 f(P)uo(p) = f(P')po(p)-

(3 f(P)Wo(p,t) = f(" )W (¥, t') and f(p)Wo(t,p) = fF(p" )W (¥, D).

Proof) (1) Since pand p’ are not O-isolated, the greatest common divisors give the following equations.

f@) @) = fO{f@ AP} @) = @) ) x Hi(@) @)

= f(p')f(p) x ged(fi(® Yo ("), Fi(PYWo(p',t1), - .., Fi()WolP, tn),
L@ YWo(tr,p'), ..., filp ) Wo(tn,p'))

= f(p,)f(p) X ng(ft(p)p'O(p)v fl(p)WO(pa tl)’ veey fl(p)WO(p) tn)a
fi@)Wo(t1,p), ..., fi(p)Wo(tn,p))

= f@)f(p) x fi(@)f~1(p) = F@) :){f(p)f(p)} = fF@)fi(p)

(2) fiP)ro(p) = wi(ei(p)) = pi(eu(p)) = fi(p')uo(p') implies that po(p) = 0 «= po(p’) = 0.
Noting this, we may consider the two cases of ug(p) = 0 and uo(p) # 0. Since it is trivial in case of
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to(p) = 0, we may assume that uo(p) # 0.

F(@)uo(p) = f(0) fi(®) " fi(®)po(p) = f(p)filp) ™1 fild o (')
= f@) filp)  fi(p)uo(p') = F(P o (p').

Note that the third equation is due to (1),
(3)
fi(P)Wol(p,t) = Wi(u(p), Bi(t)) = Wileu(p'), Bi(t)) = filp )Wo', t')
implies that Wy(p,t) = 0 <= Wy(p,t') = 0. Since it is trivial in case of Wy(p,t) = 0, we may assume
that Wy(p,t) # 0 and thus p is not 0-isolated.

f@)Wo(p,t) = f(p)filp)~* fi(p)Wo(p,t) = f(p)fi(p) ™' fi(p")Wo(p',t)
= f(0)fi(p)" fi(@)Wo (P, t') = f(p") Wo(p', 1)

Note that the third equation is due to (1). Similarly we can show the equation f(p)Wy(t,p) = f(p")Wo(t',P').
O

Continue the proof of PROPOSITION 2.2. Let p,p’ € Py with p(~q, U ~,)*p' and t,t' € Ty with
t(~p, U ~p,)*t". Then we may assume that

/
P ~a; P1 Yaiy, P2 Yoyt Yai, P

t Nﬁh tl NBJ‘z tz MBJs T B t’
where n and m are positive integers and i1, . .., in, j1,- . -, jm € {1,2}. By LEMMA 2.1 (2) and (3),

f(@)uo(p) = f(pr1)po(p1) = -+ = f()po(p'),

f()Wo(p,t) = f(p1)Wo(pr,t) = - = f(p") Wo(p', 1)
= fYWE . t1) == f )Wo', t'),

f()Wo(t,p) = f(p1)Wo(t,m) = - = f(p')Wo(t,p')
= f(p")W(t1,p') = - = f(p)Wo(t',p').

So ua(a(p)), Wa(a(p), B(t)) and W3(3(t), a(p)) can be defined and

p3(a(p)) = f(p)ro(p),
Ws(a(p), B(t)) = f(p)Wo(p: 1),
W3(6(t), a(p)) = f(p)Wo(t, p).

Thus (f, (e, 8)) is well-defined and it is a morphism from P, to Ps. Since both o and 3 are canonical
surjections, we have Py 3 Ps.
Finally we show that P; J P3 (¢ = 1,2) hold. By LEMMA 2.1 (2) and (3), the following maps are

well-defined.
a;' : P; — P3,q— op) where ;i (p) = g,

Bi' : T; — T3,s — B(t) where 3;(t) = s,
fi' P> Qi,q— f(p)fi(p)™! whereai(p) = q.

Let¢ € {1,2}. Forany g € P, and s € T;, there exist p € Py and t € Tp such that a;(p) = g and 3;(t) = s,
and thus we have

pus(es'(9)) = ps(a(p)) = FP)uo(p) = F)fi(p) " piles(p)) = fi' (@)ui(g),
Wa(ai'(g), Bi'(s)) = Wa(alp), B(t)) = F(p)Wo(p, 1) ,

= f(p)fi(p) " Wi(ai(p), Bi(t)) = fi' (@) Wi(q, s),
W3 (8’ (s), ' (g)) = W3 (B(t), a(p)) = f(p)Wo(t, p)

= f(0) fi(p) ' Wi(B: (1), ai(p)) = fi'(q)Wi(s, q).

