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Abstract

Hagen-Poiseuille and thermal transpiration flows of a highly rarefied gas through a
long circular pipe are investigated on the basis of the linearized Boltzmann equation for
hard-sphere molecules with the diffuse reflection condition. The net mass flows of the both
problems in the highly rarefied regime are obtained by an iterative approximation method
with an explicit convergence estimate. The singular behavior of the velocity distribution
functions in that regime is also clarified.

1 Introduction

A flow induced by a pressure gradient (Poiseuille flow) and a flow induced by a temperature
gradient (thermal transpiration, see, e.g., Ref. [9]) are classical and fundamental problems
of rarefied gas dynamics, and have been extensively studied by many researchers (see, e.g.,
Refs. [1,3, 5-9] and the references therein).

In the present study, we shall focus on Hagen-Poiseuille and thermal transpiration
flows of a highly rarefied gas through a circular pipe, for the purpose of obtaining the
accurate data of the net mass flows. In the highly rarefied regime, an accurate analysis
of these flows on the basis of the (linearized) Boltzmann equation is a hard task because
of the singular behavior of the velocity distribution functions, in addition to the complex
collision operator of the equation. In order to overcome these difficulties, we use an
iterative approximation method with an explicit convergence estimate, which was recently
developed by the authors in Ref. [11] with the aid of the mathematical estimates given by
Chen et al. [2]. Main advantage of this method is that we can start the iterative process
from an initial guess with an explicit form that contains the majority of the singularity
in the velocity distribution functions. Moreover, the method gives an estimate on the
required number of iterations to obtain the practical converged solution and the behavior
of the velocity distribution function at each stage of iteration.

The paper is organized as follows. In section 2, we formulate the problems. In section 3,
we present an iterative approximation method and its explicit convergence estimate at
each stage of iteration in the highly rarefied regime. Also, we clarify the behavior of
the velocity distribution functions by using the estimate. In section 4, we present the
numerical methods based on the iterative approximation method. Numerical results are
shown in section 5.
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2 Problem and formulation

Consider a highly rarefied gas in a long pipe with a uniform circular cross section. Let
the radius of the pipe be $D$ and the $X_{3}$ axis be parallel to the pipe. The pressure of
the gas is given by $p_{0}(1+c_{P}X_{3}/D)$ and the temperature of the pipe wall is given by
$T_{0}(1+c_{T}X_{3}/D)$ ( $c_{P}$ and $c_{T}$ are constants). We investigate the steady gas flows under the
following assumptions: (i) the behavior of the gas is described by the Boltzmann equation
for hard-sphere molecules (the mass of a molecule is $m$ and the diameter of a molecule is
$d_{m})$ ; (ii) the gas molecules are diffusely reflected on the surface of the pipe; and (iii) $|c_{P}|$ ,
$|c_{T}|\ll 1$ , so that the equation and the boundary condition can be linearized around the
equilibrium state at rest with the pressure $p_{0}$ and the temperature $T_{0}$ .

Let us denote the molecular velocity by $(2RT_{0})^{1/2}\zeta_{i}$ and the velocity distribution
function of the gas molecules by $\rho_{0}(2RT_{0})^{-3/2}[E^{1/2}+\phi(x_{i}, \zeta_{i})]E^{1/2}$ , where $x_{i}=X_{i}/D$ ,
$\rho_{0}=p_{0}/RT_{0},$ $R$ is the specific gas constant, $\zeta=(\zeta_{i}^{2})^{1/2}$ , and $E=\pi^{-3/2}\exp(-\zeta^{2})$ . Let us
denote the density of the gas by $\rho_{0}(1+\sigma)$ , the flow velocity by $(2RT_{0})^{1/2}u_{i}$ , the temper-
ature by $T_{0}(1+\tau)$ , the pressure by $p_{0}(1+P)$ , the stress tensor by $p_{0}(\delta_{ij}+P_{ij})$ , and the
heat-flow vector by $p_{0}(2RT_{0})^{1/2}Q_{i}$ , where $\delta_{ij}$ is Kronecker $s$ delta. Then, the problem is
described by the following-boundary value problem for $\phi$ :

