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The phase-space formulation of nonrelativistic quantum mechanics
is constructed on the basis of a deformation of classical mechan-
ics by using a *-product algebra, and it has been illustrated for
the MIC-Kepler problem. Its Green’s functions are calculated by
means of the Moyal product which is one of the *-products. In the
case where its actual energy E is negative, the Green’s function is
equal to the infinite series consists of its eigenfunctions which are
interpreted as L? cross sections of the complex line bundles over
R3 - {0O}.

1 Introduction

The conventional method of calculating Green’s function is well-known in operator for-
malism. A x-product algebra counterpart is formulated if one starts with a deformation
of the symplectic structures attached to phase space [1][11]. The MIC-Kepler problem is
the Hamiltonian system of the hydrogen atom under the influence of the Dirac’s magnetic
monopole field and the square inverse centrifugal potential force besides the Coulomb’s
potential force. Iwai and Uwano proved that the MIC-Kepler problem is the ‘reduced’
Hamiltonian system that comes out of the four-dimensional conformal Kepler problem
which is closely related to the four-dimensional harmonic oscillator, if the associated mo-
mentum mapping of an S' action takes a fixed value u [6]. It is widely recognized that
the three-dimensional hydrogen atom (the quantum-mechanical Kepler problem) has rel-
evance to the four-dimensional harmonic oscillator, and using this Iwai-Uwano’s formula-
tion in phase space, the hydrogen atom is the special case when the momentum mapping
takes the value zero. Furthermore, they constructed the ‘quantised’ MIC-Kepler problem
by the reduction of the ‘quantised’ conformal Kepler problem using operator method.
Their geometric setting for the reduction process is given by complex line bundles associ-
ated with the principal U(1) ~ S* bundle 7 : R* — R3 where R® = R” — {O}. From this
point of view they obtained the eigenfunctions and Hamiltonian operator of the quantised
MIC-Kepler problem [7].

The aim of this paper is to obtain the Green’s functions of the MIC-Kepler problem de-
rived from x-unitary evolution function which corresponds to unitary operator through
the ‘Weyl application’. The Weyl application W maps linearly and uniquely a function f
on phase space to an operator W (f) in Hilbert space. This approach is carried out on the
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quantum-mechanical Kepler problem, or hydrogen atom [3]. In this way, the x-unitary
evolution function of four-dimensional oscillator is found firstly. Next, the Green’s func-
tion of the oscillator is calculated from its *-unitary evolution function. After that, the
Green’s function of the oscillator is reduced to that of the MIC-Kepler problem. The
reduction process is originated in path integral method. However, it coincides with Iwai-
Uwano’s reduction process in which the Hilbert space of square integrable complex-valued
functions on R* is restricted to that of eigenfunctions of the momentum operator associ-
ated with the S* action on R%.

Section 2 is an outline of the MIC-Kepler problem as reduced system, classical and quan-
tum theories are evolved by Iwai and Uwano [6][7].

In Section 3, restricting its actual energy E within negative levels, the conformal Kepler
problem is treated as four-dimensional harmonic oscillator. Then its x-unitary evolution
function is obtained, which lead to the Green’s function of the conformal Kepler problem
for negative energy.

In Section 4, the Green’s function of the MIC-Kepler problem for negative energy are ob-
tained by reducing that of the conformal Kepler problem. The reduction process requires
two local coordinates in practice, hence two local expressions of the Green’s function are
come out.

In Section 5, Iwai-Uwano’s reduction process is carried out for the Green’s function of the
MIC-Kepler problem. It is demonstrated that their reduction process is the same as that
of path integral approach.

The author is grateful to Professor Fujii for presenting his paper [2] which have been of
great use in propounding that Green’s function may be considered as the cross section of
the fibre bundle associated with a principal fibre bundle, or more precisely, as the tensor
product of the cross sections.

2 The MIC-Kepler problem as reduced system

This section is a concise explanation of the MIC-Kepler problem in terms of fiber bundle.
In 1970, McIntosh and Cisneros studied the dynamical system describing the motion of a
charged particle under the magnetic force due to Dirac’s monopole field of strength —pu
and the square inverse centrifugal potential force besides the Coulomb’s potential force.

The Hamiltonian description for the MIC-Kepler problem is given by Iwai and Uwano as
follows. The MIC-Kepler problem is the reduced Hamiltonian system of the 4-dimensional
conformal Kepler problem by an S! action, if the associated momentum mapping 1) takes

a nonzero fixed value p.
The S* action on R* is defined by a 4 x 4 matrix T'(v):

RS u= (u1, ug, us, ug) — T(V)u € R* v € [0, 47]
where
R(v) O cosy —sing
T(v) = R(v) =
O R(v) sing cosg

The bundle projection 7 is
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z(u) = 2(uyuz + ugug)

L R4 3
m: RE— R where y(u) = 2(—ujug + ugus)

u — xz=(z,y,2)

z(u) = uy? + ug? — uz? —u, 2.
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4
One can easily verify that u? = Zujz = v/22 4+ y2? + 22 = r is invariant under the S*
=1

action. . .
The S! action on T*R* is defined by the lift of the one on R* :

T*R* 5 (u, p) — (T(v)u, T(v)p) € T*R* v € [0,47].

