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ABSTRACT. Let J?! be the real form of complex simple Jordan
algebra with the automorphism group Fjy_s0). The classification
of Fy(_a0)-orbits and the stabilizer groups of Fy(_zg)-orbit on J*
are determined. As applications, for Fj(_s0), the Bruhat and Gauss
decomposition, the Iwasawa decomposition and also the Iwasawa
decomposition with respect to K, in sense of T. Oshima and J.
Sekiguchi are given concretely.

1. THE EXCEPTIONAL JORDAN ALGEBRA J! AND THE
AUTOMORPHISM GROUP Fy(_o).

Denote the cartesian n-power of a set X as X™ := X x .-+ x X
(n times). For F = R or C, let V be a F-linear space, GLr(V) the
group of F-linear automorphism of V, and Endg(V) the linear space
of F-linear endomorphisms on V. A subset C is said to be a cone if
r € V and A > 0 imply that Az € C. For a mapping f : V — V and
ceF,put Vic:={ve V| fv)=cv}and V; :=V;;. Let G be a
subgroup of GL§(V), ¢ an automorphism on G and v,v; € V. Then
denote the subgroups G¢ := {g € G| ¢g = g}, the stabilizer of v as
Gy, :={g9€G|gv=1}and G,..,, = N,G,,. And denote the
G-orbit of v as Orbg(v) := {gv | g € G}.

For H (Quaternions), the O (Octonions) is defined as O := H®He =
{m + ae| m,a € H}, the conjugation, the multiplication, the inner
product and the quadratic form as m + ae := M—ae, (m+ae)(n+be) :=

(mn—ba)+(aR+bm)e (especially, € = —1), (m+ae[n+be) := (m|n)+
(ab) and n(z) := (z|z), respectively. For z € O, the scalar part and
the vector part of 7 and the set ImO are defined by Re(z) := J(z +7),
Im(z) := 3(z — Z) and ImO := {z € O | T = —z}, respectively.

For £ = (&,62,€3) € R® and z = (z;, 75, 23) € O3, denote

& V-l V-Iz,
Wi (&z) = | V=13 & z)
V-1z, 77 &3




and
J' = {h}(& 1) £ € R?, z € O%}.
The Jordan product is defined by

XoY:= %(XY+YX) for X,Y € J°.

Then the identity element of the Jordan product is E := diag(1,1,1).
For X = h(&, &, &35 71, T, 23) and Y = A (my, 2, Ma; 41, 42, Us) € T,
the trace and the inner product are defined as

tr(X) =&+ &+ &,
(XIY) =tx(X oY) = (D &) + 2(x1lyr) — 2(z2ly2) — 2(zslys),

respectively, the cross product and the determinant as
X xY = %(2)( oY — tr(X)Y — tr(Y)X + (62(X)tr(Y) — (X|Y))E),

det(X) = %(X|X x X)
= 616263 + 2Re((z172)23) — &1(21|21) + Eo(T2|2) + E3(T3]23)

respectively. Hereafter we denote X x X := X*2. The characteristic
polynomial @x () of X € J! is defined by
1

Bx () :=det(AE ~ X) = 3(A\E = X|(AE = X)*%)

=23 — tr(X)A% + tr(X %)X — det(X).
For i € {1,2,3} and z € O, denote
E; := h}(d;1, 812, 6:3;0,0,0), FEl(z) := h'(0,0,0;8117, 622, d33),
Pt :=h(1,-1,0;0,0,1), P~ :=h'(-1,1,0;0,0,1),
Q" (z) := h*(0,0,0;z,7,0), Q™ (z) := h}(0,0,0;z, -%,0)

where §;; is the Kronecker’s delta. Then X € J ! can be expressed by

X = h1(£1a§2’§3; 1‘1,1?2,373) = Z(&'EZ + ‘Fil(‘ri))

i=1
for some &; € R and z; € O, and denote

(X)e, =& = (X|E), (X)r =2
Lemma 1.1. (cf. [25, Lemma 1.6 with J* C J€]) For all X € J7,

(X*2)*2 = det(X)X.



The linear Lie group Fj(_g) is defined by
Fy-20) = Aut(J") = {g € GLr(J") | g(X oY) = gX 0o g¥}.

The following result is proved after {34, 35], [39, Lemma 2.1.2, Propo-
sition 2.1.3] and [33, p.159, Proposition 5.9.4, §5.10).

