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OPERATOR FUNCTIONS ON CHAOTIC ORDER
INVOLVING ORDER PRESERVING OPERATOR INEQUALITIES
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The fourth anniversary of Professor Masahiro Nakamura's passing

An operator T is said to be positive (denoted by T > 0) if (Tx.x) > 0 for all vectors .r
in a Hilbert space, and T is said to be strictly positive (denoted by T > 0) if T is positive
and invertible. Let log A > log B and ry, 79, ....1, 2 0 and any fired § > 0, and
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Then the following inequalities (i). (ii) and (iii) hold:
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(iii) §nlpn.1rn) is a decreasing function of both 1, > 0 and p, > %-”——’

where C4 p[n] and q[n] are defined as follows:

CA,B[n]zA%‘{A SELLAF{AF (AR B AT )R AT }m4z...]vn—1,4""-+‘}

and
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We remark that (ii) can be considered as “a satellite inequality to chaotic order”

This paper is early anouncement of the results in [19].



&1  Introduction

An operator T is said to he positive (denoted by T > 0) if (T, ) > 0 for all vectors
in a Hilbert space. and T is said to be strictly positive (denoted by T > 0) if T is positive
and invertible.

Theorem LH (Lowner-Heinz inequality. denoted by LH briefly).

If A> B >0 holds, then A* > B® for any a € [0.1]. (LH)

This inequality LH was originally proved in [28] and then in [22]. Many nice proofs of
LH are known. We mention [29] and [3]. Although LH asserts that .4 > B > 0 ensures
A% > B® for any o € [0,1], unfortunately A > B does not always hold for o > 1. The
following result has been ohtained from this point of view.

Theorem A.
If A > B > 0. then for each r > 0,

(i)  (BEAPB%)7 > (BiBrB%)
and
(i)  (ATAPAL)E > (AFBPAR)S @y

/‘

o . -

hold forp >0 and ¢ > 1 with (1 +7r)g > p+r. (0,-r)

Fig. 1. Domain on p, ¢. r for Th. A

The original proof of Theorem A is shown in [10]. an elementary one-page proof is in

[11] and alternative ones are in [4], [25]. It is shown in [30] that the conditions p, ¢ and r
in FIGURE 1 are best possible.

Theorem B (e.g.,[12][6][25]{26](20]). Let A > B > 0 with A > 0. p > 1 and
r > 0.

Lbr -

Gaplpr) = AT (ASBPAR)wr AT

i a decreasing function of p and r, and G s 4p,r) > G4 g[p.r] holds. that is.

AT > (AEBPAR)FF holds forp > 1 andr 2 0. (L1)
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We write A > B if log /1 > log B for A. B > (), which is called the chaotic order.

Theorem C. For A. B > 0, the following (i) and (ii) hold:
(1) A > B holds if and only if A" > (A%'B"A'ﬁ)ﬁ—' forp.r 2 0.
(ii) A > B holds if and only if for any fivred § > 0,

Fap(p.r) = AT (AR Br AR AT

is a decreasing function of p > & and r > 0.

(i) in Theorem C is shown in [12][6] and an excellent proof in [32] and a proof in the case
p =1 in [1]. and (ii) in [12][6] and etc.

Lemma D [13]. Let X be a positive invertible operator and Y be an invertible

operator. For any real number A,

(YXY*)P = Y X3(XY Y X)Xy,

We state the following result on the chaotic order which inspired us.

Theorem FKN-2 [9]. If A > B for A.B > 0. then
A e (A',B7) < A1 BP < B

(p=t)str

holds forp>1. s> 1, r>20 and t L0.

We shall discuss further extensions of Theorem B. Theorem C and Theorem FIXN-2.

The purpose of this paper is to emphasize that the chaotic order A > B is sometimes
more convenient and more useful than the usual order A > B > 0 for discussing some
order preserving operator inequalities.

Related results in this paper are discussed in [5],(7].(8],[14],[15],[16].[21],[31],{33] and etc.

§2  Definitions of CA,B[n;p.,pg,...p,.L_l,p,,|rl.r2....,r,,_l.rn]. (denoted by (CA_B[TL]
or C{n] briefly sometime) and q[n;pl.pg,...7),,_1,1),,|-r1,7'2. ..,r,,_l.-rn] (denoted by q[n]
briefly.)