The momentum mapping ¥ is
1
Y(u, p) = 5("“2,01 + u1pg — Usps + U3ps) .

It is easy to see that ¢ is invariant under the S* action.

Let = 1(1) C T;,R? be a subset s.t. ¥~ (1) = {(u, p) € TR | ¥(u, p) = p}.

The conformal Kepler problem is a triple (T*R*, dp A du, H) where

4 4
1 1
dp/\d'u,E E dpj/\de H(u,p)=§—’rﬁ(z}—u—2§ pjz)—
j=1

Jj=1

m and k are positive constants for mass of electron (a charged particle) and Coulomb’s

potential respectively.
The following theorem is established.

Theorem 1 (Iwai-Uwano [6], Theorem 3.1) .
The MIC-Kepler problem is the Hamiltonian system (T*R3, 0, , H,) s.t.
pt ok

2mr?z r

1
H,(z, p) = %(pi +pl+pl)+

o, =dp; Ndx + dpy, Ady + dp, Adz + €,

where Q, stands for Dirac’s monopole field of strength —p

Qu=;—f(xdy/\dz+ydz/\dx+zdx/\dy).

Iwai and Uwano construct the quantum system associated with the MIC-Kepler problem
(T*R3, 0,, H,) as follows [7]. The quantised conformal Kepler problem is defined as
a pair (L?(R*; 4u?du), H) where L?(R*; 4u?du) is the Hilbert space of square integrable

complex-valued functions f on R* and H is the Hamiltonian operator given by
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The quantised conformal Kepler problem is reduced by the S action, the resultant system
is considered as the quantum system associated with the MIC-Kepler problem.
In quantum mechanics, the momentum operator associated with the S! action is defined

by
A= ih 0 0 0 0
= 5 (—u2a—uI ~+ uléa - U4a—u; + U3m) .
To fix a momentum eigenvalue of N amounts to a restriction of the Hilbert space L2(R*; 4u2du)
to an eigenspace of N, this procedure corresponds to fixing the momentum value in the
above-mentioned classical case.
Let U(1) ~ S* act on R* x C to the left in the form

(u, ¢) = (T(V)u, exp(ilv/2)¢) u e R ¢eC

where [ is an arbitrary integer and v ranges from 0 to 47. Then the quotient manifold
denoted by R* x; C is made into a complex line bundle L; = (R* x;C, m, R®), where m, is
the projection, 7; : R4x,;C — R3. The L, is called the complex line bundle associated with
the U(1) bundle 7 : R* — R3, which were treated to globally describe Dirac’s monopole.
If a complex-valued function f satisfies

f(T(v)u) = exp(ilv/2) f (u)

this f is called p; equivariant, and pi-equivariant functions on R* are in one-to-one corre-
spondence with cross sections in L;. Further, pi-equivariant functions f satisfies

Nf=-(n/25f,

thus f turns out to be an eigenfunction of N which corresponds uniquely to a cross section
in L;. In this way, the restriction to the p;-equivariant functions and the introduction
of the complex line bundle L; are the geometric consequence of the conservation of the
angular momentum associated with the U(1) ~ S action.

The restriction of L?(R*; 4u?du) to the pi-equivariant functions can be identified with the
space of square integrable cross sections in L;, denoted by I';. The reduced quantum
system is defined on I'; as the following theorem.

Theorem 2 (Iwai-Uwano [7], Theorem 3.1)

By an S* action, the Hilbert space L*(R*; 4udu) is reduced to the Hilbert space T, | being
an integer, of square integrable cross sections in the complex line bundles L, over R3. The
L, is endowed with the linear connection V whose curvature form gives Dirac’s monopole
field of strength —IR/2. Ifl = 0, the L; becomes a trivial bundle R® x C, and Dirac’s
monopole field vanishes.

Theorem 3 (Iwai-Uwano [7], Theorem 4.1) R
The quantised conformal Kepler problem (L*(R*; 4u’du), H) is reduced to the quantum
system (I';, H;), H; is the Hamiltonian operator given by

A B, (/2?2 k
M= = 2 Vit G 7
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where V; stands for the covariant derivation of 0/0; with respect to the linear connection.
We refer to (Ty, H)) as the quantised MIC-Kepler problem. Ifl = 0, the reduced system
becomes the hydrogen atom.

Note. In fact, Iwai and Uwano choose units where A = 1 and m is set at unity (m = 1).

3 The Green’s function of the conformal Kepler prob-
lem

In this section, we calculate the Green’s function of the conformal Kepler problem for the
purpose of obtaining that of the MIC-Kepler problem in the following section.