Proposition 1.2. (cf. [24, Theorem 1.4], [25, Proposition 0.1(1)])

Fy—20) = {9 € Fy-a0) | tr(gX) = tr(X)}
= {g € GLg(J") | det(gX) = det(X), gE = E}
= {g € GLgr(J") | ®,x(A) = @x(A)}
= {9 € GLg(J") | det(g9X) = det(X), (9X[gY) = (X|Y)}
={g € GLr(J") | g(X xY) =gX x gY}.

A characteristic root of X € J? is said to be a solution of ®x(A) = 0
over C. By Proposition 1.2, the trace, the inner product, the deter-
minant, the identity element, the cross product and the characteristic
polynomial are invariant under the action of Fy_gp). Moreover the set
of all characteristic roots and those multiplicities are invariant under
the action of Fy—20).

Proposition 1.3. ([39]) F4(,2§) is a connected and simply connected
non-compact simple real Lie group of type F4(_20).

2. THE ORBIT DECOMPOSITION OF Fy(~20)-ORBITS ON J L

The subset H C 7! and the Cayley hyperbolic planes H(O) and
H'(O) of J! are defined as

He={XeJ | X®=0, tr(X) =1},
HO)={XeJ | X*=0, tr(X) =1, (X|E,) > 1},
H(O):={XeJ'| X**=0, tr(X) =1, (X|E;) <0}

respectively.

Proposition 2.1. (cf. [24, Propositions 1.6(1) and 2.10})
(1) H=#(0) [IH'(0).
(2) #(O) = Orbg, _,, (E).
(3) H/(0) = Orbr,_,(Es) = Orbr,_,. (Es).

The cone N of J! is defined by
N ={X € J tr(X) = tr(X*?) = det(X) = 0}.



Then using Lemma 1.1, N contains the following cones:
M(O):={X e T} X** =0, tr(X) =0, X # 0},
NH(0):={X e T X** =0, tr(X) =0, (X|E;) > 0},
N7 (0):={X e J'| X*? =0, tr(X) =0, (X|E;) <0},
No(0) == {X € J*| tr(X) = tr(X*?) = det(X) = 0, X*? # 0},
No(O) = {0}.
Proposition 2.2. (cf . [24, Propositions 1.6(2), 2.10(2) and 4.3(4)])
(1) M(0) = N{(0) LIV, (O).
(2) N = No(0) [INY (O) LIANT (O) LTN:(0).
(3) M1 (O) = Orbg,_,,, (P*).
(4) N7 (O) = Orbr,_y, (P7).
(5) N2(0) = Orbp,_,, (Q7(1)).

For X € J?*, denote L*(X) € Endg(J?) as
LY(X)Y =X xY foYeJ'
and the minimal space of X as
Vx = {aX**+bX +cE | a,b,c € R}.
Then Vyx is closed under the cross product ([25, Lemma 1.6(3)]). And
for A\g € R, denote the elements p(X), Ex ., Wx, € Vx as
p(X) = X - %tr(X)E

— 1 _ x2
Expo = tr(()\oE,—X)“)()‘oE X)

tr(X) — A
Wy, = X —(MoEx + -%(E — Exx,))

respectively. If Ex », is well-defined (ie, tr((\E — X)*2) # 0), then
tl'(X) - Ao
2

X =XEx ) + (E - Exj) + Wx-

For r € R, consider the eigenspace fo(wml),r. Then we have the
following two lemmas (cf. [24]):
Lemma 2.3. Let X € J*. Then for all g € Fy_s),

9(Vx) = Vox, 9Exx = Egx s 9Wxa = Woxy, 9p(X) = p(9X).

Lemma 2.4. Assume that X € J* has a characteristic root \; € R of
multiplicity 1.

(1) Ex,, is well-defined (ie, tr((ME — X)*2) # 0), and Ex, €
HN V.



(2) EXA] € jo 2E,\)~ ),07 E—- EXAl € JLX(QEXX mVX andWX,\l c
jL"(?Ex,\) 1ﬂVX

Main Theorem 1. ( Fy_0-orbits on J! [24, Main Theorem] )
Fy(_o0y-orbits on J* are classified as follows.

(I) Assume that X € J* admits the characteristic roots Ay > Ay >
As. Then there exists the unique i € {1,2,3} such that H(O) N Vx =
{Ex} and H'(O)NVyx = {Ex ., EX,\M_} where i, 1+ 1, i+ 2 are
counted modulo 3. In this case, X can be transformed to one of the
following canonical forms by Fy(—20).

