On local connectivity of boundaries of CAT(0) spaces

静岡大学理学部

保坂 哲也 (Tetsuya Hosaka)

We introduce (non-)local connectivity of boundaries of CAT(0) spaces and hyperbolic CAT(0) spaces.

Definitions and basic properties of CAT(0) spaces, hyperbolic spaces and their boundaries are found in [3], [10] and [11].

A metric space X is said to be proper if every closed metric ball is compact. A group G is called a CAT(0) group if G acts geometrically (i.e. properly and cocompactly by isometries) on some CAT(0) space. It is known that a CAT(0) space on which a CAT(0) group acts geometrically is proper. A boundary ∂X of a CAT(0) space X on which a CAT(0) group G acts geometrically is called a boundary of the CAT(0) group G. It is known that in general a CAT(0) group G does not determine its boundary [5]. If G is a hyperbolic group then G determines its boundary up to homeomorphisms (cf. [3], [10] and [11]).

The following problems are open.

Problem. When is a boundary of a CAT(0) group (non-)locally connected?

Problem. If G is a hyperbolic CAT(0) group whose boundary is connected then is the boundary locally connected?

Problem. For a CAT(0) group G and CAT(0) spaces X and Y on which G acts geometrically, is it the case that the boundary ∂X is locally connected if and only if the boundary ∂Y is locally connected?

There is a research on (local) *n*-connectivity of boundaries of hyperbolic Coxeter groups by A. N. Dranishnikov in [8], and there are some research on (non-)local connectivity of boundaries of CAT(0) groups and Coxeter groups by M. Mihalik, K. Ruane and S. Tschantz in [17] and [18]. The purpose of this paper is to introduce sufficient conditions of

- (i) a hyperbolic CAT(0) group whose boundary is locally *n*-connected by using reflections, and
- (ii) a CAT(0) space whose boundary is non-locally connected by using a hyperbolic isometry and a reflection.

Local n-connectivity of boundaries of hyperbolic CAT(0) spaces

We define a *reflection* of a geodesic space as follows: An isometry r of a geodesic space X is called a *reflection* of X, if

- (1) r^2 is the identity of X,
- (2) $X \setminus F_r$ has exactly two convex connected components X_r^+ and X_r^- and (3) $rX_r^+ = X_r^-$,

where F_r is the fixed-points set of r. We note that "reflections" in this paper need not satisfy the condition (4) Int $F_r = \emptyset$ in [15].

Theorem 1. Suppose that a group G acts geometrically (i.e. properly and cocompactly by isometries) on a hyperbolic CAT(0) space X. If

- (1) there exist some reflections $r_1, \ldots, r_n \in G$ of X such that $G = \langle r_1, \ldots, r_n \rangle$ and
- (2) the boundary ∂X of X is n-connected,

then the boundary ∂X is locally n-connected.

Corollary 2. Suppose that a hyperbolic Coxeter group W acts geometrically on a hyperbolic CAT(0) space X. If the boundary ∂X of X is n-connected then ∂X is locally n-connected.

From [8], we also obtain a corollary.

Corollary 3. Let (W, S) be a hyperbolic Coxeter system and let L = L(W, S) be the nerve of the Coxeter system (W, S). For any hyperbolic CAT(0) space X on which the hyperbolic Coxeter group W acts geometrically, the following statements are equivalent:

- (i) L is connected and $L \sigma$ is connected for any simplex σ of L,
- (ii) $\check{H}^0(\partial X) = 0$ where \check{H}^* denote the reduced \check{C} ech cohomology,

- (iii) the boundary ∂X of X is connected, and
- (iv) the boundary ∂X of X is locally connected.

Here the following problems are open.

Problem. If G is a hyperbolic CAT(0) group whose boundary is n-connected then is the boundary locally n-connected?

Problem. For a non-elementary hyperbolic Coxeter group W on which acts geometrically on a CAT(0) space X, is it the case that the following statements are equivalent?

- (i) $H^i(\partial X) = 0$ for any $0 \le i \le n$,
- (ii) L is n-connected and $L \sigma$ is n-connected for any simplex σ of L,
- (iii) the boundary ∂X of X is *n*-connected, and
- (iv) the boundary ∂X of X is locally *n*-connected.

Non-local connectivity of boundaries of CAT(0) spaces

Let X be a proper CAT(0) space and let g be an isometry of X. The translation length of g is the number $|g| := \inf\{d(x, gx) | x \in X\}$, and the minimal set of g is defined as $\operatorname{Min}(g) = \{x \in X | d(x, gx) = |g|\}$. An isometry g of X is said to be hyperbolic, if $\operatorname{Min}(g) \neq \emptyset$ and |g| > 0 (cf. [3, p.229]). For a hyperbolic isometry g of a proper CAT(0) space X, g^{∞} is the limit point of the boundary ∂X to which the sequence $\{g^i x_0\}_i$ converges, where x_0 is a point of X. Here we note that the limit point g^{∞} is not depend on the point x_0 .

A CAT(0) space X is said to be almost geodesically complete, if there exists a constant M > 0 such that for each pair of points $x, y \in X$, there is a geodesic ray $\zeta : [0, \infty) \to X$ such that $\zeta(0) = x$ and ζ passes within M of y. In [9, Corollary 3], R. Geoghegan and P. Ontaneda have proved that every non-compact cocompact proper CAT(0) space is almost geodesically complete. Here a CAT(0) space X is said to be *cocompact*, if some group acts cocompactly by isometries on X.