Let a real parameter E be the actual energy of the MIC-Kepler problem ( T*R3, o,, H,),
and let us consider the generalized Hamiltonian ®(x, p) defined by [3]

— 1 2 2 2 p: ok
¢(m’p)=r(Hu—E)=r{%(Pm + Py +pz)+2mr2—;—E .

Then we have

1
(@) (u, p) =%(P12 +p2’ + p3” + pa®) — B(u] +uj +uf +uf) — k
4
1 1 k
= {57;: (4722”3‘2) " E} =il - B)
j=1

where  m,: 9~ '(u) — T*R3.

Because of r > 0 the energy hyper surface H, = E is equivalent to the condition
®(x, p) = 0, which is preserved by the equation of motion.

The condition (7}®) (u, p) = 0 gives

4 4
1
%Zpﬂ—wZuf:%. (1)
j=1 =1
Then, if E < 0, the equation (1) is expressed as
1 & 4
%ij2+4[Equj2=4k. ()
i=1 i=1

1
We put 4|E| = §mw2 (m, w > 0). The equation (2) is

4 4
1 1
57; E pj2 + §mw2 E 'LLj2 = 4k . (3)
Jj=1 Jj=1

The left side of (3) is the Hamiltonian of 4-dimensional harmonic oscillator K (u, p) where
mw?u?/2 is its elastic potential consists of the constant m for mass of pendulum and the
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constant w for angular frequency.

Then, (2) can be considered as 4-dim. harmonic oscillator such that its Hamiltonian
(actual energy) equals 4k with mw?/2 = —4FE.

Therefore, we solve this oscillator by means of the Moyal product, especially the *-unitary
evolution function as follows.

Definition 1 For a Hamiltonian H(x, p) on phase space (T*R", dp A dx) where
dp ANdx = dej Adz;, and t € R the following series U, (z, p;t) is called *-unitary
j=1

evolution function, or *-exponential.

N

it 1 (it)? 1 i\ Y ~
In general, the above power series is not a convergent series. Instead, the following dif-
ferential equation is considered to define the x-exponential.

Ui (z, p;0) =1

oU.

—ih ey =HxU,=U,x H

This is the definition after the one adopted in [10][11]. Hereafter the notation e} P

is used to stand for a *-exponential instead of U, (z, p;t) throughout the paper, because
it

eFHEP) expresses the Hamiltonian H(x, p).

$K(x,p)

In order to obtain the *-exponential of n-dimensional harmonic oscillator e where

n

1 1 1 1 .
K@ p) =3 gop+5muis; =53 o+ 5mw? Y~ a3,
j=1 j=1 j=1

the following differential equation :

it it
g K ¥ g

it
—th—el =Kxel =¢e} x K

ot
PN
4 "9K 4 OK?

it
it g
— el

=1 is solved explicitly.
t=0

with the initial condition el

Proposition 1 The x-ezponential of n-dim. harmonic oscillator is given as

w ~n t t 1
e*nK(:I:,P): (cos%t) exp{ih—i}—K(w, p)tan%—} , %—;ﬁ <l+-2->7r,vl€Z.

The next purpose is to construct the Green’s function of 4-dim. harmonic oscillator. Since
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it
its *-exponential function e*"K has singularities on real axis ¢ (¢ > 0), there is an attempt
to shift variable from t to 2z’ =t 414y (v’ # 0) [10]. Then, one can verify the following
differential equation :

F = e gives the following solution.
t=0

izl N\ ~n 2 !
e KNP (cos w_2z_) exp {z E;K(Cc, p) tan %z_}

When n = 4, its Hamiltonian on phase space (T*R*, dp A du) is

with the initial condition e.”

4
1 1
K(u, p) Z p; + —-mwzjg1 uj = %pQ + §mw2u2 .
Suppose y’' > 0, the inverse Fourler—transform of the following *-exponential is calculated,
iz’K<ui + uf p) 4
" ’ AN 2 U wz'
Ex 2 = (cos u_)2_> exp {z %K (u—z_;——i, p) tan ——2——}

where u; and uy denote initial point and final point in R* respectively.

iz’ ui+u
TK(—rL’P)

F! e
-4 ( Uy ) !
wz ,P ) tan & _p u; uf)d
_ —m?w? mw 1 9 2 , '
~ 47m2h? sin (wz') P [ 2 sin (w2') {(uf +uj) cos (') ~ 2uy - s}
= A (ug, wi; ) (4)

The Green’s function of 4-dim. harmonic oscillator is given by the Laplace transform of
K (uy, u;;2') and limiting as follows (See Figure 1).