Cases The canonical forms of X
1. Exy, € H(O) diag(hy, Ms, A3)
2. Ex ., € H(O) diag()a, A3, A1)
3. EX,/\a € H(O) diag(/\s, /\17 /\2)

(II) Assume that X € J' admits the characteristic roots A, € R,
pEv-1qwithp e R and g > 0. Then X can be transformed to the
following canonical form by Fy_90).

the characteristic roots of X The canonical form of X
4 MeR, ptV-1q diag(p, p, M) + F3 (q)

(III) Assume that X € J* admits the characteristic roots A1 of mul-
tiplicity 1 and Ay of multiplicity 2. Then Wx 5, € N1(0)[[{0}. In this
case, X can be transformed to one of the following canonical forms by

Fy(—20).

Cases The canonical form of X
5. Ex , € H(O) diag(A1, Az, A2)

6. E‘X’)‘1 & H'(O), WX,Al =0 diag()\g, Ag, Al)

7. VVX,,\1 € .A[l+(0) diag(/\g, )\2, )\1) + Pt

8. Wx, € N7 (O) diag(Ag, Ao, A1) + P~

(IV) Assume that X € J' admits the characteristic root of multi-
plicity 3. Then p(X) € N. In this case, X can be transformed to one
of the following canonical forms by Fy(_20).

Cases The canonical form of X
= str(X)E
(X) e +( ) gtr(X)E+ P+
11 p(X) ENT(O) Lr(X)E+ P~
12. p(X) € N3(0)  3tr(X)E+ Q*(1)

(V) By Fy(_2), the above canonical forms cannot be transformed from
each other.




3. THE STABILIZER GROUPS OF SPIN GROUP TYPE.

Let G be a topological group with identity element 1. Then G° de-
notes the identity connected component Denote the quadratlc form
Qpg On RPY as Qpo(z) 1= —(af + -+ + 22) + (22, + -+ + 724,)
for £ = (1, ,Zp4q), the quadratic space as (RP4,Q, ), the set of
all orthogonal transformations as O(RP9,(Q)p,) and SO(RP"?, Qpg) =
{9 € O(R?4,Q,,)|det(9) = 1} where det(g) is the determinant of
g € EndR(R” 7). Then O(]R”",qu) and SO(RP?,Q,,) are linear Lie
groups. Denote the quadratic form @ on J! as Q(X) := —tr(X*?) for
X € J* and consider the subspace Jj4, Jg;, and J7; of eigenspace of
L*(2E;) with eigenvalue —1 as

~701,9 = lex(ZEl),—h ~781,1 = JEX(2E3),-1

Jh={Xe€ Ts1| (F5(1)1X) = 0}.
Then jol,g = {&(E; — E3) + F11(1')!§ eR,z € O}, jsl,l = {¢(By — E3) +
Fi(2)|€ € R,z € O} and J}, = {€(E1 — E,) + F} (2)|€ € R,z € ImO}.
Since Q(&(Ey — E3) + Fi(z)) = €2+ n(z) and Q(§(Er — E») + F3(z)) =

£2—n(z), we see that (J3o, Q), (Ja1, @) and (J7,, Q) are isomorphic to
(R?,[-19), (R®!, Qs 1) and (R"?, Q7,1), respectively. Moreover, denote

$® = {XEjong X) =1},
S = {X eJg | Q(X) =1, (BsX) >0},
ST = {X e Jh 1 QX) =1, (Es|X) > 0}.

From now on, the groups SO(8) and SO(7) are identified with the
groups SO(8) = {g € GLr(O) | (9zl9y) = (zly), det(g) = 1} and
SO(7) = {g € SO(8) | g1 = 1}, respectively. The subgroup T(O) of
SO(8)3 is defined as

T(0) :={(91,92.93) € SO(8)°|(9:7)(g29) = gs(zy) for all z,y € O}
(cf. [2], [9, (2.4.6)], [22], [33], [43]), and the subgroup D4 of SO(8)° as
Dy = {(g1, 92, 95) € SO(8)*|(912)(929) = g5(TP) for all z,y € O}.
For i € {1, 2,3}, the homomorphism p; : Dy — SO(8) is defined by

pi(91,92,93) =g for (91,92, 9s) € Ds.
The subgroup B of D, is defined as
Bs := {(91, 92, 93) € Dy | gs1 =1}

and the homomorphism ¢ : B3 — SO(7) as ¢ := ps|Bs. Denote €;(j) :=
(—1)1*% where d;; is the Kronecker delta. Thus if i = j, then €;(j) = 1,
else €;,(j) = —1.



Lemma 3.1. i N
(1) ([43, Theorems 1.15.1 and 1.16.1]) D, and B; are connected.