$\zeta_{i}\frac{\partial\phi}{\partial x_{i}}=-\frac{\nu(\zeta)}{k}\phi+\frac{1}{k}K(\phi)$, (1)

$\phi=c_{T}(\zeta^{2}-2)E^{1/2}x_{3}-2\sqrt{\pi}E^{1/2}\int_{\zeta_{i}n_{i}<0}\zeta_{i}n_{i}\phi E^{1/2_{\zeta}}K$ for $\zeta_{i}n_{i}>0,$ $x_{1}^{2}+x_{2}^{2}=1$ , (2)

where $(2/3) \int\zeta^{2}\phi E^{1/2}d\zeta=CpX_{3}$ and with

$K( \phi)=\int\kappa(\zeta_{i*}, \zeta_{i})\phi(x_{i}, \zeta_{i*})d\zeta_{*}$ , (3)

$\kappa(\zeta_{i*}, \zeta_{i})=\frac{1}{\sqrt{2}\pi}\frac{1}{|\zeta_{i}-\zeta_{i*}|}\exp(-\frac{(|\zeta_{i*}|^{2}-|\zeta_{i}|^{2})^{2}}{4|\zeta_{i*}-\zeta_{i}|^{2}}-\frac{|\zeta_{i*}-\zeta_{i}|^{2}}{4})$

$- \frac{1}{2\sqrt{2}\pi}|\zeta_{i}-\zeta_{i*}|\exp(-\frac{|\zeta_{i*}|^{2}+|\zeta_{i}|^{2}}{2})$ , (4)

$\int$ノ $( \zeta)=\frac{1}{2\sqrt{2}}[\exp(-\zeta^{2})+(2\zeta+\frac{1}{\zeta})\int_{0}^{\zeta}\exp(-s^{2})ds]$ , (5)

$k= \frac{\sqrt{\pi}}{2}\frac{l_{0}}{D}$ , $l_{0}= \frac{1}{\sqrt{2}\pi d_{m}^{2}(\rho_{0}/m)}$ . (6)

Here, $n_{i}$ is the unit normal vector to the boundary, pointed to the gas and $l_{0}$ is the mean
free path of the gas molecules in the equilibrium state at rest. Note that we shall use $k$

in place of the Knudsen number Kn $(=l_{0}/D)$ to indicate the degree of gas rarefaction.
Let us introduce the cylindrical coordinate system $(r, \theta, x_{3})$ and $(\eta, \alpha, w)$ in position

and molecular velocity spaces: $x_{1}=r\cos\theta,$ $x_{2}=r\sin\theta,$ $\zeta_{1}=\eta\cos(\theta+\alpha),$ $\zeta_{2}=\eta\sin(\theta+\alpha)$ ,
$\zeta_{3}=w$ (see figure 1). $\eta$ is the absolute value of the molecular velocity in $\zeta_{1}-\zeta_{2}$ plane.
Assuming the axisymmetry about the $x_{3}$-axis, we can seek $\phi$ in the form of

$\phi=c_{P}[Fx_{3}+\phi_{P}(r, \eta, \alpha, w)]+c_{T}[(\eta^{2}+w^{2}-5/2)Fx_{3}+\phi_{T}(r, \eta, \alpha, w)]$ , (7)

$F= \pi^{-3/4}\exp(-\frac{\eta^{2}+w^{2}}{2})$ , (8)
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Fig. 1: Cylindrical coordinate system.

where $\phi_{J}$ $(J=P$ or T $)$ is the solution of the following boundary-value problem:

$\eta\cos\alpha\frac{\partial\phi_{J}}{\partial r}-\frac{\eta\sin\alpha}{r}\frac{\partial\phi_{J}}{\partial\alpha}=-\frac{l\text{ノ}}{k}\phi_{J}+\frac{1}{k}K(\phi_{J})-I_{J}$ , (9)

$\phi_{J}=0$ for $\cos\alpha<0,$ $r=1$ , (10)