Therefore (f;', (o', 8;")) is a morphism from P; to P5. We can easily show that o’ and f3;” are surjective.
Thus P; 3 Ps (i = 1,2). 0

We define the concept of irreducible forms of a Petri net with respect to 3.
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DEFINITION 2.1 A Petri net P is called a J-irreducible if P J P’ implies P ~ P’ for any Petri net
P O

COROLLARY 2.1 Let P, P’ and P" be Petri nets with P 3 P’ and P 2 P”. Then one has: If P’ and
P’ are J-irreducible, then P’ ~ P”.

Proof) Trivial by PROPOSITION 2.2 and the definition of J-irreducibility. D

PROPOSITION 2.3 (Diamond Property II) Let P; = (P;, T;, Wi, u;) ( = 0,1, 2) be Petri nets with
P1 3 P; and P; I Ps. Then there exists a Petri net P such that P, J P; and Py I Ps.

Proof) Leti € {1,2} and (fi, (i, 8:)) : Pi — Ps be surjective morphisms. We have

p3(q) = fi(pi)pi(pi),
Wal(g, s) = fi(pi)Wi(pi, ts),
Wis(s,q) = fi(pi)Wi(ts, gi),

where p; € P, t; € T, oi(p;) = q, Bi(t;) = s. We construct the Petri net Py = (P, Tp, Wo, po) in the
following way.

Py = {(p1,p2) | oa(p1) = 2(p2)} C Py x Py,

To = {(t1,t2) | Br(t1) = Ba(t2)} € Th x Ty,

WO((plap2)’ (t11t2)) = W3(q’ 8),

WO((tlﬂt2)a (plsPQ)) = WS(S’ Q)’

po((p1,p2)) = p3(9),

where a;(p;) = ¢, B;(t;) = s. Then it is enough to show that (g;, (7:,9;)) : Po — Pi (i = 1,2), defined
by equation (2.1), is a surjective morphism.

gi: Po — Q4+, (p1,p2) — filp:)~1,
Y : Py = P, (p1,p2) = pis 2.1
6; : To — T3, (tl,tg) — t;.

Indeed, setting ¢ = a;(p;), s = Bi(t:),

pi(¥i((p1,02))) = pa(pi) = filpi) " pa(a) = g:((p1, p2)) o (1, P2)),
Wi(vi((p1,p2)), 6: ((t1,t2))) = Wilps, t:) = fi(p:)~"'Wil(q, s)

= 9i((p1, p2))Wo((p1,p2), (t1,t2))s
Wi(8:((t1,t2)), 7i((p1,p2))) = Wi(ti, i) = fi(p:) " Ws(s,q)

= 9i((p1, p2))Wo((t1,12), (p1,P2))-

Thus we have Py 3 P;. O

3 Monoids of Morphisms of a Petri Net

Here a finite set P of places and a finite set T of transitions are fixed. And we deal with monoids which
consist of morphisms of a Petri net and investigate some properties of such monoids.

An algebraic system (Q4*, ® p) forms a commutative group under the operation ® p defined by f®pg :
p— f(p)g(p). 1g, : P — Q4 : p— 1istheidentityand f~! : P — Q, : p— 1/f(p) is the inverse
ofa f € Q,F. Whenever it does not cause confusion, we write ® instead of ® p. Then we obtain the
following lemma.

LEMMA 3.1 Let a and 3 be arbitrary maps on P and f,g : P — Q.. Then the following equations
are true.

(1) QiF x (PP xTT)~ (Q+F x PP)x TT,

(2) Thesubset Q4F x (Sp x S1) of Q..F x (PP x TT) forms a group with the identity (1g, (1p, 17)).



(3) Mor,(Py) = Q. x (PP x T7).

(4) Mor, (P) is a submonoid of Mor. (P;).
(5) Aut(Po) = Q+" x (Sp x Sr).

(6) Aut(P) is a subgroup of Aut_ (Py).

Proof) For each p € P, the following equations hold.

(1) ((aB)f)(p) = F(B(a(p))) = (Bf)(a(p)) = (a(Bf))(p)-

@) (a(f®9))P) = f(a(p)  g(alp)) = (af)(p) - (ag)(p) = ((af) ® (ag))(p).
() (alg)(p) = 1lg(alp)) = 1s(p).

(4) By (2)and (3) above, (af) ® (af}) =a(f ® f1) = alg = 1g.