G(uf’ u‘i; 6) = lim 3 %(Uf, u“ Z,) e—%(e_iyr)z/dzl

(@)—=+0 h
—yh’)ni0 h/ Ji/(uf, u;t+iy)e () g
- fim, [ e i+ )
X exp [ ngm {(u? + u?) cos (wt + iwy') — 2u; - uy}|dt

(5)
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Figure 1: The path of integration ‘ . ‘s
Iy for the Laplace transformation of Figure 2: The configuration space R =

H(ug, u;;2') R® - {0}

4 The Green’s functions of the MIC-Kepler problem

The Green’s function of the MIC-Kepler problem can be obtained by reducing that of the
conformal Kepler problem which corresponds to 4-dim. harmonic oscillator if € = 4k and
mw? = —8F.

. . —2mk?

Assume that £ is not on the eigenvalues F, such that E,, = —
. . R (n+2)
We consider open subsets of R? such that R® = U, U U_ where (See Figure 2)

(n=0,1,2,---).

Uy = {m(r,@,¢)€R3;T>0,0S9<W,0_<_¢<27T}
U.= {m(f,é,q@)eR3;f>0,ogé<7r,og¢3<27r}.
We have two local trivializations, and define two kinds of local coordinate as follows.

T m (Uy) 3 ur— (n(uw), o (u)) = (x(r, 0, ¢), exp(iv/2)) € Uy x S

g v+ 0 . v+
x =rsinfcos¢ U1=\/7_“COS§COST¢ ; u2=\/7_"cos§sm 2¢
y=rsinfsing
= 0 - .0 . v~—
@ =reosf U3=\/7_"Sinicosy2¢ : u4=\/1731n§smy 2¢

where 0<v < drw.

N UZ) 3w (n(u), o_(u)) = (x(7, 6, ¢), exp(i/2)) € U_ x S

b o+¢ - 0. v+é
mzfsinécosJ) u1=\/fsin§cosy—'2-¢ , uzzx/;smgsm 2¢
y=Fsin6~sinq§ ,

— —Fcosf i -3 i 5-¢
? rcosd u3=\/7:“cos§cosy 2¢ , u4=\/7§cos§siny 2¢
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where 0< 0V =v+2¢<4r.
The transition function g_, =7_o7; ' : U, NU_ x S* — U, NU_ x St

is given explicitly as U, NU_ 3 ¢+ g_,(z) = @ € St.
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We calculate the Green’s function of the MIC-Kepler problem with the two coordinates as
follows. We denote by G (z;, x;; E) and G_(y, «;; E) the Green’s functions expressed
in the local coordinate 7, and 7_ respectively. J;(v) is the Bessel function where Z 5 [ =

2u/h (see §2).

Proposition 2 (i) When z;, ; € Uy, the Green’s function of the MIC-Kepler problem

8

Gi(zf, zi; E = —mw?/8)

) dl/,;

A 20,2 o o,
- —_Wylifio / e A=) cosec? (wt + iwy’)
0

X exp [—i%(ri + 7§) cot (wt + iwy') — il - %J

=u} lim G(uf, u;; 4k) exp (zl

x — 4w-0 0

Iy (B By T BTy cosee ot + i) d

. ¢z ¢f 912 + Gf
o_ | Wiy sy

h — =g - .

where 2 an ¢z ¢f 01' = Gf

COS

2
(i) When x;, x5 € U_, then the Green’s function is written as

SZADY
f) dl/z‘
2, .2

1+1 oo
T mAw i (4k—iy)(t+iy’
=‘—E%rﬁﬂyﬂeﬁmwmwwmﬂm+ww

G_(zs, z;; E = —mw?/8)

=u§ lim G(uf, u;; 4k) exp (zl

x — 470 0

X exp [—Z—-—(n + 7f) cot (wt + iwy') + il - @:|

x J (_ﬁg\/f@ - &y + 27; F¢ cosec (wt + iwy')) dt

o sin ¢ — ¢ 2 cos (@; — py) cos b cos b + cos b — b
where 2= tan~? 3 2 5 . 02 52 7 2
i — Qf i f + 0y
2 2 cos L~
| cos cos (¢; — ¢y) cos 5 oS~ — cos —

(iii) When x; , xy EU+O U_, © is also written by 0 =7 — 0 and ¢ = ¢ as

¢z ¢f ) . 07, . Gf Gi—ef
. 5 '2cos(¢z—¢f)sm—2—sm—2—+cos 5

coS ?1——_2;& 2cos (¢; — @) sin %3 sin% + cos b _; i

o | @

= tan




5 Green’s function as a series of cross sections

According to the operator formalism, Green’s function is written by an infinite series
consists of the tensor product of its eigenfunctions. In this section, we show that the
equation (5) can be considered as a series consists of the eigenfunctions of 4-dim. harmonic
oscillator which is related to the conformal Kepler problem. Since the negative-energy
eigenfunctions for the quantised MIC-Kepler problem (I}, I—ifl) can be obtained from those
for the quantised conformal Kepler problem (L?(R*; 4u?du), H) by the reduction (see §2),
we are able to find the Green’s function of the MIC-Kepler problem in a series of its
eigenfunctions. In the end, we also come to find the reduction process executed in § 4 is
the same as restricting L%(R*; 4u?du) to the p;-equivariant functions, or cross sections of
the complex line bundles.

