
Faster Algorithms for Computer Vision

Toshiyuki Masaki and Takahito Kuno

Graduate School of Systems and Information Engineering,
University of Tsukuba, Ibaraki 305-8573, Japan

Abstract

In this paper, we make a modification to Karl and Hartley‘s formulation
of problems in computer vision [3, 4], and show the resulting norm min-
imization problem can be solved by solving a sequence of LP problems.
We also propose an approximation of the norm minimization problem,
which reduces to one LP or SOCP problem.
Key words: Computer vision, multiple view geometry, linear program-
ming, second-order cone programming.

1. Introduction

In recent years, problems dealt with in computer vision are larger in size and
require much more computational time to solve than before. For example,
while the traditional triangulation problem has only three variables, the num-
ber of variables in the latest structure-and-motion problem amounts to several
hundreds in some cases. Thus, there is a great need for faster algorithms for
large scale problems in the area of computer vision. In response to this, Karl
and Hartley [3, 4] developed a framework for solving geometric problems, such
as triangulation, camera-resectioning, homography-estimation and structure-
and-motion. In their framework, those problems are formulated into an L_{∞}

norm minimization problem and solved by solving a sequence of second-order
cone programming (SOCP) problems.

In this paper, we show that, if Karl and Hartley‘s formulation is slightly
modified, the norm $1ni_{I}iiInizati_{oI}i$ problem can be solved by solving a sequence
of linear programming (LP) problems. In addition, we propose an approxima-
tion of the norm minimization problem, which reduces to one LP or SOCP

数理解析研究所講究録
第 1773巻 2012年 68-76 68

Figure 1: Geometry of a pinhole camera.

problem. Lastly, we report some numerical results, which demonstrate the
superiority of our approach to Karl and Hartley‘s in both efficiency and accu-
racy.

2. Problems in computer vision

In this section, we first take triangulation as a typical example and illustrate
how it can be formulated into an optimization problem. We also show that
many other problems in computer vision take the same form. Essential to
those formulations is the pinhole camem model.

Pinhole camera model: The pinhole camera model describes the relation-
ship between the coordinates of a $3D$ point and its projection onto the image
plane of an ideal pinhole camera, where the camera aperture is a pinhole and
no lenses are used to focus light. The geometry related to the mapping of a
pinhole camera is illustrated in Figure 1. Let us denote the object point by
$V=(X, Y, Z)^{T}$ in the $3D$ coordinate system with its origin at the camera aper-
ture O. Light emanating from V passes through O and projects an inverted
image $v=(x, y)^{T}$ on the image plane, which is parallel to the X-Y plane and
located at the focal length $f(>0)$ from O in the negative direction of the
Z axis. Let A $=(0,0, Z)^{T},$ $B=(0,0, -f)^{T}$ and $C=(x, y, -f)^{T}$. Since the
triangle OAV is similar to the triangle OBC, we have $(x, y)^{T}=(f/Z)(X, Y)^{T}$,

69

Figure 2: Thriangulation using two cameras.

or equivalently

$\{\begin{array}{l}xy1\end{array}\}=\frac{f}{Z}\{\begin{array}{l}XYZ/f\end{array}\}$

in homogeneous coordinates. It should be also noted that the image v is
invariant under scaling of V. We denote this by

$\{\begin{array}{l}xy1\end{array}\}\sim\{\begin{array}{l}XYZ/f\end{array}\}=\{\begin{array}{llll}1 0 0 00 1 0 00 0 1/f 0\end{array}\}\{\begin{array}{l}XYZ1\end{array}\}$, (1)

and say that $(x, y, 1)^{T}$ is equivalent, or proportional, to $(X, Y, Z/f)^{T}$. The $3\cross 4$

matrix in (1) is called the camem matrix.

Triangulation: Triangulation (or reconstruction) is the process of deter-
mining the $3D$ coordinates of the object V, given its projection onto two, or
more, images captured by pinhole cameras. In theory, the triangulation prob-
lem is quite trivial. Each image v of V corresponds to a half-line in the $3D$

space such that all points on the line are projected to v . Therefore, V must
lie on the intersection of those lines, and we must be able to calculate its co-
ordinates analytically from a pair of different images. In practice, however,
various types of noise, such as geometric noise from lens distortion or interest
point detection error, lead to inaccuracies in the measured image coordinates.
As a result, lines associated with different images of V do not always intersect
in the $3D$ space, as in Figure 2.