$I_{P}=wF$, $I_{T}=w(\eta^{2}+w^{2}-5/2)F$ . (11)

Physically, $\phi_{P}$ represents the solution of the Hagen-Poiseuille flow, while $\phi_{T}$ represents
that of the thermal transpiration. Here we have also assumed that $\phi_{J}$ is odd in $w$ and
symmetric in $\alpha$ in the following sense:

$\phi_{J}(r, \eta, \alpha, w)=\phi_{J}(r, \eta, 2\pi-\alpha, w)$. (12)

The macroscopic variables are expressed as

$\sigma=(c_{P}-c_{T})x_{3}$ , $\tau=c_{T^{X}3}$ , $P=c_{pX_{3}}$ ,
$u_{1}=u_{2}=0$ , $u_{3}=c_{P}u[\phi_{P}]+c_{T}u[\phi_{T}]$ ,
$Q_{1}=Q_{2}=0$ , $Q_{3}=c_{P}Q[\phi_{P}]+c_{T}Q[\phi_{T}]$ , (13)

$P_{11}=P_{22}=P_{33}=c_{P}x_{3}$ , $P_{12}=0$ , $P_{23}=- \frac{r}{2}c_{P}\sin\theta$ , $P_{31}=- \frac{r}{2}c_{P}\cos\theta$ ,

where

$u[f]=4 \int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{\infty}\eta wfFdwd\alpha d\eta$ , (14)

$Q[f]=4 \int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{\infty}\eta w(\eta^{2}+w^{2}-\frac{5}{2})fFdwd\alpha d\eta$. (15)

Note that the density, temperature and pressure of the gas are uniform in each cross-
section and linearly depend on $x_{3}$ . The net mass flow through the pipe, which we denote
by $\rho_{0}(2RT_{0})^{1/2}\pi D^{2}\mathcal{M}$ , is written by

$\mathcal{M}=c_{P}M[\phi_{P}]+c_{T}M[\phi_{T}]$ , $M[f]=2 \int_{0}^{1}u[f]rdr$ . (16)
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3 Iterative approximation method

Integrating Eq. (9) along its characteristic line with the boundary condition (10), we
obtain the following expression for $\phi_{J}$ :

$\phi_{J}=\phi_{J}^{(0)}+\int_{0}^{d_{B}}\frac{1}{k\eta}e^{-\frac{\nu}{k\eta}s}K(\phi_{J})_{(\overline{r},\eta,\tilde{\alpha},w)}ds$ , (17)

$\phi_{J}^{(0)}=-l$

ノ

$\underline{k}[1-\exp(-\frac{I\text{ノ}}{k\eta}d_{B})]I_{J}$ , (18)

with

$d_{B}=r\cos\alpha+\sqrt{1-r^{2}\sin^{2}\alpha}$ , (19a)
$\tilde{r}=\sqrt{r^{2}-2rs\cos\alpha+s^{2}}$, (19b)

$\tilde{\alpha}=\cos^{-1}(\frac{r\cos\alpha-s}{\sqrt{r^{2}-2rs\cos\alpha+s^{2}}})$ . (19c)

Here, $d_{B}$ is the distance from $x_{i}$ to the point on the boundary in the direction of $(-\zeta_{1}, -\zeta_{2},0)$ .
Note that, in Eq. (17), $K(\phi_{J})$ is a function of $\tilde{r}$ and $\tilde{\alpha}$ dependent on $s$ .

