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Abstract

We consider the Cauchy problem of a parabolic-elliptic system in
R2, which is a mathematical model of chemotaxis. We review the
application of rearrangements to the Cauchy problem with subcritical
mass, that is, the total mass is less than 8x.
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1 Introduction

In this paper we consider the Cauchy problem for the following nonlinear
parabolic equation with a non-local term in R2:

Ou=Au—V - (u(VN xu)), t>0,z€R?
(CP)
u(0,z) = uo(z), z € R%

where V = (8/0x,,0/0x3), N = N(z) is the Newtonian potential in R? and
VN x u is the convolution of VN and u with respect to the space variable,
namely

N@V:%ﬂ%jw (VN xu)(t,z) = : -

] Y u(t,y) dy.

or R2 |T — y|?



The Cauchy problem (CP) comes from the following Cauchy problem for
a parabolic-elliptic system of drift-diffusion type in R?:

Ou=Au—V - (uVy), t>0,z¢cR?
(CP), —Ay = u, t>0,z€R2
uw(0,x) = up(x), r € R2

Since the Poisson equation admits solutions up to constants, we specify 1 as

w(t,$) = (N * u)(tvx) = . N(z - y)u(ta y) dy.

This system is a simplified version of chemotaxis model derived from the
original parabolic system due to Keller-Segel [25] (see also Childress-Percus
[15]). In the chemotaxis model, u > 0 denotes the density of microorganisms
and ¥ the concentration of a chemical-attractant secreted by themselves.
The system is also a model of self-attracting particles in R? (see [10, 43]),
where u is the density of particles in R? interacting with themselves through
the potential 1.

One of the basic properties of nonnegative solutions to (CP) is the con-
servation of the total mass, namely

/u(t,x)dx:/ uo(z)dz, t>0,
R2 R2

and the global existence and large-time behavior of nonnegative solutions
to (CP) heavily depend on the total mass. In fact, in the subcritical case
Jgz uo(x) dz < 8, the nonnegative solution to (CP) exists globally in time
(see [13, 33]), and converges to a radially symmetric self-similar solution (see
[9, 13, 34]). On the other hand, in the supercritical case [g, uo(x)dz > 8,
the nonnegative solution may blow up in finite time (see {10, 13, 26]). In the
critical case fR2 uo(z) dxr = 8w, at least three types of solutions appear: a
solution tending to 87d,, as time goes to infinity (see [12, 38]), where &, is
the Dirac delta function at zy and z, is the center of mass of ug, a solution
tending to a stationary solution (see [9, 11]), and an oscillating solution in
time (see [35]). Related results for (CP) as a chemotaxis model, for example
see [7, 8, 21, 23, 28, 29, 32, 36, 39, 40], and as models of self-attracting
particles, see [6, 7], and the references cited therein. We also refer [22, 41] in
which we can find related results for chemotaxis models.

For the subcritical case, in [13] they have studied the global existence
of nonnegative weak solutions to (CP),, for the nonnegative initial data uo
satisfying

(1.1) ug, uplogug, |x|*ue € L'(R?), / uo(z) dr < 8.
R2
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Their main tools are the free energy inequality
t
Flu(t)] +/ / u|Vlogu — Vop|> dxds < Flue), t >0,
0 JR2

where F'[u| is the free energy given by

F[u]z/ ulogud —l/ uy de,
Rz 2 RZ

the second moment identity

M
/ u(t)|z|? dz = / uo|z|? dx + 4M<1 - ——)t
R2 R2 8

T

and the logarithmic Hardy-Littlewood-Sobolev inequality (see Lemma 2.4 in
[13]). Hence assumption (1.1) on the initial data ug is essentially needed in
their proof. We remark that the uniqueness of weak solutions to (CP),, seems
to be open.

In this paper we review the application of rearrangements to the Cauchy
problem (CP) for the subcritical case M := [o, uo(z) dz < 87 based on the
results in [33, 34]. Rearrangement techniques are useful to get isoperimetric
inequalities for elliptic equations and parabolic equations, which give the
estimates on the LP-norms of solutions for these equations (see [1, 2, 3, 16,
30, 31, 37, 42] for example). We first apply rearrangement techniques to get
the global existence and decay estimates of nonnegative mild solutions to
(CP) (see Theorem 4.1) under the following assumption on the nonnegative
initial data ug:

(1.2) up € L'(R2), /R ug(z)dz < 8.