70

Suppose that $V=(X, Y, Z)^{T}$ is in an arbitrary $3D$ coordinate system, and
that there are M images $v_{i}=(x_{i}, y_{i})^{T}$ of V captured by cameras $i=1,$ $\ldots,$

M .
Let us denote the ith camera matrix by

$Q_{i}=\{\begin{array}{llll}1 0 0 00 1 0 00 0 1/f_{i} 0\end{array}\}$,

where $f_{i}(>0)$ is the focal length of camera i . Note that V is denoted as
$B_{n}V+t_{i}$ for some rotation matrix B_{η} and a translation vector t_{i} in the $3D$

coordinate system with the origin at the focal point O_{i} of camera i . Hence,
from (1), we have

$\{\begin{array}{l}v_{i}1\end{array}\}\sim Q_{i}\{\begin{array}{ll}R_{n} t_{i}O 1\end{array}\}\{\begin{array}{l}V1\end{array}\}$, $i=1,$ $\ldots,$
M .

Let

$P_{i}=\{\begin{array}{l}p_{i}^{1}p_{i}^{2}p_{i}^{3}\end{array}\}=Q_{i}\{\begin{array}{ll}R_{i} t_{i}O 1\end{array}\}$,

which is referred to as the normalized camem matrix, or simply as the camem
matrix. The coordinates of the image $v_{i}=(x_{i}, y_{i})^{T}$ is then given as

$x_{i}= \frac{p_{i}^{1}U}{p_{i}^{3}U}$, $y_{i}= \frac{p_{i}^{2}U}{p_{i}^{3}U}$,

where $U=(V^{T}, 1)^{T}$, if there is no noise. As mentioned above, however, this is
not the case in practice, and we need to determine the coordinates (X, Y, Z) of
V so as to minimize the $2D$ residual ermr, which is defined as follows in terms
of L_{p} norm:

$\gamma_{i}=\Vert\frac{p_{i}^{1}U}{p_{i}^{3}U}-x_{i},\frac{p_{i}^{2}U}{p_{i}^{3}U}-y_{i}\Vert_{p}$, $i=1,$ $\ldots,$
M .

If we measure the magnitude of $\gamma=(\gamma_{1}, \ldots, \gamma_{M})^{T}$ in L_{q} norm, then trian-
gulation reduces to an optimization problem with (X, Y, Z) , the first three
components of U , as the variables:

minimize $\Vert\gamma\Vert_{q}$

subject to $\Vert\frac{p_{i}^{1}U}{p_{i}^{3}U}-x_{i},$ $\frac{p_{i}^{2}U}{p_{i}^{3}U}-y_{i}\Vert_{p}=\gamma_{i}$, $i=1,$ \ldots , M. (2)

71

Table 1: Known and unknown parameters of computer vision problems.

$\frac{problem\neq camems\neq objectsknownunknown}{triangu1ationM1P_{i},v_{i1}V_{1}}$

camera-resectioning 1 N $V_{j},$ v_{1j} P_{1}

structure-and-motion M N $B_{n},$ v_{ij} $t_{i},$ V_{j}

Other problems: Many other computer vision problems can also be for-
mulated into optimization problems similar to (2) except that the number of
objects is usually more than one.

Suppose N points $V_{j}=(X_{j}, Y_{j}, Z_{j})^{T},$ $j=1,$ $\ldots,$
M , are given in the $3D$

space. Let $v_{ij}=(x_{ij}, y_{ij})^{T}$ denote the image of V_{j} captured by camera i . Also
let

$\gamma_{ij}=\Vert\frac{p_{i}^{1}U_{j}}{p_{i}^{3}U_{j}}-x_{ij},$ $\frac{p_{i}^{2}U_{j}}{p_{i}^{3}U_{j}}-y_{ij}\Vert_{p}$, $i=1,$ $\ldots,$ $M;j=1,$ $\ldots N$,

where $U_{j}=(V_{j}^{T}, 1)^{T}$. In this case, the problem is written as follows

minimize $\Vert\gamma\Vert_{q}$

subject to $\Vert\frac{p_{i}^{1}U_{j}}{p_{i}^{3}U_{j}}-x_{ij},$ $\frac{p_{i}^{2}U_{j}}{p_{i}^{3}U_{j}}-y_{ij}\Vert_{p}=\gamma_{ij}$, $\{\begin{array}{ll}i=1, \ldots, M (3)j=1, \ldots N, \end{array}$

where $\gamma=(\gamma_{11}, \ldots, \gamma_{MN})^{T}$. This seems a straightforward extension of (1),
but describes various types of problems in computer vision depending on what
parameters are known or unknown. Table 1 shows three major examples; e.g.,
the number of variables amounts to $3(M+N)$ in (3) associated with a structure-
and-motion problem while that is only three in the case of triangulation.

3. Solution approaches

In [4], Kahl and Hartley proposed a bisection algorithm to solve (3) with $p=2$

and $q=\infty$. After illustrating their algorithm, we introduce here a practical
approximation approach to (3).