5) (af)~Hp) =1/f(alp)) = f~ (a(p)) = (af~})(p). o
Let Q.7 x (PP x TT) be the semi-direct product of the group Q. and the monoid P¥ x T, equipped
with the multiplication defined by

(f, (@, 8))(g, (. 8) ¥ (f ® ag, (ac, 88)), 3.1)

where PP is the set of all maps from P to P and T'7 is the set of all maps from T'to T. Q4 F » (PP x TT)
forms a monoid with the identity (1, (1p, 17)), where 1g is the identity of the group Q4+, 1p and 17
are the identity maps on P and T respectively.

Let P = (P, T, W, 1) be a Petri net. Now we consider the following monoids and groups related to the
Petri net. Note that Mor; (P) (resp. Aut,(P)) is the set of all strong monoids (resp. automorphism) of
P).

Mor (P) : the set of all the morphisms of P = (P, T, W, u)

Mor1(P) % {(f, (2. 5)) € Mor,(P)| f = 15},
Aut(P) : the set of all the automorphisms of P = (P, T, W, 1)

Auty(P) =€ {(f, (e, 0)) € Aut,(P)| f = 1g}.

By 0F we denote the marking with 0F : P — Ny, p — 0 and By 0E(PT) we denote the weight function
with 0F(PT) : E(P,T) — Ny,e € E(P,T) — 0.

For give two Petrinets P = (P, T, W, i) and Py = (P, T,0E(PT) 0P), Figure 3 shows (not necessarily
proper) inclusion relations among monoids and groups related to these Petri nets. We show these relations
below.

Mor (Py) Aut (Pp)
= Q.7 % (PP x T7) = Q47 x (Sp x )
PROP 3.1 PROP 3.1
Mor(P) PROP 3.2 Aut(P) PROP 3.2
PROP 3.2 Mor;(Po) PROP 3.2 Aut, (Po)
COR 3.1 COR 3.1
Mor;(P) Aut, (P)

Figure 3. Inclusion relations among monoids of morphisms and groups of automor-
phisms related to the Petri nets 7 and 7,

PROPOSITION 3.1 LetP = (P, T, W, ) and Py = (P, T,08(FT) 0F) be Petri nets. And let Sp and
St be the symmetric groups of P and T, respectively.
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(1) The subset @, xlgSp x S7) of @, F x (PP x TT) forms a group with the identity (1g, (1p, 17)).
(2) Mor,(P) = (PP x TT).

3) Mor,(P)isa submonond of Mor+ (Po)-

(4) Auty(Po) =Q," % (Sp x Sr).

(5) Aut, (P) is a subgroup of Aut (Py).

Proof) (1) SetS = Q.F x (PP xTT)and T = (Q+F x PP) x TT. We consider the map ¢ : S —
T,(f, (o, 8)) = ((f, ), B). It is easy to check that ¢ is a bijection and a monoid morphism.

(2) Obviously Q.. ° ><1 (Sp x St) is closed under the multiplication defined in the equation (3.1) and
(1g, (1p, 17)) € Q+F % (Sp x St). Let (£, (a, B)) be an arbitrary element of Q7 x (Sp x Sr). Then
(e 1f1 (a1, 87 1)) isinQ.F x (Sp x ST) and satisfies

(f (0. B)) (@M fH (a7t 7))
=(f®aa™lf1 (aa™1,8871))
=(1g,(1p, 17)),  ~~LEMMA3.1(1)
(@' f~1 (@, B7N(f, (. B))

=@ 'f'®alf,(ale, B71P))
=(1g,(1p, 17)) -~ LEMMA3.1 (4).

This is an inverse of (£, (a, 8)). Therefore Q. F x (Sp x S7) forms a group.

(3) By the definition, each morphism in Mor (P;) is obviously an element of Q,F x (PP x TT).
Conversely, let (f, (a, 8)), p and t be any elements in Q¥ x (PP x TT), P and T, respectively. Then,
07 (p) = 0 = f(p)-07(a(p)), 0¥ PP (a(p), B(t)) = 0 = f(p)-0FPT)(p,1),and 0FPT (5(¢), a(p)) =
0 = f(p) - 0BPT)(¢t, p). Thus, (f,(a,B)) is a morphism of Py. Since the composition of Mor., (P;)
is 1dent1cal with the multiplication of @~ x (PF x TT) by the definition (3.1), thus Mor.. (P;) and
Q. x (PP x TT) are equal as a monoid.

(4) Let (f,(a,8)) € Mor,(P). 0P(a(p)) = 0 = f(p)0”(p) for any p € P. 0FPT)(a(p), (t)) =
0 = f(p)OPPD(p,¢t) and 0FPT(B(t),a(p)) = 0 = f(p)0EPT)(¢,p) foranyp € Pand t € T.
Therefore (f, (o, 3)) € Mor,. (Pg). Since Mor. (P) is closed under the composition of morphisms and
has (1g, (1p, 17)) as the identity element, thus Mor. (P) is a submonoid of Mor. (Pp).