Let A, B>0, p.pa....pn 2 0 and vy, 73, ...15 2> 0 for a natural number n.
Let Ca.B[15 D1, P2y -y Pty P71, 725 s T, T be defined by
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[n' P1, p2, "ap'n--l)pn’rl’ T2y -0y Th—1, rrl,]
. 1 ” ™ I 1 I r hn .
= A—{A T AT{AT (A Br At AT AR Jreane |
)

Denote C 4 p [n; P1, P2, --,Pn—l,])nirl, Ty ooy Th—1, 7‘"] by CA‘B[TI,] brieflv.
For examples,
(CA,B[l] = AT BM A% and CA.B['Z] =A% (A%BPIA%)W‘ 5
and
Capld] = A% [A"-%{A%(A F Br AT P A% ) AS ]“A%*.

Particularly put A= Bin C4 B[n] in (2.1). Then

Ca.a[7 1, D2, -, P, Pul T, T2y ooy T, )
= A%L{A-“[ CAR{AF (AT AP AT AT AR e anP T A 2
= Al-A@rtropetralps+e i patr,. (2.3)

Next let q [n;pl,pg, ..,])n_l,pn|7"1, 79y eey Te1,7? ] be defined by

q [n:,plypf?) -y Pn-1, pn[Tl) T2y .y Tn—1, 7'7}]

= the exponential power of A in (2.3)

= [ ----- {(P1 + Tl)pr_) + 7‘2}])3 + ... rn_1]pn + 7. (2.4)

q [’I’L; P1, P25 -+ Pn—1, ]3n|7“1> T2, Tn—1, rn:, denoted by qb)lap% -y Pn~1, pn]
or denoted by q['rl, Ty ooy =1, 'I‘,I] for simplicity or sometimes denoted by q[n] briefly.

For examples. q[1] = p; + 77 and q[2] = (p1 + 7m1)p2 + 1o
and
al4] = [{(p1 + r1)pa + ro}ps + rslps + 1o
For the sake of convenience, we define
Cap[0] = B and g[0] =1 (2.5)

and these definitions in (2.5) may be reasonable by (2.1) and (2.4).

Lemma 2.1. For A, B > 0 and any natural number n. the following (i) and (ii)
hold.
(i) CA,B[TL] = -A%LCA.B[TL — 1];),,,/4%&.

(ii) qln] = q[n — 1p, + 7n.
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We state two examples using these notations of C 4 g[n] and g[n] for reader’s convenience.
AT > (AEBPAS)TF <= A" > C,4 p[1]am.
r ry s . 1yr
AT > (AFBPAR) R =AM > C, 1)

Remark 2.1. We remark that quite similar definitions to C4 g[n] and q[n] are given in
[18] and related results are discussed in [18], [23]. [24]. [35] and etc.

§3 Basic results associated with C z[n] and g[n]

Theorem 3.1. Let A > B and ri.r9,....15 = 0 for a nutural number n. Then

the following inequality holds.

Artretne = Cu ]S > C ] S )

for pr.pa. ... pn satisfying
P 2 '—‘%_—r]—"'—l forj=1,2,...n (ro=0andq0]=1),
(3.2)
that is.
p ! . 142 y ryrat A r, -
M 20,2250 P32 G Pr 2 e

where (CA_. B[n] is defined in (2.1) and q[n] is defined in (2.4).

Corollary 3.2. Let A> B and ry.ry.r3 2 0. Then

rp+-rod-r.

(i) Aritradrs > {.4%1[,4122(..4%" Bl’nA%")pzA'—I}]pa ‘4-?} T
]),OZ(ZS jb?‘ 1)2 2 # (l’l”d [)3 2 U’“':‘Tl‘;:’;"‘f? :
T r r rm -F 1
(ll) Aritrz > {‘4';2(A'_}B1)1 -’4’-"‘-)})2‘4?}(—?\—*{{7%4'—"2
holds for p, > 0 and p; > —2—.
p 4 pir+n

Theorem 3.3. Let A> B> 0 and ri,ry,...,r > 0 for a natural number n. Then the

Sfollowing inequality holds,

i I+ry+r9...4rn l+ry+ro..+rm
A1+r‘1+r-z...+7n — CA,A[n] a[n] 2 CA,B [n] ain] (36)
for pi.pa. ..., pn satisfying
P = l—t"—’:-"ﬁ—”*'——”—‘—‘ forj=1.2,..,n  (719=0and g[0] = 1), (3.7)
that is,
. ) 141 . T4+r +r ; 14+ri+rod...+rp—)
P21 P22 S5 D3 2 Gt P 2 Tt