We consider a sequence of functions $\phi_{J}^{(0)},$ $\phi_{J}^{(1)},$ $\phi_{J}^{(2)},$

$\ldots$ generated by the following
iterative process:

$\phi_{J}^{(n)}=\phi_{J}^{(0)}+\int_{0}^{d_{B}}\frac{1}{k\eta}e^{-\frac{\nu}{k\eta}s}K(\phi_{J}^{(n-1)})_{(\overline{r},\eta,\overline{\alpha},w)}ds$ $n=0,1,2,$ $\ldots$ , (20)

with $\phi_{J}^{(-1)}=0$ . By using the mathematical estimates given by Chen et al. [2], we can
prove the following for $k\gg 1$ :

(a) $\{\phi_{J}^{(n)}\}$ is a Cauchy sequence in $L^{\infty}$ , where the norm is defined by $||f||_{\infty}= \sup_{\zeta_{i}}|f|$

for each $x_{i}$ . The limiting function of $\phi_{J}^{(n)}$ is the solution $\phi_{J}:\phi_{J}=\lim_{narrow\infty}\phi_{J}^{(n)}(J=P$ or
T $)$ .

(b) By introducing the sequence of functions $\{\psi_{J}^{(n)}\}$ , defined by $\psi_{J}^{(n)}=\phi_{J}^{(n)}-\phi_{J}^{(n-1)}$

$(n\geq 1)$ and $\psi_{J}^{(0)}=\phi_{J}^{(0)},$ $\phi_{J}^{(n)}$ is rewritten as $\phi_{J}^{(n)}=\sum_{i=0}^{n}\psi_{J}^{(i)}$ . Thus $\phi_{J}$ can be obtained as
the sum of $\psi_{J}^{(n)}:\phi_{J}=\sum_{i=0}^{\infty}\psi_{J}^{(i)}$ $(J=P$ or T $)$ . $\psi_{J}^{(n)}$ is generated by the following iterative
process:

$\psi_{J}^{(n)}=\int_{0}^{d_{B}}\frac{1}{k\eta}e^{-\frac{\nu}{k\eta}s}K(\psi_{J}^{(n-1)})_{(\overline{r},\eta,\tilde{\alpha},w)}ds$ $n=1,2,$ $\ldots$ . (21)

There are positive constants $C_{0}$ and $C_{1}$ independent of $k$ such that, for $i=0,1,$ $\ldots$ ,

$|\psi_{J}^{(i)}|\leq C_{0}(\eta+k^{-1})^{-1}[C_{1}k^{-1}(\ln k+1)]^{i}$ , (22a)
$|K(\psi_{J}^{(i)})|\leq C_{0}(1+\ln k)[C_{1}k^{-1}(\ln k+1)]^{i}$, (22b)
$|M[\psi_{J}^{(i)}]|\leq C_{0}[C_{1}k^{-1}(\ln k+1)]^{i}$ . (22c)

On the one hand, estimate (22c) shows that the net mass flow at each stage of iter-
ation will be decreased with the rate $O(k^{-1}(\ln k+1))$ . As $k$ is increased, the rate will
be decreased. Therefore, in the highly rarefied regime, the converged solution will be
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(a) (b) (c)

Fig. 2: Change of $\psi_{J}^{(0)},$ $\psi_{J}^{(1)},$ $\psi_{J}^{(2)}$ as $k$ is increased $(k\gg 1)$ . (a) $\psi_{J}^{(0)},$ $(b)\psi_{J}^{(1)},$ $(c)\psi_{J}^{(2)}$ .

The rate and direction of change when $k$ is increased are shown.

obtained within several iterations. [Actually, we needed six iterations for $k=10$ and less
iterations for $k>10$ (see section 5.2). $]$ On the other hand, estimate (22a) presents that
the velocity distribution function at each stage of iteration will be scaled down with the
rate $o(k^{-1}(\ln k+1))$ . We show the feature for $i=0,1,2$ schematically in figure 2. The

figure shows that $\psi_{J}^{(0)}$ will be changed from $o(k)$ to $o(1)$ , and $\psi_{J}^{(1)}$ will be changed from
$O(\ln k)$ to $o(1)$ in the range of $o(k^{-1})$ in $\eta$ . In other words, $\psi_{J}^{(0)}$ and $\psi_{J}^{(1)}$ grow locally
near $\eta=0$ as $k$ is increased. In order to carry out accurate numerical computations for
large $k$ , a special attention should be paid to capture the singular behavior of the velocity
distribution functions.