We consider the Fourier series expansion of (4) on ¢ with a fixed ¢/ > 0, where T = 27 /w .

H(wp, wi; ) = K (up, wist+iy) = Y Cue™®/Di= Y7 Cre™ (6)

n=-00 n=—00
1 T/2 ‘ w 7w .
C,= T H(ug, u;; 7+ 1Y) e~ /DT gr = 2 H(uyg, wi; T +iy) e "™ dr
-T/2 2m -7 fw
1 ™ /

t o
v 4 (’uf, u;;—+ iy') e dt! (t' =wr)
w

:% .

We reconstruct the Green’s function of 4-dim. harmonic oscillator in the same way as
executed on (5) as follows. First, the Laplace transform of (6) gives

i S inwt |~ (biy') g UiG0? = € — nwh + iy’ 7
ﬁv/o (Z Cre )e h di=e =& Z (e—nwh)2+(y’)2cn' (7

Next,
1 " t .y —int’ gy
Cp,=— K| up, u;—+ay ) e dt
2w ! w
—m?w?
S
/7‘ P mw  (uf +uF) cos (' +iwy') — 2u; - uy it ®)
—5————exp |—i— - , :
_p SIn?(# + iwy) P 2h sin (¢ + iwy’)
il / F— ]- 2 . .
Weput 2/ =e?, a=e™“¥ and v = (a7 — 1) , the integration of (8) is

a2(2)2 — 1

4/ (Z/)—n—l-l e—2wy’
i e Ve — ()i et — 1

mw 2 9\ (7)? e~ 11 7 e ]
e [% {(ui ) ()2 e2v —1 o ug (2)2 e=2¥' — 1 *

N | .

> +1 1—?
e L (e | L

’Yy 4
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Figure 3: The paths of integration v, (y’ > 0)

For every y' > 0, the path of integration <y,  are anticlockwise circuits around the point
v = —1 (the points v = 0 and v = 1 are exterior to any 7, , see Figure 3). Therefore,
if 1 — n € NU {0}, the integration of (9) is 0 by Cauchy’s theorem. On the other hand,
when 1 —n=-1,-2,-3,---, wechangeninto N=n-2 (N =0,1,2,---).

Then

(o]

e — (N + 2)wh + 3y
Cn, 10
2 (e— (N + 2)wh)?2 + (v)2 N (10)
-m%? ¢
ON=gwm 2
2 1 1— 2
/ aN+2,U—2(1_,U)N+3(1+U) -1- exp[ {(u )%‘“Ui'uf v’U }} dv
Tyt
-mw? i _ L
=_§;r3_h2—§‘/; 16&N+2(1—’U)N 1(1+U) 1-N
(1-v)4 mw [, o o ¥E+1 1—2?
X e P |5 (ui +uf) o0 U Uf— dv.
(11)
Lemma 1
(1—1))4 v 41 1~ 22
1602 (uf + ) v fat? A
=exp[ (u; +uf)}

= 1 1+v )* mw mw ¢ mw |
2D 11112113114!{2(1—1))} Hll( T“l) Hll( 7-;“1) Hi, (\/7%)

L=0 li+la+iz+l4=L

mw mw mw mw mw
x H, (\/?‘5) ng( 7“3)*1’3 (\/T“g)%( "n_“‘*)H“ (\/’n'“ff)



where Iy, la, I3, s € NU {0}, u; = (ul, ud, ud, ul), uy = !, uf, uf, uf)

w? =u? +ui+ud +u?, H(X) is the Hermite polynomial.

Proof. The Mehler’s formula is as follows [2]

—z2- I 1 2 2
v ;_0 S H (x)Hn(y) = —— exP [—-1 — (z°+y* — 2a:yz)J (12)
. : _ 2 d" e
where |z| < 1, Hy,(z) is the Hermite polynomial: H,(z) = (—1)"e® preL

We consider a product of the left side of (12) for zy, z2, 23, Z4, Y1, Y2, Y3, Ya and 2; =
R =23 =24=2z.

©  h >
{ iy 2 ,Hh(xl)Hh(yl)} { S )y (y2)}

11=0 l2=0
© L3 X Sl
e—x%—yg Hls(wS)Hls (y3) xi—yg l——hrl‘l(:c‘l)ﬁ[l4 (y4)
i 21 515 = 2y
3= 4=

Similarly, the right side of (12) yields

( 1 )4 [_ 2 +y? ~ 2$1y12J exp {_ T+ 92— 2$2ygz}

V1= 22 1— 22 1—22
2,2 2 .2
z3 + Y3 — 2T3Y32 Ty + yi — 224Y42
exp [— 1 =2 ] exp [— 1.2

Then, we obtain the following equation.