We estimate the LP-norms of the nonnegative solution u to (CP) by compar-
ing the LP-norms between the solution u and a radially symmetric self-similar
solution Uys. In the subcritical case, given 0 < M < 87, we have a radially
symmetric self-similar solution Uy, of (CP) such that

]

(1.3) Up(t,x) = %\Il (%) : /R2 Unm(t,z)dx = M,

where W is positive, integrable and bounded on [0, 00). The existence of such
a radially symmetric self-similar solution has been studied in [5] by ODE
methods and in [36] by PDE methods, and uniqueness in [9]. The result reads



as follows: For given M € (0,87), there exists uniquely a radially symmetric
self-similar solution Uy, satisfying (1.3). If Uy, exists, then M € (0, 87).

We next mention the uniqueness of nonnegative weak solutions to (CP)
with initial data Mdg, where g is the Dirac delta function at th origin. By
rearrangement techniques, we have v = Uy, for the nonnegative weak solution
v with initial data Mdy, where 0 < M < 7 (see Theorem 5.1).

Throughout this paper, we use the following notation: LP(R?) is the
Lebesgue space on R? with the usual norm || - ||z» for 1 < p < co. In the case
d = 2, for simplicity, we denote LP(R?) and ||-||z» by L? and ||-||,, respectively.
For @ C R?% and a Banach space X, we denote the set of all continuous
functions from @ to X by C(Q; X) and the set of all bounded continuous
functions by BC(Q; X). If X = R, then we denote C(Q;R) and BC(Q;R)
by C(Q) and BC(Q), respectively. Denote by Z, the set of all nonnegative

integers. For a = (ay,as, -+ ,aq) € Z%, put || = a; + az + - - - + a4 and
80{_8&1 (03] (6 7] 6 _ 8
p = 000" 0y, 0= 5
j

For m € Nand 1 < p < oo, we denote by 97 any partial derivative of order
m with respect to the space variables and put

167" fllz» = Z 102 £l e

|al=m

For a function f = f(t,z), (¢,z) € (a,b) x Q, where —co < a <b<o00,QC
R?, we denote by f(t): Q@ — R for t € (a,b) the function f(t)(z) = f(t,z).
This paper is organized as follows. Section 2 is devoted to the local
existence, uniqueness and regularity of mild solutions to (CP). In Section
3 we mention some properties of decreasing rearrangements. In Section 4
we review the global existence and decay estimates of nonnegative solutions
to (CP) only under assumptions (1.2), and in Section 5 the uniqueness of
nonnegative weak solutions with initial data M (0 < M < 8x). In Section
6 we give remarks to a parabolic-elliptic system replacing the second equation

in (CP), by —A¢ + ¢ =u.

2 Local existence of solutions in time

We begin with the definition of mild solutions to the Cauchy problem (CP).

Definition 2.1. Given ug € L!, a function u on [0,T) x R? is said to be a
mild solution of (CP) on [0,T) if
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(i) w e C([0,T); LY NC((0,T); L*?),

(il) supgeser 4 flult)llass < oo,

(iii) u satisfies the integral equation
t
(2.1) u(t) = ePuy — / V- B2 (u(s)(VN xu)(s))ds, 0<t<T,
0
where e*® is the heat semigroup defined by

(€0 = [ Gt =9fwdn Glt.o) = g ew(- )

A function u on [0,00) x R? is a global mild solution of (CP) with initial
data ug if u is a mild solution of (CP) on [0,T) for any 0 < T < oo.

Remark. The integral in (2.1) is well-defined by (i) and (ii) of Definition
2.1, applying the well-known LP — L9 estimates for the heat semigroup et
in R?

1870t fllp < CeYart/pmm=nl2|| fll o, f € LY,

where 1 < ¢ < p < oo and m and n are nonnegative integers, and the
following inequality: For 4/3 < ¢ < 2,

(2:2) If (VN % g)ll2q/a-g) < Call Fllallglly for all f,g € LY,

where C, is a positive constant depending only on ¢. Inequality (2.2) is
obtained from the Hardy-Littlewood-Sobolev inequality in R%: For 1 < g < 2,
1

||m * gllog/(2-q) < Cqllgllg for all g € LY,

where C, is a positive constant depending only on gq.

To mention local existence, uniqueness and regularity, following Kato [24],
we introduce function spaces. Let T'> 0. For 1 < p < oo and 7 > 0, define
the Banach space C, 7(LP) with norm || - ||, 7 by

Cyr(LF) = {ulu € C((0,T); L), sup t"|ju(t)||, < oo},

0<t<T
[ullpyr = sup |u(t)ll, for u € Cyr(LP).
o<t<T

For v > 0, define C, 7(L?) by

Cyr(IP) = {u € Cor(17)] lim " u(®)llp = 0},
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and for v = 0, Cor(L?) = BC([0,T); L). C.,r(LP) is a closed subspace of
Cor(LP).
The local existence, uniqueness and regularity of mild solutions to (CP)

was obtained by methods similar to those for the vorticity equation in R? in
[4, 14, 20, 24]. For the proof of Proposition 2.1, see [33].