Corollary 3.4 Let A> B >0 and ry,ro.13 > 0. Then

1471412417

(i) AtFrradrs > {AL}[AL_‘)‘(A% B’”A%)p'-’ ‘A]m 4 5 } (1 Fr et r2lpg+rs |
N 11y ] 1+r1tre

holds for py > 1, py > P and py > EE

i3 L ol T

(11) 41+r1+:z > {4 2 A"]'Bm A—l)pzA 3 }(p, Fri)pgtra

holds for py > 1 and py > ==L p +“

Remark 3.2. We remark that Theorem 3.3 is a parallel result to Theorem 3.1 and also
Corollary 3.4 is a parallel one to Corollary 3.2, and Theorem 3.1 is usually obtained from

Theorem 3.3 by applying Uchiyama’s nice technique [32] after proving Theorem 3.3.

Although many results on the chaotic order (A > B ) have been derived from the corre-
sponding results on the usual order (A > B > 0) by applying Uchiyama’s nice method, we
shall show Corollary 5.4 on the usual order (A > B > 0), which is a further extension of
Theorem 3.3, by using the corresponding result Corollary 5.2 on the chaotic order (A > B)
at the end of §5.

84 Monotonicity property on operator functions

= Stritratotrg  op
S,‘([)L” 7"") = ‘4_2LC.-1,B[]‘:]—~‘T][-EI-_£44.—2-&

Theorem 4.1. Let A> B and ry.19....,1, > 0 for ¢ natural number n. For any
fized 6 > 0, let py.p2,.... pp be satisfied by

pi > —+"—+(;[Ii']—]+iL-— forj=1.2,...,n, (4.1)
that is,
, 5+ , 6+7'1+I'2+...+!‘k_ ’ O+r Frod...41rn -
p1 =96, p2 > e 2 ———q—[;,_—”—‘,----, Pn 2 “"l—q['n—_—ﬁ—"“"
The operator function §y(pe, i) for any natural number k such that 1 < k < n is
defined by
-t S4ry+rot... g —_r
Bulpur) = AFCaplk] ™ o AT (4.2)
Then the following inequality holds:
The |
AT i Do 7o) AT > Fi(pa i) ( So(po.r0) = B)
(4.3)

for every natural number k such that 1 < k < n.

Remark 4.1. We shall give an alternative proof of Theorem 4.1 in Remark 6.1 via

Theorem 6.1 at the end of §6.
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85 Order preserving operator inequalities via operator functions in §4
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We shall give order preserving operator inequalities as an application of Theorem 4.1.

Theorem 5.1. Let A > B and ry,79.....1, = 0 for a natural number n.

Then. the following inequalities hold for any fized § > 0:
—r r ) 3 S4-r —r
B > AT (A7 B AT ) AT
—(r y . . . O-bry+ro oy
/ —‘(L"gi"')' 2 I 1 LnL p2 I_;“) (i +ripa+m2 : __L'_lz_"_'ﬁ_)
Z . 2{A2 2 s

ry phratrs

={rptmt...+rn) Strytrot. Frn —(ry+ra+...+rn)
> A P a5l aln A 7 (5.1)

for pi.pa, ..., pn satisfying

P> "_t’_ﬁﬁr_l for3=1.2,..,n, (4.1)
that is.
) S+r N S+ri+rat..+rp— A+ry+ret... 4y, -
m > d. P2 > LrL Pk > _—I_L‘l—[gl\-rll# Pn > —I-E[Zn_—l-]————l

pr+ry

where CA, B[n] is defined in (2.1) and q[n] is defined in (2.4).

> AT AR AR (4% B AT ) AR P A ) T T 4 TR

Corollary 5.2. Let A> B and ry,7a....,7, > 0 for a natural number n. Then

the following (i) and (ii) hold.
i B> A%L(A%LBIHA'—})%A‘_:L
> A_‘("Lz-o ra) {‘4%2( Lli’zLBl’lA P1 4 }WA

—(rytro+ry) _‘ trytrptry —(rl+r +r3)
> A__l__ai.d"s_{A [,\ (A i+ BP1 4 3 )pzA ]PsA }I(r1+r1)p7+1z}p;+ls A 2

—(rytre) l—l)

=(ry f—r=+ krn) 1try+rok...+rn —(ry+ro+...+rn) .
4 Ca.sln) afa] A E (5.2)

v

<

holds for py.pa. ..., pn satisfying (3.7), that is,

’ L+ry ) 1411+ . L+ry+rat...+rp-1
4l 21, P2 2 p1+r s 2 (pr+r))pa+ra 2" s Pn 2 g[n—1] :

(ii) (5.2) holds for pr.pa2s....pn 2 1.
where C 4. B[n] is defined in (2.1) and q[n] is defined in (2.4).