Bisection approach: In the usual applications of computer vision, we may
assume that $p_{i}^{3}U_{j}>0$ for all $i,$ j . We can therefore rewrite (3) into the following

72

$\overline{\frac{A1gorithm1Bisectionalgorithmforthecasewherep=2andq=\infty}{Require:aninterva1[\gamma_{\ell},\gamma_{u}]knowntocontaintheoptima1va1uer^{*}and}}$

a
tolerance $\epsilon>0$.
repeat

$\gammaarrow(\gamma_{\ell}+\gamma_{u})/2$;
check if (5) is feasible or not, by solving an associated SOCP problem;
if (5) is feasible then

$\gamma_{u}arrow\gamma$

else
$\gamma_{\ell}arrow\gamma$

end if
until $\gamma_{u}-\gamma_{l}\leq\epsilon$;

when $p=2$ and $q=\infty$:

minimize γ

subject to $\Vert p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j},$ $p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}\Vert_{2}\leq\gamma p_{i}^{3}U_{j}$, $\{\begin{array}{l}i=1, \ldots, Mj=1, \ldots N.\end{array}$

(4)
As is shown in Algorithm 1, the bisection algorithm solves (4) by checking
repeatedly if the following system of inequalities is feasible for a fixed r in a
given interval $[\gamma_{\ell}, \gamma_{u}]$:

$\Vert p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j},$ $p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}\Vert_{2}\leq\gamma p_{i}^{3}U_{j},$ $\{\begin{array}{l}i=1, \ldots, Mj=1, \ldots N.\end{array}$ (5)

Since the right-hand-sides turn into constants, the feasibility of (5) can be
checked by solving an SOCP problem with (5) as constraints.

As a natural extension of this Kahl and Hartley’s approach, we can ap-
ply the bisection algorithm to (3) with another combination of p and q . For
example, if we choose $p=1$ and $q=\infty$, then (3) is rewritten as

minimize γ

subject to $|p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j}|+|p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}|\leq\gamma p_{i}^{3}U_{j}$, $\{\begin{array}{l}i=1, \ldots, Mj=1, \ldots N.\end{array}$

(6)
Note that the inequality

$|p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j}|+|p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}|\leq\gamma p_{i}^{3}U_{j}$

73

is equivalent to a set of inequalities

$-(p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j})-(p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j})\leq\gamma p_{i}^{3}U_{j}-(U_{j}-xp^{3}U_{j})+(-y_{ij}p^{3})\leq\gamma p^{3}U_{j}(U_{j}U_{ji}(p^{1}U-xp^{3}U)+(U_{j}p_{i}^{3}U)\leq\gamma p^{3}U_{j}p^{2}-y_{ij}p_{i}^{3})\leq\gamma p^{3}U_{j}$

.

$\}$ (7)

In other words, the constraints of (6) can be thought of as linear constraints
once the value of γ is $fix\epsilon_{\text{ノ}}^{\backslash }(1$. Hence, Algorith11l 1 can solve (6) by checking the
feasibility of (7) for all i,j , instead of (5). This can be done by solving an LP
problem with (7) for all i,j as constraints. Similarly, we can solve (3) with
$p=\infty$ and $q=\infty$ using the bisection algorithm.

Approximation approach: The reason why (3) cannot be solved directly
as an SOCP or LP problem is that the product of two variables appears in the
right-hand-sides of the constraints when (3) is rewritten as

minimize $\Vert\gamma\Vert_{q}$

subject to $\Vert p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j},$ $p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}\Vert_{p}=\gamma_{ij}p_{i}^{3}U_{j}$, $\{\begin{array}{l}i=1, \ldots, Mj=1, \ldots N.\end{array}$

(8)
Introducing new variables δ_{ij} and letting

$\delta_{ij}=\gamma_{ij}p_{i}^{3}U_{j}$, $i=1,$ $\ldots,$ $M;j=1,$ $\ldots,$
N ,

we have

minimize $\Vert\delta\Vert_{q}$

subject to $\Vert p_{i}^{1}U_{j}-x_{ij}p_{i}^{3}U_{j},$ $p_{i}^{2}U_{j}-y_{ij}p_{i}^{3}U_{j}\Vert_{p}=\delta_{ij}$, $\{\begin{array}{l}i=1, \ldots, Mj=1, \ldots N,\end{array}$

(9)
where $\delta=(\delta_{11}, \ldots, \delta_{MN})^{T}$. It is easy to see that (9) reduces to an SOCP
problem if $p=2$ and $q=\infty$, and is an LP problem if $p=1,$ ∞ and $q=\infty$.
Furthermore, (9) can serve as a good approximation for (8) (and hence (3)).