X ® X0 x© Lt +Ha+ly

_ m2_ 2
ey ZZZZQthHsHQ 151511, lel(xl)Hh(yl) - Hy, (z4)Hi, (ya)

11=012=013=014=0

1 lz]? + |y — 222 -y
e | Y =

We put z; = 4 /%uj and y; = ,/Ehguf (j =1,2,3,4), then (13) is
MW, 5 9] 1 z\L ; mw
oxp {’“h‘(“i ““‘f)} > X NIATATA (5) i, (\/ >H“ ( " )

L=0 l;+l2+l3+ls4=L

. mw
() e (5) - o () . ()

183



184

We multiply this equation by exp [2(u? +u3})] , and find the following one

= 1 2\L mw mw ¢
P [ o5 +“f}z > AR (5) Ay (\/ _h—“l> H“( T“l)
L=0 l1+la+l3+1ls=
mw mw mw
e (5 )H’2 (V) - (y5) e (y5)

_ 1 2 a2 .
(1= ) exP[zh {(”L )T T

1+v d . Then we obtain

1
<1,letzbe1+

Since one can verify that
1 (1-v)* 2241 v*+1 4z
(1-222 1602 * 22—-1 20 ' 22-1 v

With these equations and (14), Lemma 1 is deduced.

-+)is

Because of Lemma 1, the coefficients Cy (N =0,1,2-

~im*w? N+2 N-1 -1-N 2, .2
(11) = _71'_3??2—[,,(1 (1-v)""(1+v) exp[ 2h(u +uf)]

£ oy Ao} ([, ()
mw

L=0 Li+lp+lz+ls= 11”2”3”4‘
() ) ()
—im2w? N+2 L
= —;Zl—mw— exp { (uf + Uf ] 2_;) ll+12§+14 Zl!cllj;ﬂ_l[! (%)
() () )
/ (1-o)V 11 +0v) N <—1—-t£>L dv. (15)
vy 1—-wv

We denote by I the integration of (15) and we have
I= / (1L—o)V 14 0)Nlgy=mi (L=N).
Yo, !

Yy
Proof. In the case of -1 — N + L € NU {0}, the point v = 1 is exterior to v, for any
y' > 0, then I = 0 by Cauchy’s theorem. When -1~ N+L =-1,-2,-3,--- < L< N,
since 7, make a round of the point v = —1 anticlockwise,

1-— N-L-1 oImi (N-L)
I= / ————-—( )N—L+1 dv = m ' d(N_L)(l—'U)N“L_1 :
"y (1+v) (N - L) dv N
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The derivative equals 0 when N — L € N. Then N - L =0,

/ 1=v) _ 2m 1 i
14u o 1—(-1) "7
QED.
The coefficients Cnx (N =0,1,2---) become

m2w2 N+2 1

a
(15) = 2T exp { o (u +uf)] 9N Z m

U1+l +i3+la=N

() () (e )

Therefore, the Laplace transform of (6) is

e —i()? [ers) ¢ — (N +2)th+ Z-y/ m2w2 mw 9 9 (e—wyl)N+2
o= NZ=0 (€ = (N +2)wh)? + (y')* n2h? exp [— 2k (i + uf)} 2N

1 mw mw ¢ mw ¢
2 11!52!13114!H‘1<\/ h )H’I(\/Tul)'”Hl‘l(\/T“‘*)‘

Li+la+l3+la=N
(16)

The Green’s function of 4-dim. harmonic oscillator is reconstructed by the limiting 3/ —
+0 of (16) as follows.

G(uf, u;;¢€)

o0
m2w? 1

MW, 9 o 1
= oz &P |~ (Wi +u) Z e — (N + 2hw Z PYTRIRIRTA
m2h [ 2h } fmee— (N +2)hw bl 2N M5!

() () ()

= T N+2 — Un(ug) Ui (u) (17)

N=0

Wherel1+l2+l3—+—l4=N,

Un(u) = u1+u2 +u§+ui)]

7Th vV 27 ll'lg,l3'l4 I: 2h (
mw mw mw mw

Hh (’ / TUI) le (’ / TUZ) Hl3 (’ / Tw,) H14 (w / TUA) . (18)

Moreover, ¥ y(u) is written as the following lemma.