(2) (The principle of triality: [2], [9, (2.4.6)], cf. [43, Theorem 1.14.2])
The following sequence is exact:

1= {(1,1,1), (&(1),€&(2), e(3))} = Dy &5 SO(8) — 1.

(3) (43, Theorem 1.15.2])
The following sequence is exact:

1-{(1,1,1),(-1,-1,1)} = B3 % SO(7) = 1.

By Lemma 3.1, we see that Dy is connected and a two-hold covering
group of SO(8), and Bj is connected and a two-hold covering group of
SO(7). So denote

Spin(8) := Dy, Spin(7) := B;.

Lemma 3.2. ([22], cf. [43, Theorem 2.7.1], [26, lemma 3.2])
The following homomorphisms are group isomorphisms:

(1) o : Spin(8) = (Fu(-20))E1,E5,855
wo(91, g2, 93)(2(51‘]51 + Fl(z))) = Z(szz + F(g:2:)),
(2) wo : Spin(7) = (Fy~20)) 51,5, 721 Po = $0lSpin(7).
Hereafter Spin(8) and Spin(7) are identified with (Fy—20))E, 5,55
and (Fy_20))E, £, F}(1) via o, respectively.
Lemma 3.3. ([38], [39], cf. [26, Lemmas 3.9 and 3.12))
(1) (Fi(-20))E,/Spin(8) ~ S°, (2) (Fi(-20))E/Spin(8) ~ S&*,
(3) (Fa(~20))r3(1)/Spin(7) = S
Furthermore, (Fy—20))E,, (Fa—20))E; and (Fy—20)) Fl() are connected.

Lemma 3.4. ([38], {39], cf. [26, Lemmas 3.10 and 3.13])
(1) The following sequence is exact.

1 = Zy = (Fy-20))r3 1) 4 0°(J71, Q) = 1

where f(g) = g|J7;.
(2) The following sequence is exact.

1 - Zg — (F4(-—20))E1 i‘> SO(‘Z}’Q, Q) -1

where f(g) = g|T5s.
(3) The following sequence is exact.

1 — Zp — (Fy-20))5 2 0T34, Q) = 1
where f(g) = g|J3,.



Since Lemmas 3.3, 3.4 and m(SO(n)) = Z; = m(0%n, 1)) (n > 3),
we can put
Spin®(7,1) 1=(Fy(-20)) F3 (2)» Spin(9) :=(Fy(-20))E:
Spin’(8, 1) :=(Fy(-20)) = (Fa(-20)) ;-
The element o; € Fy(_29) is defined by

3 3
(D _(&E; + Fi(z)) = D _(&E; + &()F} (7))
Jj=1 =1
[38] (cf. [39]) where indices are counted modulo 3. The involutive
automorphism &; of Fy_q0) is defined as
51‘(9) = 0;90; for g e F4(—20),
and the subgroup K of Fy_3) as
K = (Fy-20)" = {g € Fy_m) | 019 = go1}.
Proposition 3.5. ([38, Theorem 8,39, Theorem 2.4.4], cf. 26, Propo-
sition 3.16]).
(1) (Fa—20) = (Fi(-20)):-
(2) K = (Fy(-20)), = Spin(9)-
(3) (Fy-20))7 = (Fy-20))m, = Spin’(8, 1).

4. THE STABILIZER GROUPS OF SEMIDIRECT PRODUCT GROUP
TYPE.

Denote the Lie algebras 0(8) = Lie(O(8)) and fa—20) = Lie(Fy(~20))-
Since @ : Dy — (Fi(-20))E;,E;,Es is an isomorphism by Lemma 3.2, the
Lie subalgebra 94 of f4(-20) is defined by

(D1, Dy, D3) € 0(8)2, }

(D1x)y + z(Day) = D3(77)
forall z,y € O

0y = {dsf«‘o(Dh D,, Ds)

Then
dpo(Ds, Dy, D3)(Z(€1‘Ez’ + FMz:))) = Y FM(Dix).
For a € O, denote

0 0 O 0 0 v-1a
Ala) := (O 0 a) , Ai(a) := ( 0 0 O ) :
0 -a 0 -v-1a 0 0
0 vV=1a 0
Al(a) = (—\/—_1& 0 O) .
0

A}(a) € Endg(J?) is defined as
Al(a) :==[4}(a),X] for X € J'



and the subspaces u} of Endg(J?) as u! := {Al(a) | a € O}. The
differential dg; of the involutive automorphism &; is written by same
letter 5’,‘- Then &%((ﬁ) = 0'2'(]50'@' for ¢ € f'4(_20).

Lemma 4.1.