Proposition 2.1. Given uy € L', there exists T € (0,00) such that the
Cauchy problem (CP) corresponding to the initial data ug has uniquely a
mild solution u on [0,T). Moreover, u satisfies the following:

(i) u(t) 2wy i L' ast—0.
(ii)‘ Forl1<g<oo,ué€ C’l_l/q,T(Lq).
(111) For/t e Z+,Oé € Z?}_ and 1 < q < oo, ch’?gu € Cl_l/q+|a|/2+g’T(Lq).

(iv) Let L € Zy,a € Z2. For2<g< oo ifla] =0, and for 1 < q < oo if
la] > 1, '
B;02(VN xu) € Cja—r/gsjalyzrer(LY).

(v) u is a classical solution of Oyu = Au— V - (uw(VN xu)) in (0,T) x R2,
(vi) Jpoult,z)dz = [pouo(x)dr for0 <t <T.

(vil) If uolog(l + |z|) € L!, then u(t)log(l + |z]) € L for0 <t < T.

(vil) Ifup > 0,up # 0 on R?, then u(t,z) > 0 on (0,T) x R2.

Remark 2.1. By Proposition 2.1, for ug € L! satisfying ug log(1+ |z|) € L,
the Cauchy problem (CP),, has uniquely a mild solution u, because ¥(t) =
N x u(t) is well-defined in L} by u(t)log(l + |z|) € L', and Vi) = VN %
and —Ay = u are satisfied.

We characterize the maximal existence time of solutions in terms of the
modified entropy [p.(1 + u)log(l + u) dz.

Proposition 2.2. Let T, be the mazimal existence time of u. If T,, < oo,
then

lim sup ,/R2(1 + u(t)) log(1 + u(t)) dr = +oc.

t—Tm

For the proof of this proposition, see [33]. This proposition implies that
if the following a priori estimate

/ (1+ u(t) log(1 + u(t) dz < Cp, T/2<t<T
R2

holds for any 0 < T' < T,,,, where Cr is a constant depending on T € (0, 0c0),
then the solution u exists globally in time.
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3 Decreasing rearrangements

For a measurable function f : R — R and § € R, we use the following
notation for simplicity:

{f>0}:={zecR?: f(z)> 6}, If >0l :=|{z eR?: f(z) >0},

where |A| is the Lebesgue measure of a Lebesgue measurable set A in R%.

For a measurable function f : R? — R, we assume that f vanishes at
infinity in the sense that |[f| > 6| < oo for all § > 0. We define the
distribution function s of f by

us(0) =11f1>6] (6=0),
and the decreasing rearrangement f* of f, the generalized inverse of u¢, by
f*(s) =inf{6 >0: up(0) <s} (s>0).

We also define the function f* : R — R, called the symmetric rearrangement
or the Schwarz symmetrization of f, by

fiz) = f*(calzl),

where ¢y is the volume of the unit ball in R?.
We refer to [3, 27, 30, 37] for the basic properties of rearrangements

mentioned below and for Proposition 3.1.
(i) f* is non-increasing and right-continuous on [0, 00).

(ii) f*(0) = ”f”L°°(le)a f*(o0) = 0.

(iii) If f is continuous on RY, then f* and f* are continuous on [0, cc) and
R?, respectively.

Proposition 3.1. (i) For every Borel measurable function ® from R to
[0, 00),

/R 0(|f(@))da = /R (i) dr = /qu,(f*(s)) .

(i) Let f,g:R* — R be integrable on R%. If [ f*(0)do < Jy g% (c)do for
all s > 0, then

/ &(|(x)]) dr < / &(g(x))) dz
Rd R4

for all convex functions ® : [0,00) — [0, 00) with ®(0) = 0.



(iii) (The Hardy-Littlewood inequality) Let 1 < p,q < o0,1/p+1/q = 1.
For f € LP(RY), g € LI(RY),

L@ls@ia< [ r x)dx—/ 1*()g"(5) ds.

(iv) (Contraction property) Let 1 < p < co. For f, g € LP(R?),
If*— Q*HLP(O,oo) = ||fn - gu“LP(Rd) <|f- g“LP(Rd)-

(v) (The Pélya-Szegd inequality) Let 1 < p < co. If f € WIP(RY), then
e WiP(RY) and

”Vfﬁ”LP(Rd) < ”Vf“[,p(Rd).

Let v = v(t,z) be a smooth function on (0,7) x R? such that v(¢) is in
L' N L™ and radially symmetric in « for every 0 < t < T, and v satisfies

Ow=Av—V-(@wVNx*v)) in (0,T) x R?,

where )
(VN xv)(t,x) := —— -9

21 Jre |35 - 9{2

v(t,y) dy.