Proposition 1 If the optimal value of (8) vanishes, then any optimal solution

of (8), together with $\delta=O$, solves (9) to optimality. Conversely, if the optimal
value of (9) vanishes, then any optimal solution of (9), together with $\gamma=O$,
solves (8) to optimality. \square

74

Table 2: CPU time (in seconds).

$\frac{p\backslash q\infty 12}{bisection\infty 0.0660.1170.729}$

∞ 0.003 0.003 0.075
approximation

1 0.009 0.004 0.080

Table 3: $3D$ residual error (in L_{2} norm).

$\frac{p\backslash q\infty 12}{bisection\infty 0.0170.0180.016}$

∞ 0.036 0.036 0.035
approximation

1 0.014 0.014 0.013

Let us discuss the case where $q=\infty$ a little more closely. Let $(\overline{\gamma}_{ij}, \overline{p_{i}^{3}U_{j}})$

and $(\overline{\delta}_{ij},\overline{p_{i}^{3}U_{j}})\wedge$ denote the values of $(\gamma_{ij}, p_{i}^{3}U_{j})$ for optimal solutions of (8) and
(9), respectively, and define

γ

へ

$=\delta/p_{k}^{3}U_{l}$, $\overline{\delta}=\overline{\gamma}\overline{p_{r}^{3}U_{s}}$,

where $\overline{\gamma}=\overline{\gamma}_{k\ell}\in\max_{i,j}\{\overline{\gamma}_{ij}\}$ and $\hat{\delta}=\hat{\delta}_{rs}\in\max_{i,j}\{\overline{\delta}_{ij}\}$へ.

Proposition 2 When $q=\infty$, the following relations hold:

$\overline{\gamma}\leq$

へ

$\gamma\leq L\overline{\gamma}$,
へ

$\delta\leq\overline{\delta}\leq L\hat{\delta}$,

where $L= \max_{i,j}\{\overline{p_{i}^{3}U_{j}}\}/\min_{i,j}\{\overline{p_{i}^{3}U_{j}}\}$. \square

4. Numerical results

Lastly, we report some numerical results obtained with MATLAB (version 7.9,
$R2009b)[5]$.

The problem used as a benchmark is triangulation. The number of cameras
was fixed at $N=25$, and each camera matrix was of the form:

$P_{i}=\{\begin{array}{llll}1 0 0 00 1 0 00 0 1 z_{i}\end{array}\}\{\begin{array}{llll}1 0 0 00 cos\phi_{i} -sin\phi_{i} 00 sin\phi_{i} cos\phi_{i} 00 0 0 1\end{array}\}\{\begin{array}{llll}cos\theta_{i} 0 -sin\theta_{i} 00 1 0 0sin\theta_{i} 0 cos\theta_{i} 00 0 0 1\end{array}\}$,

75

where z_{i} and ϕ_{i} are uniform random numbers on the intervals [10.0, 100.0] and
$[$0.0, $\frac{\pi}{6}]$, respectively, and

$\theta_{i}=\frac{2\pi}{n(i-1)}$.

Each component of the object point V was also generated uniformly at random
in the interval $[-5.0,5.0]$. Associated SOCP and LP problems were solved
using SeDuMi [7] and GLPK[I], respectively. Table 2 summarizes the average
CPU time in seconds taken to solve ten instances for each $p,$ q . Table 3 shows
the average residual error between actual and calculated values of V in L_{2} norm.
These results suggest that our approach is superior to Karl and Hartley‘s in
both efficiency and accuracy.

References

[1] GLPK(GNU Linear Programming Kit) $http.\cdot//www$. gnu. $org/software/glpk/$.

[2] Hartley, R.I. and Sturm, P. , Triangulation In COMPUTER ANALYSIS
OF IMAGES AND PATTERNS, pages 190-197, 1995.

[3] Kahl, F. , Multiple view geometry and the L_{∞} -norm. In Int. Conf. Com-
puter Vision,pages 1002-1009, Beijing, China, 2005.

[4] Kahl, F. and Hartley, R.I. , Multiple View Geometry Under the L_{∞}-norm.
In IEEE Tmnsactions on Pattem Analysis and Machine Intelligence, pages
1603-1617, September 2008.

[5] MATLAB $www.mathworks.com/pmducts/matlab/$.

[6] Olsson, C. and Kahl, F. , Generalized Convexity in Multiple View Ge-
ometry. In JO URNAL OF MATHEMATICAL IMA GING AND VISION,
pages 35-51, September 2010.

[7] SeDuMi $http.\cdot//sedumi.ie.lehigh.edu/$.

[8] Seo, Y. and Hartley, R.I. , Sequential L_{∞} Norm Minimization for Tri-
angulation. In Computer Vision - ACCV 2007, vol. 4844, pages 322-331,
2007.

76