(1) ([9], cf. [24, Proposition 2.1]) f4(~20) = 04 D u} & u} S ul.

(2) ([43], cf.[26, Lemma 4.2]) &, is a Cartan involution.
(3) If fa(-20) = €D p is a Cartan decomposition with respect to &,
then

t =040 u, p=ué€9u§.

Now A}(1) € p. Let us define the abelian subspace a of p, the 1-
parameter subgroup A, and o € a* as

o= {tA)(1)| te R}, A= {exp(tA}(1))|¢€ R}, a(A}(1):=1
respectively. Denote
9 = {0 € fy—20) | [H, 9] = A(H)¢ for all H € a},
Ci={Aea’| A#0, g\ #{0}},
and the centralizer a of the group K and its Lie algebra as
M = Zk(a) = {k € K| kA}(1)k~* = A} (1)},
m = Z(a) = {¢p € 2 | [8, A3(1)] = 0}
respectively. For p € ImO, [,,7,,t, € Endg(O) are defined by
p)x :=pz, r(p)(z):=zp, t(p)r:=pr+zp forz€ O
respectively. Then we see that |
0(p) == do(lp, Tp, t—p) € V4.
For p € ImO and z € O, denote
Gi(z) = Al(2) + A3(=7),  Golp) == ~A(p) — é(p),
G-1(z) = Aj(z) + A}(®), G-2(p) = Aj(p) - 6(p)
For i = £1 and j = £2, denote the subspaces g; and g; as fa(-a)
5= {Gi(p) | p€ MO}, g;:= {G;(s) | = € O)
respectively.
Proposition 4.2. (cf. [26, Proposition 4.4])

M= (F4(—20))El,F§(1) = (F4(—20))E2,F31(1) = (F4(-20))E1,E2,E3,F§(1)
= o(Spin(7)).



Lemma 4.3. (cf. [26, Lemma 4.5])
a s a mazimal abelian subspace of p,

Oa = 0+1, Q20 = P22 (TESD),
and (fa(—20), a)-root space decomposition of f4(-20) s given by

fa-20) = 820 P g-a DAEMO P DP2a =§-2D g1 0 aOMD g1 O Ba-

So the nilpotent subalgebras n* are defined as
nt = gy @ 8o = {G2(p) + Gi(2)| p € ImO, z € O},
N i=gooa® 0o ={G-2(p) +G-1(z)| p € ImO,z € O} (resp).
Then
[, [t nt]]=[n",[n",n7]] =0
And the nilpotent subgroups N* of Fy(—20) are defined as
Nt :=expnt = {exp(G2(p) + G1(z)) | p € ImO, z € O},
N~ :=expn~ = {exp(G_2(p) + G-1(2)) | p € ImO, z € O} (resp).

Lemma 4.4.

(1) exp Go(p) exp Gi(z) = exp(G2 (p) + Gi(z)) = exp Gi(z) exp Go (p).
(2) Gin*t =n~ and 5;n~ = nt. Furthermore,

1(G12(p) + G1(2)) = Gza(p) + Gma(z) (resp).
(3) 61(N*) = N~ and &;(N~) = N*. Furthermore,
G1(exp(Gxa(p) + G11(p))) = exp(Gz2(p) + Gx1(p)) (resp).

Lemma 4.5. ([26, Lemma 5.3])
Let g = (91, 92, 93), h € Spin(7), p,q € ImO, z,y € O.

exp(G2(p) + G1(z))wo(9) exp(Ga(q) + G1(y))wo(h)

= exp(Ga(p + 93q + Im(z(g19)) + G1(z + 91¥))¥o(gh).

Let us consider G := Spin(7) x ImO x O in which multiplication is
defined by

(9.p,2)(h, q,y) = (gh,p + 930 + Im(z(919)), = + G19)
where p, g € ImO, z,y € O and g = (g1, 92, 93), h € Spin(7). Denote
H := {(g,0,0)| g € Spin(7)},
N := {(1,p,z)| p € ImO, x € O},
G' := {(g,p,0)| g € Spin(7), p € ImO}, N; := {(1,p,0)| p € ImO},
G" :={(9,p,9)| g € G2, p,q € ImO},
H" := {(9,0,0)| g € G2}, Ny == {(1,p,9)| p,q € ImO}.

10
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Lemma 4.6. ([26, Lemma 5.2))
(1) G is a group with respect to the multiplication.

(2) H/N,G',N;,G",H" and N, are subgroups of G.
(3) We have
G=HxN, G'=HxN,, G'=H'&XN,.