4 Numerical method

The net mass flow at the initial guess $M[\psi_{J}^{(0)}]$ , obtained by substituting $\psi_{J}^{(0)}$ into Eq. (16),
is expressed as the forthfold integral. This integral is easily numerically carried out by
first applying the double exponential (DE) transformation [12] to all integration variables
and using the trapezoidal formula for the transformed variables. The number of lattice
points used in this computation is 49 for $r,$ $65$ for $\eta,$ $130$ for $\alpha$ and 97 for $w$ in the ranges
of $0<r<1,0<\eta<4.39,0<\alpha<\pi$ and $0<w<5.93$ .

As the first step to obtain higher order corrections $\psi_{J}^{(n)}(n\geq 1)$ , by making use of the

iterative process (21), we seek $K(\psi_{J}^{(n-1)})$ . In the computation, there are two things that
should be paid attention to. One is the fact that $\psi_{J}^{(0)}$ and $\psi_{J}^{(1)}$ behave steeply near $\eta=0$ ,

as seen from estimate (22a). The other is the singularity $|\zeta_{i}-\zeta_{i*}|^{-1}$ in Eq. (4). In order
to overcome these difficulties, we first make the variable transformation from $(\eta_{*}, \alpha_{*}, w_{*})$

to $(P, \beta, w_{*})$ to manage the singularity $|\underline{\zeta_{i}}-\zeta_{i*}|^{-1}$ (see Appendix A). Due to the variable
transformation, in the computation of $L_{1}$ , we have to capture the singular behavior of
the velocity distribution function on the transformed coordinate system $(P, \beta, w_{*})$ . From
the definition of $\eta_{*}$ [see Eq. (33)], we find that $\eta_{*}=0$ corresponds to $P=0,$ $P=\eta$ ,
$\beta=0,$ $\beta=\pi$ and $\beta=2\pi$ on the transformed system for arbitrary $\eta$ . Taking into account
this information, we divide the domain of the integration in such a way that $0<P<\eta$

and $\eta<P$ for $P,$ $0<\beta<\pi$ and $\pi<\beta<2\pi$ for $\beta$ . Thus, the velocity distribution
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function will be localized near the end points of the domains of integrations. The DE
transformation with the trapezoidal formula is an efficient numerical integration method
for an integrand with an end-point singularity. By using the DE transformation, $\underline{w}e$ can
$\underline{n}umerically$ handle the $sing\underline{ul}ar$ behavior of the velocity distribution function in $L_{1}$ and
$L_{2}$ without difficulties. For $L_{2}$ , we do not need to divide the domain of the integration
because the velocity distribution function is already localized near the end-point $(\eta_{*}=0)$ .
In the computation of $\overline{L}_{1}$ , we give an additional care in the case of $r=1$ , because
$\psi_{J}^{(n-1)}$ has discontinuity at $\alpha=\pi/2$ (for example, see (c) and (f) of figure 3). As to
the integration with respect to $s$ in Eq. (21), we first interpolate $K(\psi_{J}^{(n-1)})$ for $\tilde{r}$ and $\tilde{\alpha}$

[see Eqs. (19b) and $(19c)$ ] because the obtained $K(\psi_{J}^{(n-1)})$ is a function of $r,$ $\eta,$ $\alpha$ and
$w$ . After the interpolation, $K(\psi_{J}^{(n-1)})$ can be approximated by the piecewise quadratic
function on the lattice points of $s$ . Thus, the integral of the approximated $K(\psi_{J}^{(n-1)})$

multiplied by exp $(-\iota$ノ$s/k\eta)$ is carried out analytically. We numerically calculate $M[\psi_{J}^{(n)}]$

expressed as the forthfold integral. The integration with respect to $r$ is carried out by
using the Simpson formula, and the integrations with respect to $\eta,$

$\alpha$ and $w$ are performed
by the trapezoidal formula after the DE transformation.

5 Numerical results

In our computation, the molecular velocity space is limited to $0<\eta<4.39,0<w<5.93$ .
The number of lattice points used in the computation of higher order corrections is 21 for
$r,$ $65$ for $\eta,$ $130$ for $\alpha(0<\alpha<\pi)$ and 97 for $w$ .