Lemma 2

mw m\ ™ P (&€, i) ki oka /onka ks mw , - _
Uy(u) = E( %) (&)™ & (@) " exp{ oh (€€+nn)}
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where kl,_kg, k3, k)4 € NU{O} s.t. k‘1 +k‘2+k3+k§4 = N, f = U +iUQ, n= U3+iU4
and P (€€, n7) is the following polynomial.

ki k2 j+s
P&, m) =) > il (———) 0G5 1Ci + kCo - 1, Cs (€6) ™ ()™
j=0 s=0
Proof. Iwai and Uwano proved that [7]
(18) =~ (a1)" (@)" (03)" (a1) T e FErdniead
e 1) )" ()" () T e Hetndndnd (19

where lq, Iy, I3, lg, ki1, ko, k3, ks € NU {0} st. h+lbh+l3+ly=k +ky+ks+ks=N
and be (j =1,2,3,4) is the linear combination of create operators aj+ given as

1 , 1 .
(\/m \/T ) \{éw—w;) , b= ?(aé—w;*)
w Ou; = ﬁ(af +ial) , bf= ﬁ(a; +1iaf).
Then

20 1 3 o & ~agé
(19) =—7-‘-_ \/2k1+k2+k3+k4k1!k2!k3!k;4 (\/af - _\/Z_-EZ) (\/af - :7585) ‘

where € = u; +iug, n = uz + iug s.t. (&, n) # (0, 0) andaz%,
i)When £ =0 and  #0,

A 1 0N® e _ [0 (ki ks) #(0,0)
(\/af‘ﬁég) (ﬁé‘ﬁa_g‘) i “{1 (kv k3) = (0, 0).
ii)When £ #0 and n =0,
1 9\~ L ONY e _ [0 (ko ka) #(0,0)
(‘/a”"ﬁa—n> (ﬁn—ﬁa—ﬁ) € "”—{1 (ks, k) = (0, 0).
iii)When £ # 0 and n # 0, by induction one can prove easily

_19 ek — o) F ek
(Vae - 2 2) oo = (evmFenet 1)

Further, by means of induction calculation with (21), we can show

_ 1 0\ 1 0\" e
(ﬁf'mz) (vae-Jaze)
= (2va)* “ffZa (~19257 (V&)™ G wC; (§) 7 €4 (22)
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Because of (22), when &n # 0, we have

20 1 (2v/) T gmoleétm)

71'— \/2k1+k2+k3+k4 ]{,‘1'k‘2!k‘3!k4

Z] JQkI_J \/a)kr‘?j k1 Cj : k:ng (5) k=g £k3_j

(20) =

kz
3 sl(=1)2470 (V@) T Gy kO ()0
s=0
mw 1 oo k1+ko+ks+ka i -
1 ¢k kz k = _
=_— _ 3 4 +
AR (\/ 3 ) ©"¢ 7 exp[ T3 (&€ 7777)]
k1 k2 j+s
Sl G )77 23
320;]8 ( mw) k1CJ kscj lczcs ks Cs (fé—) (777] ( )

This equation (23) proves to be true in the case of both i) and ii).
QED.

With Lemma 2, we can express ¥y (u) by the polar coordinates defined in §4. First of
the two, we use 7, and we have

mw N 2 (rcos?? , rsin$) AN AN
Uy(u) =" (/1 2 z - R
v =7% ( A VAT (ﬁcosz) (‘/Fsm 2) ©F

exp |:—Z(k‘1 - k’g - k3 -+ k4)§:l exp [—Z(kl -+ kz — k3 — k4)g] .

Iwai and Uwano proved that the restriction of L?(R*; 4u?du) > ¥ (u) to the p;-equivariant
functions is equal to the following condition [7]

ki+ky—ks—kg=—1 (l€Z).

Therefore, the p-equivariant eigenfunction ¥y, (u) is given as

N k1+k ko+ka
mw ([ [mw\ P (rcos?, rsin®f) AN O\ e
\IIN,I (U) ——';r—h— ( '—i—i—> k11k2|k3'k’4 (\/;:COS 5) \/FSII’I 5 e 2

exp [—z’(kl —hp— ks + m)%} exp [z‘l g] .

Furthermore, since pj-equivariant functions ¥y ;(u) are in one-to-one correspondence
with cross sections in L; , we may introduce Uy(x) as the cross sections defined by [9]

lIIN(C[:) = ge"il”/Q\I}N,l(u). (24)
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We can reconstruct the Green’s function of the MIC-Kepler problem with a series of its

eigenfunctions given by (24).

Gi(zy, @i E = —mw?/8)

= 1
= Un(zs) Un(ai)

4k — (N + 2)hw
= 1 e—ngw(Ti-{-’rf)

Ne 4k — (N + 2)hw

m2w? fmw\N 1 0; 0, k1+ks 6, ka+ka

e (7) PAPATAPN (V iy e08 5 €8 E) ( TiTy sin 3 sin -2—)

0; . o0; 6 AN ,
P (7"1' COS2_2_ , Ti Sln2_2_> X ('r‘f COSZ—QL , TF Sln2—2j-) el(kl—kz—k3+k4)(¢1—¢f)/2 ) (25)

Similarly, we use 7_ and we have

mw o\ Y P (fsinz-g-, Fcos2§) v ] k1tks /i g ko4-kq i
1V} —_ —_ F Qi — = e —ZeF
~N(u) s (1/ 5 ’ UATAA 7 sin 5 T cos 5 e~ h

exp {z’(kl +3ky — k3 — 31@)%} exp [—i(/ﬁ + k2 — k3 — k4)';‘J ,

mw e N g (Fsinzg, Fcoszg) Y i ki+ks s i ka+ks
1} = —_ rsin — r — -
N,z('u) ry (\/ 3 ’ F_—kl!kzlkg!kd rsm2 r0052 e 2

exp Z(k‘l + 3/62 - kg e 3]64)%} exp {Zl g] s

G_(z;, i; E = —mw?/8)