Denote Spin(7) := H, ImO x O := N, ImO = Ny, G, := H” and
ImO x ImO := N” so that '

Spin(7) x (ImO x O) =G, Spin(7) x ImO = G’
Gy X (ImO x ImO) = G”.

The homomorphisms ¢ : Spin(7) x (ImO x O) = (Fy_s0))p-, ¥1 :
Spin(7) x ImO — (Fy—20))E; p- and ¢y : Gy x (ImO x ImO) —
(Fa(—20))q are defined as

©(9,p,z) = exp(Ga(p) + G1(2))p(9), 1(9,p) = exp(G2(p))¥(9)
©2(9,p,9) = exp(G2(p) + G1(q))p(g) for p,g € ImO and z € O
respectively.

Proposition 4.7. ([26, Proposition 5.6])
(1) o1 is an isomorphism onto (Fy—20))Es,p--
(2) ¢ is an isomorphism onto (Fy—o0))p--
(3) @2 is an isomorphism onto (Fy—20))q-
The key of proof of (2): By direct calculation,

OT‘bN+(E3) ={X 6.71[ P xX = _%P—a -sz:Ov tI'(X) = 1}

Then this equation deduces Orby+(E3) = Orbg, ), (£3)- O
The mappings 1 @ Fyo0) — O, 92 : Fy—o0) — ImO and )5 :
F4(_20) — F4(..20) are defined as for g€ F4(_20),
1 —_—
¥1(9) = 5((9Ea)r; + (9E3)r3),

¥alo) = ~51m ((9(~ By + Ex))iy )
¥3(g) = exp (=G1(¥1(9)) — G2(¥2(9))) 9
respectively.

Proposition 4.8. ([26, Proposition 5.7])
(1) Let g e (F4(_20))p—. Then 7,/)3(9) € M and

g = exp (G1(¥1(9)) + G2 (¥2(9)) ¥3(g) € NTM.

(2) We have
(F4(_20))p— =N*M=MN".



5. THE ORBIT TYPES OF Fj(_2)-ORBITS ON J'.

Main Theorem 2. ( The orbit types of Fy_jg-orbits on J* (26,
Main Theorem 1])
The orbit types of Fy—s0)-orbits on J* are given as follows.

(1) Assume that X € J* admits the characteristic roots Ay > Ay >
A3. Then X can be transformed to the following canonical forms by
Fy(_20) with the following type of stabilizer group.

The canonical forms of X The type of stabilizer group

1. diag()\l, /\2, Ag) Spln(S)
2. diag(Az, A3, A1) Spin(8)
3. diag()\g, Al, )\2) Spln(S)

(2) Assume that X € J' admits the characteristic roots \; € R,
px+/—1qg withp € R and ¢ > 0. Then X can be transformed to the
following canonical form by Fy_q0) with the following type of stabilizer
group.

The canonical forms of X The type of stabilizer group
4. diag(p,p, M) + Fi(¢g)  Spin’(7,1)

(3) Assume that X € J' admits the characteristic roots Ay of mul-
tiplicity 1 and Ay of multiplicity 2. Then X can be transformed to the
following canonical forms by Fy_z0) with the following types of stabi-
lizer group.

The canonical forms of X The type of stabilizer group
5. diag(Al, /\2, /\2) Spm(g)
6. diag(Aa, A2, A1) Spin®(8, 1)
7. diag(Ag, Ao, A1) + P Spin(7) x ImO
8. diag()\g, )\2, /\1) + P~ Spm(?) X ImO
(4) Assume that X € J* admits the characteristic root of multiplicity

3. Then X can be transformed to the following canonical forms by
Fy(_20) with the following types of stabilizer group.

The canonical forms of X The type of stabilizer group

9. %ltr(X)E Fy_a0)

10. str(X)E+ P~ Spin(7) x (ImO x O)
11. $tr(X)E+ P~ Spin(7) x (ImO x O)
12. We(X)E+Q*(1) Gy x (ImO x ImO)