5.1 Velocity distribution functions
The initial guess $\psi_{T}^{(0)}$ , the initial collision operator $K(\psi_{T}^{(0)})$ and the first correction $\psi_{T}^{(1)}$

$hand,\psi_{T}isO(k)and\psi_{T}^{(1)}isO(\ln k+l)Bothofthemare1oca1izedintheregionofatthree\delta_{)}^{ointsinthegasregionareshown.f\circ rk=l0and10^{2}infigures3-5.Ontheone}$

$\eta\leq k^{-1}$ . On the other hand, $K(\psi_{T}^{(0)})$ , which is $o(\ln k+1)$ , behaves moderately in $\eta$ . In
other words, the trace of the singular behavior of $\psi_{T}^{(0)}$ is disappeared in $K(\psi_{T}^{(0)})$ . That is,
the singular behavior of $\psi_{T}^{(0)}$ is disappeared by the action of the collision operator with
scaling down by the factor $O(k^{-1}(\ln k+1))$ . By the action of the integration in Eq. (21), a
singular distribution is reproduced in $\psi_{T}^{(1)}$ with the scale unchanged. We can observe the
process of disappearance and reproduction of singular velocity distributions in the longer
transition from $\psi_{T}^{(0)}$ to $\psi_{T}^{(4)}$ at $r=0$ for $k=10$ in figure 6. Estimates $(22a)-(22c)$ may
not be optimal, but the numerical results shown in figures 3-6 support that the estimates
are actually optimal.

5.2 Net mass flows
We have obtained the net mass flows of the both problems for several values of $k$ . The
numerical results of the initial guess $M[\phi_{J}^{(0)}]$ , the first correction $M[\phi_{J}^{(1)}]$ and the converged
solution $M[\phi_{J}^{(n)}]$ are shown in table 1. Here $\phi_{J}^{(n)}=\Sigma_{i=0}^{n}\psi_{J}^{(i)}$ $(J=P$ or T$)$ . The value of
$M[\phi_{J}^{(n)}]$ is converged to 4 digits. $M[\phi_{J}^{(n)}]$ versus $k$ is shown in figure 7.
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(a) $k=10,$ $r=0$ (b) $k=10$ . $r=0.5$ (c) $k=10,$ $r=1$

(d) $k=]0^{2}$ . $r=0$ (e) $k=10^{2},$ $r=0.5$ (f) $k=10^{2},$ $r=1$

Fig. 3: $’\psi_{T}^{(0)}$ at $w=0.633$.

(a) $k=10,$ $r=0$ (b) $k=10,$ $r=0.5$ (c) $k=10,$ $r=1$

(d) $k=10^{2}$ . $r=0$ (e) $k=10^{2},$ $r=0.5$ (f) $k=10^{2},$ $r=1$

Fig. 4: $K(\psi_{T}^{(0)})$ at $w=0.633$.
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(a) $k=10,$ $r=0$ (b) $k=10,$ $r=0.5$ (c) $k=10,$ $r=1$

(d) $k=10^{2}$ . $r=0$ (e) $k=10^{2}$ . $r=0.5$ (f) $k=10^{2},$ $r=1$

Fig. 5: $\psi_{I’}^{(?)}$ at $w=0.633$.

Finally, we list some data that show the accuracy of our computation as follows:
(i) We have limited the molecular velocity space to a finite region. In the computation,

$|\phi_{J}^{(n)}F|$ is less than $3.0\cross 10^{-9}$ outside the region.
(ii) The collision integral $K(\phi)-t$ノ $\phi$ for the Maxwellian $\phi=F$ , which should theo-

retically be zero, is bounded by $5.0\cross 10^{-7}$ . lノ $F$ is of the order of 0.3.
(iii) The following moment, which should theoretically be zero, is bounded by

$| \int_{0}^{\infty}\int_{0}^{\pi}\int_{0}^{\infty}\eta w[K(\phi_{J})-\nu\phi_{J}]Fdwd\alpha d\eta|\leq 5.0\cross 10^{-6}$ . (23)