= 1
= Z \I’N(:I:f) ‘Il}‘v(a:,)
4= 4k — (N + 2)fw
=3 ! o= B (ety)
£t 4k — (N + 2)hw

m2w? fmw\N 1 6, 6 frhs 6, 6 ek
(—) (,/F,'Ffsin—;sin Ef) (\/ﬁ-ffcosécos ?f)

k1lkolkslk,!

P (F,- sinz—él, 7 0032%) P (ff sin2%f, s cos292—f> eTikit3ka—ks=8ka)($i=27)/2  (26)



By the other reduction process which is carried out in §4, the same results as (25) and
(26) are obtained from (17) as follows.
Vf) dI/Z'
— Uf) dVi

) . % ) . )
=up dm . {szo 4k — (N + 2)hw ‘IjN(uf)\I’N(ul)} P (Zl 2

> 1
= Z e~ 3 (ritry)
4k — (N + 2)Fw

m2w2 mw\ N 1 9, 6f ki+ks ‘ 62 ‘ g_f k2+ks
(—) S — (\/Fﬁ?cosécos ?2—) (w/rirf SIH§SIH ?>

Gi(zf, T E = —mw?/8)
X -
=u} lim /0 G(uy, u;;4k) exp (z’l Z

x —+4r—0

47Th2 7} klle'k3'k4’
P r;cos*= 20s , 7; sin® 9— P ( r¢cos? e—f , r¢sin? & ellk1—ha—ka+ka)(¢i=07)/2
P g T F g TP ’

G_(zf, i} E = —mw?/8)
=uf, lim G(’u,f, u;; 4k) exp ( 4 ; Vf) dv;

x —+47—0 0
—2 tm S ! W(uy) Ui ( B0 o,
~ Y xS Ng)%—(mz)m W) Wivle) pexp (417 Z
(o o]
-y e B )
4k — N+2)hu
~ ~ k1+ks ~ ~ ka+kq
m2w? rmw\N 1 — . 0, . 0 — b; O
(%) m(vfza VT sy eosy

drh? \ h
2|5 sm?é’: 7. cos? Gf e~ ilk1+3k2—k3—3ka)($:i—47)/2
PP

wlc_m

3
P (n sm2§ 7; cos?

This fact suggests that the reduction process executed in §4 compares with the other
process which is founded on the concept of restricting the Hilbert space L?(R*; 4udu) to
the Hilbert space I'; of square integrable cross sections in the complex line bundles L;

over R3.
Finally, Proposition 2 is rewrited as follows.

189
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Proposition 3 (i) When x;, xy € U,, the Green’s function of the MIC-Kepler problem
18
G+(mf, a:,-;E = —mw?/8)

~ B (ritrs) gilki—ka—ks+ka)(¢i—¢5)/2

_z4k (N+2)ﬁwe

m2w2 mw\ N 1 91' gf ki+k3 ) 02‘ - f ka+ka
Anh2 (——h——> m ( T f COS ‘5 COS 5) (\/T,'Tf sin -2— sin —2->

ki k2 —h jts 29,‘ = . 291' -
Z Z]'S' (%) lej . k3Cj . szs . k4Cs (7‘1' COS E) (Ti s —2-)

3=0 s=0

k1 k2 _ I+sl 9 _j/ 9 —g
ZZ]"S” ( ) le: ksC ’ szs' : k4CS/ (Tf C0525f> (T‘f sm2—2i) .

j'=0¢'=0

(i) When z;, ®f € U_, then the Green’s function is written as

G_(zf, zi; E = —mw?/8)

N 1

=Nz=:4k—(1v+2)m;

e~ Tn (Fitis) g—ilka +3kz—k3—3k4)(¢i~¢y)/2

~ ~

2 .2

N 1 9 0 k1+k3 é é' k2+k4
m w mw ~—= . Y . Uy =~ = ] f
o () i (V) (Vi)
ki k2 j+s é -J é —s
Z Z ls! ( ) 1G5 - ksCs * 12Cs - 1, Cs (ﬁ- sinzé) (r cos25’>

j=0 s=0
7

k1 k2 +s/ é, —j’ 9 —s
Z Z]"s" ( ) k:Ci  ksCr + k,Cs + 1, Cit ('Ff sin2§f-) (rf cos —2—f-) )

7'=0s'=0

(iii) When x;, x; € Uy N U-, G_(xs, z:; E) is also written by r =7, 0 = 7 — 0 and
¢=¢ as

G_(zs, @i B) = ¢! @90 G, (af, @ E)
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