Corollary 5 3 LP A> B andry,ra, ...y > 0 for a natural number n. Then
[ > AT (A%, 12)#7744
> AT AR (AT B AT A }WA
> AT AR (AT (AT Br AT AR | AT }mqw,fpilf;ﬁm,, ATt

+r)

(5.3)

holds for py, pa, ... pn satisfy'z}nq (3.2), that is,
ri+rs n ritretdra o
P1+71 Ps 2 itridpadrg o Pn = q[n-1]

pr =0, p2 2>

Corollary 5.4. Let A > B > 0 and .79, ...ty > 0 for a natural number n.

Then.
-r 147 —
BZA_.)'L(A [713142);71—_,;%‘4_#

A>
. I+1! ) - ”
2 ‘4_(_”2_*'1{‘4%-(/4 B[;J 1 )p-, 4 2 }(,,]4,,.1)’),4_,.‘ A_.(_’Li_'_‘l
=(r1+ra4-r3) . . Titrotry ~{r)1+rptry)
> A 52 d {_,4’_-21[141‘;?(142213771/1 )Pl 4 ]PiA }{(m‘r'l)vz”z}nﬁ'a A 5=
=(ritraot.. . 4rn) 14ri4ro4...4+rp —(r']+rq-(-m+r,)
> A Z - CA_B['IL] aln] A 2 ; (5.4)

holds for py, pa.....pn satisfying (3.7), that is,

A4y 14114 1+’I‘1+7"2+-~-+1'11_1
pzlpz pi+re? ps 2 (py+r)pa+ra Pr 2 g[n—1) ?

where C 4 [n] is defined in (2.1) and q[n] is defined in (2.4).

Remark 5.1. Corollary 5.2 is a further extension of [25], [17], [20]. [34] and Theorem
FIKN-2 in [9]. Corollary 5.3 is more precise estimation than Corollary 3.2.

We would like to emphasize that Corollary 5.4 is a further extension of Theorem 3.8
since (5.4) easily implies (3.6) in Theorem 3.8 and moreover the essential part of (5.4) in
Corollary 5.4 on the usual order (A > B > 0) is derived from Corollary 5.2 on the chaotic

order (A > B).
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66 Further extensions of Theorem B and Theorem C
Further extensions of Theorem B and Theorem C are given by using the operator function

— dtry4rptim )
Sn (pm Tn) = A—EHCA.B[n] q’" lz4—'3-u in &4.

Theorem 6.1. Let A> B and ry.19.....,7, 2> 0 for a natural number n. For any
fized & > 0. let py.pas ... pn be sutisfied by

. e +rot. 4T o= 9 |
Pi 2 T for j=1.2,....n, (4.1)
that is.
) S+r O+ri+rat. .. +re—) O+ri+ra+..+1rn—1
P26, p2 2 Tnfer’ P 2 k-1 e Pn 2 B DS
Then
=rn d+ry+ro+...+rn —ry ,
Fn(Pn, 1) = A2 Cypln] afrl AT (6.1)
is « decreasing function of both r,, > 0 and p,, which satisfies
s gty ,
P 2 Sty (6.2)
Corollary 6.2. Let A>> B and ry.r9.....T7n 2 0 and also p1,p2,....pn 2 1 for a

natural number n. Then
141y brot...41rp

Sultn- 7"71) = «4——5&C.L\,B["] an AT (6.1,)

is a decreasing function of both r,, > 0 and p, > 1.

Remark 6.1. There is an alternative proof of Theorem 4.1 via Theorem 6.1.

Remark 6.2. Theorem 6.1 is a further extensions of (ii) in Theorem C. In fact. (ii)
of Theorem C is just Theorem 6.1 in the case n. = 1. Moreover Theoremn 6.1 is a further
extension of Theorem B since the hypothesis A > B in Theorem 6.1 is weaker than the
hypothesis A > B > 0 in Theoremn B.
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