(5) In a similar manner to (3), we can show that Aut_. (P;) and Q. © x (Sp x Sr) are equal as a group.
(6) Obviously (1g,(1p, 17)) € Aut(P) C Auty(Po). Auty (P) is closed under the composition of
morphisms. For an arbitrary (f, (o, 8)) € Aut(P), we must show (a1 f~1,(a~1,371)) € Aut (P).
Due to p(p) = pla(a™}(p))) = f(e ' (p))u(e~!(p)) and LEMMA 3.1 (5),

ple=(p)) = (™1 £) " (p)ulp) = (' ) (p)u(p).

Similarily, we have
W(a~(p), 67 (1)) = (@ 1 f ) (p)W(p, 1),
W(B~(t), e (p)) = (a1 f 1) (P)W (¢, p).

Therefore the inverse of ( f, (o, 3)) is in Aut (P).

PROPOSITION 3.2  Let P = (P, T, W, p1) be a Petri net. Then,

(1) Mor;(P) is a submonoid of Mor. (P),

(2) Auty(P) is asubgroup of Aut (P),

(3) Aut;(P) is anormal * subgroup of Aut_(P) ifand only ifyf = f for any (£, (o, 3)) € Aut.(P)
and (1®’ (75 5)) € A-Utl(P)'

Proof) (1) (1g, (1p, 17)) € Mori1(P) C Mor..(P). Forany (1g, (, 8)) and (1g, (v,4)) € Mor1(P),
(1g, (o, 8))(1g, (7,4)) = (1, (v, 38)) € Mory(P). Thus Mor; (P) is a submonoid of Mor. (P).
(2) (1g,(1p, 17)) € Aut1(P) C Aut, (P). Let (1g, (a,)) and (1g, (7, §)) be arbitrary elements in
Auty (P). Thensince alg ® 1g = 1g, (1g, (, 8)) 7! (1g, (7,4)) = (1g, (a~1v,8718)) € Aut,(P).
Therefore Aut, (P) is a subgroup of Aut(P).

*Generally a subgroup H of a group G is said to be normal if zH = Hz foranyz € G.
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(3) Let(f,(a,8)) € Aut (P)and (1g,(v,0)) € Auty(P). Then by the definition of the operation of
the semi-direct product and LEMMA 3.1, the following equations hold

(f (o, ﬁ))‘ (1g, (7:6))(f, (o, B))
=(a'f1 (a1, 8" 1))(1®,(% )( (a 8))
( lf_l Qa~ 11@,(04 ’Y’ ) a ﬂ))
=(a" f 1 @allg®a™lvf, (a Ly, B 168))
= (e Y (f 1 ®7f), (@ ya, B7160))

(Sufficiency). By the condition vf = f, o™} (f~! @ 7f) = o H(f ' ® f) = 1g.(.- LEMMA 3.1 (3))
Therefore, since (f, (o, 3)) " (1g, (7,8))(f, (o, B)) € Autl(P) the subgroup Aut,(P) is normal.

(Necessity). Since Auty (P) is a normal subgroup, o=} (f ! @ vf) = 1g. Multlplymg « and then f to
both sides from the left, We have v f = f. O

COROLLARY 3.1 LetP = (P,T,W,u) and Py = (P, T,0E(5T), 0F) be Petri nets.
(1) Mor;(P) is a submonoid of Mor; (P;).
(2) Auty(P) is a subgroup of Aut;(Pp). 0

Remark For a given Petri net P = (P, 7, W, u), we called N = (P,T,W) a net and defined the
automorphism group of the net NV, denoted by Aut(NV) in [3]. It is obvious that Aut(V) coincides with
Auty (P, T,W,0P).

4. Conclusions

In this paper we introduce Petri net morphisms/automorphism based on place connectivity and investigate
the properties related to them. We first investigate some inclusion relation among monoids of morphisms
and groups of automorphisms of given Petri nets and next show that the pre-order induced by surjective
morphisms satisfies the two diamond properties. Finally we show that for two Petri nets ordered by a
surjective morphism, the languages generated by them and their reachability sets have close correspondence.

The correspondence between the structure of a Petri net and the structure of the group of of Petri net
automorphims still remains. We wonder whether the Petri nets with a same irreducible form constitute a
lattice with respect to the order or not. In addition to these problems, we will apply this idea to the code
theory, the language theorey and computation theory and so on.
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