On non-local connectivity of CAT(0) spaces, we obtained the following.

Theorem 4. Let X be a proper and almost geodesically complete CAT(0) space, let g be a hyperbolic isometry of X and let r be a reflection of X. If (1) $g^{\infty} \notin \partial F_r$,

- (2) $g(\partial F_r) \subset \partial F_r$ and
- (3) $\operatorname{Min}(g) \cap F_r = \emptyset$,

then the boundary ∂X of X is non-locally connected.

Here we note that the action of the group G on the CAT(0) space X in Theorem 4 need not be proper and cocompact.

The conditions in Theorem 4 are rather technical. We introduce some remarks.

First, every CAT(0) space on which some group acts geometrically (i.e. properly and cocompactly by isometries) is proper ([3, p.132]) and *almost geodesically* complete ([9], [20]).

Also, in [22], Ruane has proved that $\partial \operatorname{Min}(g)$ is the fixed-points set of g in ∂X , i.e.,

$$\partial \operatorname{Min}(g) = \{ \alpha \in \partial X \, | \, g\alpha = \alpha \}.$$

Hence, for example, if $\partial F_r \subset \partial \operatorname{Min}(g)$ then $g(\partial F_r) = \partial F_r$ and the condition (2) in Theorem 4 holds.

As an example of CAT(0) spaces on which some reflections act, there is the Davis complex of a Coxeter system. A Coxeter system (W, S) determines the Davis complex $\Sigma(W, S)$ which is a CAT(0) space ([6], [19]). Then the Coxeter group W acts geometrically on $\Sigma(W, S)$ and each $s \in S$ is a reflection of $\Sigma(W, S)$.

References

- W. Ballmann and M. Brin, Orbihedra of nonpositive curvature, Inst. Hautes Études Sci. Publ. Math. 82 (1995), 169–209.
- [2] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of Nonpositive Curvature, Progr. Math. vol. 61, Birkhäuser, Boston MA, 1985.
- [3] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Springer-Verlag, Berlin, 1999.
- [4] P. Caprace and K. Fujiwara, Rank-one isometries of buildings and quasi-morphisms of Kac-Moody groups, Geom. Funct. Anal. 19 (2010), 1296-1319.
- [5] C. B. Croke and B. Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000), 549–556.
- [6] M. W. Davis, Nonpositive curvature and reflection groups, in Handbook of geometric topology (Edited by R. J. Daverman and R. B. Sher), pp. 373-422, North-Holland, Amsterdam, 2002.
- [7] M. W. Davis, The cohomology of a Coxeter group with group ring coefficients, Duke Math. J. 91 (no.2) (1998), 297-314.
- [8] A. N. Dranishnikov, On boundaries of hyperbolic Coxeter groups, Topology Appl. 110 (2001), 29-38.

- [9] R. Geoghegan and P. Ontaneda, Boundaries of cocompact proper CAT(0) spaces, Topology 46 (2007), 129-137.
- [10] E. Ghys and P. de la Harpe (ed), Sur les Groups Hyperboliques d'apres Mikhael Gromov, Progr. Math. vol. 83, Birkhäuser, Boston MA, 1990.
- [11] M. Gromov, Hyperbolic groups, in Essays in group theory (Edited by S. M. Gersten), pp. 75-263, M.S.R.I. Publ. 8, 1987.
- [12] U. Hamenstädt, Rank-one isometries of proper CAT(0)-spaces, Contemp. Math. 501 (2009), 43-59.
- [13] T. Hosaka, On the cohomology of Coxeter groups, J. Pure Appl. Algebra 162 (2001), 291-301.
- [14] T. Hosaka, The interior of the limit set of groups, Houston J. Math. 30 (2004), 705-721.
- [15] T. Hosaka, Reflection groups of geodesic spaces and Coxeter groups, Topology Appl. 153 (2006), 1860–1866.
- [16] T. Hosaka, On boundaries of Coxeter groups and topological fractal structures, preprint.
- [17] M. Mihalik and K. Ruane, CAT(0) groups with non-locally connected boundary, J. London Math. Soc. (2) 60 (1999), 757–770.
- [18] M. Mihalik, K. Ruane and S. Tschantz, Local connectivity of right-angled Coxeter group boundaries, J. Group Theory 10 (2007), 531-560.
- [19] G. Moussong, Hyperbolic Coxeter groups, Ph.D. thesis, The Ohio State University, 1988.
- [20] P. Ontaneda, Cocompact CAT(0) spaces are almost geodesically complete, Topology 44 (2005), 47-62.
- [21] P. Papasoglu and E. L. Swenson, Boundaries and JSJ decompositions of CAT(0)-groups, Geom. Funct. Analy. 19 (2009), 558-590.
- [22] K. Ruane, Dynamics of the action of a CAT(0) groups on the boundary, Geom. Dedicata 84 (2001), 81–99.
- [23] E. L. Swenson, A cut point theorem for CAT(0) groups, J. Differential Geom. 53 (1999), 327-358.