6 Conclusion

We have investigated Hagen-Poiseuille and thermal transpiration flows of a highly rarefied
gas through a circular pipe for purpose of obtaining the accurate net mass flows. In the
present work, motivated by the previous work by the authors, we have applied an iterative
approximation method with an explicit convergence estimate to the problems, and have
clarified the singular behavior of the velocity distribution function. By making use of
the method, with a special attention to the singular behavior of the velocity distribution
function, we have also obtained the net mass flows for several values of $k$ .
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$\hat{e}$

(a) $\psi_{T}^{(0)}$ (b) $K(\psi_{T}^{(0)})$ (c) $\acute\sqrt{}$ノ$T(1)$

(d) $K(\psi_{1^{\backslash }}^{(1)})$ (e) $\psi_{1^{\backslash }}^{(2)}$ (f) $K(\psi_{r}^{(2)})$

(g) $\psi_{T}^{(3)}$ (h) $K(\psi_{\Gamma}^{(3)})$ (i) $\psi_{T}^{(4)}$

Fig. 6: Transition from $\psi_{T}^{(0)}$ to $\psi_{T}^{(4)}$ at $r=0$ and $w=0.633$ for $k=10$ .
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Table 1: Net mass flows in the highly rarefied regime.

$k=10^{2}$ 0.3585 0.3642 $0.3643^{(3}$

$k=10^{3}$ 0.3735 0.3741 $0.3741^{(2}$

$k=10^{4}$ 0.3758 0.3758 $0.3758^{(1}$

$k=10^{5}$ 0.3761 $-$ $0.3761^{(0}$

$k=10^{6}$ 0.3761 $0.3761^{(0}$

$\overline{\frac{M[\phi_{P}^{(0)}]M[\phi_{P}^{(1)}]M[\phi_{P}^{(n)}]-}{k=10-0.6113-0.6915-0.7037^{(6}}}$

$k=10^{2}$ $-0.7269$ $-0.7385$ $-0.7387^{(3}$

$k=10^{3}$ $-0.7486$ $-0.7498$ $-0.7498^{(2}$

$k=10^{4}$ $-0.7518$ $-0.7519$ $-0.7519^{(2}$

$k=10^{5}$ $-0.7522$ $-$ $-0.7522^{(0}$

$k=10^{6}$ $-0.7522$ $-0.7522^{(0}$

*Converged data. $T\overline{he}$superscript number $indicates-$ the order of approximation $n$ .

Fig. 7: Net mass flows as a function of $k$ . Left figure shows $M[\phi_{T}]$ versus $k$ and right
figure shows $M[\phi_{P}]$ versus $k$ . $\blacksquare$ indicates the present data.

Appendix A Collision operator $K$

The collision operator $K(\phi_{J})$ is written in the following form:

$K(\phi_{J})=\overline{L}_{1}(\phi_{J})-\overline{L}_{2}(\phi_{J})$ , (24)

where

$\overline{L}_{1}(\phi_{J})=\int_{0}^{\infty}\int_{0}^{2\pi}\int_{-\infty}^{\infty}\frac{1}{\sqrt{2}\pi}\frac{\eta_{*}}{|\zeta_{i*}-\zeta_{i}|}\exp(-\frac{(\eta_{*}^{2}+w_{*}^{2}-\eta^{2}-w^{2})^{2}}{4|\zeta_{i*}-\zeta_{i}|^{2}}-\frac{|\zeta_{i*}-\zeta_{i}|^{2}}{4})$

$\cross\phi_{J}(r, \eta_{*}, \alpha_{*}, w_{*})dw_{*}d\alpha_{*}d\eta_{*}$ , (25)

$\overline{L}_{2}(\phi_{J})=\int_{0}^{\infty}\int_{0}^{2\pi}\int_{-\infty}^{\infty}\Omega_{2}(\eta, \alpha, w, \eta_{*}, \alpha_{*}, w_{*})\phi_{J}(r, \eta_{*}, \alpha_{*}, w_{*})dw_{*}d\alpha_{*}d\eta_{*}$ , (26)