6. THE THREE DECOMPOSITIONS OF A LINEAR CONNECTED
" SEMISIMPLE NONCOMPACT LIE GROUPS.

Let G be a linear connected semisimple Lie group with its Lie algebra
g over R. Let 6 be a Cartan involution of g, g = € @ p a Cartan
decomposition, a is a maximal abelian subspace of p, m = Z(a). a*
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denotes the dual space of a. For any element A € a*, let g, := {X €
g| [H,X] = MH)X for all H € a}. X is called a root of (g,a) if A\ #
0 and gy # {0}. The set of roots of (g.a) is denoted by ¥. Then
g=adm®d Y, g, follows. Denote by £ a set of positive root of
(g,a) with respect to the some ordering in a*, £~ := {—A| A € ¥},
n* =) sep+ Oa and n” =Y o gx. Then n* and n~ are nilpotent
subalgebras,  n* = n¥ (resp), and g = n~@ad®m®En™ follow. Suppose
that there exists an involutive automorphism © on G such that the
differential d© = 6, and the center Z(G) of G is finite. Denote the
subgroup K := G® of G. Then Lie(K) = £ and K is connected, closed,
and K is a maximal compact subgroup of G since Z(G) of G is finite.
Set A:=expa, M := Zg(a) = {k € K| kXk™' = X for all X € a} and
N#* .= expn¥ (resp). Then the identity connected component M° of M
is the analytic subgroup corresponding to m, and ON* = NTF (resp).
denote the normalizer of a of the group K as M* := Ni(a) = {k €
K| kak™! C a} and the finite factor group W := M*/M.

For all w € W, we fix a representative @ € M*. Then the following
decompositions:

(1) G= ][ MAN*aN- (Bruhat decomposition),
weW

(1Y G=MAN+N- (Gauss decomposition),

(2) G= KAN™ (Iwasawa decomposition).

(cf. [15},(18], [27],[23]). In (1)’, the set MAN*N~ is open dense in G,
and so almost any g € G can be expressed by
9 = mg(g)ac(g)nc(9)c(9)

for some mg(g) € M, ag(g) € A, ng(g) € N* and Tig(g) € N~
with uniquely determined factors. In (2), any g € G can be uniquely
expressed by
g9 = k(g)(exp H(g))n(9)
for some k(g) € K, H(g) € a and n(g) € N.
A signature of roots is defined by the mapping € of ¥ to {—1,1} such
that e satisfies the conditions:

(i) (A) = €¢(=X) forall A € T,
(i) e(A + ) = e(A)e(u) if A puA+pek

[27, Definition 1.1]. For the Cartan involution # and any signature ¢ of
roots, let us define an involutive automorphism &, of g such that

(i) 6.(X) == e(N)8(X) for all A € ¥ and X € g,,
(ii) 8(X) :== 6(X) foral X ca&m

127, Definition 1.2]. 6, is called the (8, ¢)—involution of g. Set
te={Xegl0 X=X}, p.:={Xegl bX=-X}

13
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Then g = ¢ & p.. Let (K)o be the analytic subgroup of G with the
Lie algebra ¢, and the subgroup K, of G as K, := (K,)oM. In fact,
since all elements of M normalize (K)o by [27, Lemma 1.4(i)], K. is a
subgroup of G. Denote M} := K. N M* and W, := M} /M.

Proposition 6.1. ( Iwasawa decomposition with respect to K,
in sense of T. Oshima and J. Sekiguchi [27, Proposition 1.10])
Let the factor set W\W = {w; = L, ws, - ,w,} where r = [W : W.

Fiz representatives W, = 1,Ws, -+ , W, € M} = K. N M* for w; =
1,wa, - ,w,. Then the decomposition
GO U_,Kw; ANt

has the following properties.

(1) If kw;an = K'w;a'n' with k, k' € K, a,a’ € A and n,n’ € N*,
thenk=k,i=j, a=ad andn=n'.

(2) The map (k,a,n) — kw;an defines an analytic diffeomorphism of
the product manifold K. x AX Nt onto the open submanifold K. w; AN+
of G(i=1,---7).

(3) The submanifolds Ul_, K w; AN™ is open dense in G.

7. THE GAUSS DECOMPOSITION OF Fy_s0).
We have
Ny (0) = Orbg, ) (P7) = Fy—20)/(Fa-20)) p~ = Fa(-20)/N" M.
So considering AN ~-orbits on N (O), we obtain:
Main Theorem 3. (The Bruhat and Gauss decomposition of

F4(_20) [26, Main Theorem 2])

(1) Assume that g € Fy_0) and (gP*|P~) # 0. Let
_ 1 (gP*|P7)
t:= 5 log ( 1 € R,
ac(g) = exp(tAj(1)) € 4,

0197 P ) —-’——:TP:—:
fig(g) = &1(exp(—G (( ? );;3+|1(30 )g )FQ)

Im((0197'P7)r3)
9\ T (PP
na(9) := exp(t(G(¥1(ac(9)Tic(9)g™"
+ 2G2(¥o(ac(9)Tic(9)9™))) € N+

ma(g) == ¥s(ac(9)fic(g)g™) "
Then
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(i) (gP*|P7) <0, and ag(g), Tig(9), nclg), mg(g) are well-defined,