$\Omega_{2}(\eta, \alpha, w, \eta_{*}, \alpha_{*}, w_{*})=\frac{\eta_{*}}{2\sqrt{2}\pi}|\zeta_{i*}-\zeta_{i}|\exp(-\frac{\eta_{*}^{2}+w_{*}^{2}+\eta^{2}+w^{2}}{2})$ , (27)

$|\zeta_{i*}-\zeta_{i}|=[\eta^{2}+w^{2}+\eta_{*}^{2}+w_{*}^{2}-2\eta\eta_{*}\cos(\alpha_{*}-\alpha)-2ww_{*}]^{1/2}$. (28)
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In order to manage the singularity $|\zeta_{i}-\zeta_{i*}|^{-1}$ in $\overline{L}_{1}$ , we make the variable transforma-
tion from $(\eta_{*}, \alpha_{*}, w_{*})$ to $(P, \beta, w_{*})$ which was used in Ref. [10]:

$\zeta_{1*}-\zeta_{1}=P\cos(\beta+\beta_{0})$ , $\zeta_{2*}-\zeta_{2}=P\sin(\beta+\beta_{0})$ , $w_{*}=w_{*}$ , (29)

where $\beta_{0}$ is chosen in such a way that $\beta=0$ is in the direction of $(\zeta_{1}, \zeta_{2},0)$ . That is
$\beta_{0}=\theta+\alpha$ . Then,

$|\zeta_{i*}-\zeta_{i}|=[P^{2}+(w_{*}-w)^{2}]^{1/2}$ . (30)

Using Eqs. (29) and (30) in Eq. (25), we have

$\overline{L}_{1}(\phi_{J})=\int_{0}^{\infty}\int_{0}^{2\pi}\int_{-\infty}^{\infty}\Omega_{1}(\eta, w, P, \beta, w_{*})\phi_{J}(r, \eta_{*}(\eta, P, \beta), \alpha_{*}(\eta, \alpha, P, \beta), w_{*})dw_{*}d\beta dP$,

(31)

$\Omega_{1}(\eta, w, P, \beta, w_{*})=\frac{1}{\sqrt{2}\pi}\frac{P}{[P^{2}+(w_{*}-w)^{2}]^{1/2}}$

$\cross\exp(-\frac{(P^{2}+2\eta P\cos\beta+w_{*}^{2}-w^{2})^{2}}{4[P^{2}+(w_{*}-w)^{2}]}-\frac{P^{2}+(w_{*}-w)^{2}}{4})$ , (32)

$\eta_{*}(\eta, P, \beta)=(P^{2}+\eta^{2}+2\eta P\cos\beta)^{1/2}$ , (33)

$\alpha_{*}(\eta, \alpha, P, \beta)=\alpha+\cos^{-1}(\frac{\eta+P\cos\beta}{(P^{2}+\eta^{2}+2P\eta\cos\beta)^{1/2}})$ for $0<\beta<\pi$ , (34)

$\alpha_{*}(\eta, \alpha, P, \beta)=2\pi+\alpha-\cos^{-1}(\frac{\eta+P\cos\beta}{(P^{2}+\eta^{2}+2P\eta\cos\beta)^{1/2}})$ for $\pi<\beta<2\pi$ . (35)

Here, $\eta_{*}\cos(\alpha_{*}-\alpha)=\eta+P\cos\beta$ and $\eta_{*}\sin(\alpha_{*}-\alpha)=P\sin\beta$. Thus, $0<\alpha_{*}-\alpha<\pi$

corresponds to $0<\beta<\pi$ and $\pi<\alpha_{*}-\alpha<2\pi$ corresponds to $\pi<\beta<2\pi$ . That is why
we obtain equations (34) and (35).

The threefold integrals (31) and (26) are computed numerically by first applying the
DE transformation and using the trapezoidal formula for the transformed variables.
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