(i) mg(g) € M and

9 =mg(g9)ac(9)nc(9)Tc(g) € MANTN™.
(2) Assume g € Fy_q0) and (9P*|P~) =0. Let

b=~ log(~(gB:|P) € R,
a'(g) = exp(tA}(1)) € 4,
n'(g) == exp(t(G1(¢1(01a'(9)g™") + 262 (¢2(01a'(9)g™"))) € N'Y,
m'(g) := ¢s(01a'(9)g™) 7"

Then
(i) (9E1|P7) <0, and d'(g), n'(g), m'(g) are well-defined,

(ii) m'(9) € M and
g=m'(g9)a'(9)n'(9)o1 € MAN*tg, = MAN*toN™.
(3) The following equations hold.
MANYN™ ={g € Fy_s0 | (¢PT|P™) 5 0}

={g € Fy20) | (gPT|P7) < 0} #0,
MAN*o, =MAN*o N~

={g € Fy-20) | (¢P7|P7) =0} #0.
Especially,

Fy_20) = MANTN~ H MAN*oN~ (Bruhat decomposition)
= MAN*N~[[ MAN* 0o,
(4) MANT N~ is open dense in Fy_s0). Especially
Fy-20)= MAN+*N-  (Gauss decomposition).

8. THE IWASAWA DECOMPOSITION OF Fy_z).
We have

H(O) = Orbr, ) (E1) = Fa—20)/ (Fa-20)) B = Fi-20)/ K.
So considering AN*-orbits on H(O), we obtain:

Main Theorem 4. (The Iwasaws decomposition of Fy_s [26,
Main Theorem 3})



For any g € Fy—20), let

H(g) = * log(~ (P~ |EL)) A1) € o,

2
_ (97" E1)p = (971 E1) Ry Im((9™ E1)Ry)
n(g) := exp(G ( (P-TE) ) +G» ( (0P-1E) ))
eNT
k(g) := gn(g) ™" exp(-H(g)).

Then
(1) (9P~|E;) < 0. Especially H(g), n(g) and k(g) is well-defined.

(2) k(g9) € K and
g9 = k(g)(exp H(g))n(9) € KAN™.

9. THE IWASAWA DECOMPOSITION WITH RESPECT TO K..

For G = Fy(_30), let € be a signature of root defined by
e(a) =¢(—a) := -1, €(2a) = ¢(—2a) := 1.

Denote the (&;,¢)—involution by (5;)., and use same notations £,
(K)o, Ke, M*, M, W and W, corresponding to notations of general
G respectively.

Proposition 9.1. ([26, Lemma 6.2])
(1) (51)5 = 02
(2) K= (F4(—20))E2-
(3) M* = M][o1M. Especially W = {M, 1M} = Z,.
(4) M} = M ][ o1 M. Especially W, = {M,0:M} and (W : W] = 1.

We have

H'(O) = Orbp, _y, (E2) = Fy—20)/(Fa(~20)) B, = Fa(-20)/ Ke-

So considering AN*-orbits on H'(O). we obtain:

Main Theorem 5. (The Iwasawa decomposition with respect
to K[26, Main Theorem 4])
Let D be the domain of Fy_q0) defined by

D :={g € Fy20 | (9P7|E3) > 0}.

16



17

For any g € D, let
1 _ .
H(g) == 510g((9P |E,))A3(1) € a,

. (97 Ex)p; — (97 En)p
ne(g) = exp(Gy ( (0 F-1Ey) )

Im((g7 Ey)py) .
+g2( (9P~|Ez) ))EN

ke(9) := gne(g) ™" exp(—He(g))-

Then
(1) k(g) € K. and

g = k(g)(exp H.(9))n.(g) € K AN*.

(2) D = K.ANT = {g € Fy_ay | (9P |E2) # 0}. Furthermore, D
is open dense in Fy_og).

Moreover we have:

Theorem 9.2. ([26, Theorem 9.6])
(1) The following equations hold.

KMANT = {9 € Fy_2)| (9P |E;) # 0}
= {g € F4(_20)] (gP—|E2) > O} = KEAN+.

(2) Keexp (—A3(3)) MAN* = {g € Fy_x)| (9P|Ez) = 0}.
(3) Fu—a0y = K.MAN*]] K. exp (—Ai(g)) MAN*,

Remark 9.3. Theorem 9.2(3) is a special case of [21, Theorems 3], so
the decomposition in Theorem 9.2(3) is called a Matsuki decomposition
of Fy(—20)-
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