Define ¢(t,s) by v(t,z) = ¢(t,s), s = w|z|?. Then the following hold(see
Lemma 5.1 of [33]):

(i) ¢ satisfies
Auplt,5) = 470, (s0,50,3)) + 0, (o(6.9) [ olt.0) o).
0
(ii) ®(t,s) := [, ¢(t,0) do satisfies
(3.1) 0,D(t,s) = 4mws02D(t,s) + ®(t, 5)0,P(t, s).
Let u be a nonnegative mild solution of (CP) on [0,7) with nonnegative

initial data ug € L'. For the decreasing rearrangement u* of the solution u
with respect to the space variable z, define the function H (¢, s) by

H(t,s)z/ u*(t,o)do, 0<t<T, s>0.
0

By the regularity of u (see Proposition 2.1) and the Pélya-Szego inequality
in Proposition 3.1, we have the following.
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Proposition 3.2. Let 1 < p < co. It hold that
(i) H(t,0) =0, H(t,00) = [pauo(z)dzx, 0 <t <T,
(ii) H € BC([0,T) x [0,00)) and H(0,s) = [, ug(o)do,s >0,
(iii) 8,H € BC((Ty, T) % (0,00)) N L*®(0,T; L'(0,0)) for any 0 < Ty < T,
(iv) 82H € L®(Ty, T; LP(s,00)) for any 0 < Ty < T, 50 > 0,
(v) 8.H € L>®(Ty,T; L*(0,R)) for any 0 < To < T,R > 0.

The function H satisfies the following differential inequality (3.2) in Propo-
sition 3.3, which is a key one to get the LP-estimates of u. For the proof, see
17, 18, 33].

Proposition 3.3. For almost allt € (0,T),
(3.2) O,H — 4ws0?H — HO,H <0, a.a. s> 0.

4 Global existence and decay estimates of non-
negative solutions

We first remark that the equation of u in (CP)
(4.1) du=Au—V-(u(VN xu)), t>0, r€R?

has a scaling invariant property such that for a solution u of (4.1), the func-
tion uy for A > 0 defined by

ux(t, ) = N2u(\’t, \z), t>0, z € R?

is also a solution of (4.1). If uy = u for all A > 0, the solution u is called a
self-similar solution.

As mentioned in the introduction, given M € (0, 87) there exists uniquely
a radially symmetric self-similar solution Uy; of (CP) satisfying (1.3). We
introduce the mass distribution function

M(t,s)=/ Uy(t,x)de, t>0,s>0
jel< Vs

and see that M (¢, s) satisfies the following:

- S
oM = 40°M + ;MGSM, t>0, s>0,
M(t,0)=0, M(t,+o0) =M, t>0,

lim M(t,s) = M, s > 0.
t—0
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Since it is satisfied that for each A > 0,

M(Xt,As) = M(t,s), t>0, s>0,

M(t, s) has the form

M(t,s)zm(?), t>0, 0<s<o0.

The nonnegative function m(y) satisfies

d*m dm 1 dm
- - —m(y)— =0, y>0,
SE W+ W)+ m) ) =0,y

m(0) =0, m(+o00) =M,
and it was shown in Lemma 4.1 of [9] that

dm d’m
— 0, — 0, > 0,
a (y) >0, 7 (y) <0, y

(42) ¢ M(1—=e¥* < m(y) < min {4‘2—’;(0)(1 — e/, M} , ¥y >0,

(m € C'([0, ),

dm dm
hadid < = —y/4 0.
v y)_dy(O)e , Y>>

Observing

1, - o 1 dm [|z]?
(4.3) Um(t,z) = ;5‘SM(t, |z|*) = i dy ( R

the radially symmetric function Uy, (t, z) is decreasing with respect to |z,
and hence

(4.4) Um(t,x) = Ufw(t,:r) = U;,(t, |z]?),

where Uﬁ/[ and Uy, are the Schwarz symmetrization and the decreasing rear-
rangement of Uy, with respect to the space variable z, respectively. By (4.2)
and (4.3), for 1 < p < oo, :

(4.5) UM (®)]l, < Carpt™1FYP, ¢ >0,

where C)y, is a positive constant depending only on M and p.
Define V' (¢, s) by

V(t,s)=/ Uj}(t,a)da, t>0, s>0.
0
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From (4.3) and (4.4) it is easily seen that U}, (¢, s) = (mt)~*dm/dy((nt)™'s)

e V(t,s)=m (i) :

it

In view of (3.1) and [~ Uy (t,0)do = [z Un(t,x)dx = M, we see that
V (¢, s) satisfies

OV —4wsd?V - Vo,V =0, t>0, s> 0,
V(t,0)=0, V(t,00) =M, t>0,
lim V(t,s) = M, s> 0.

t—0+

For a nonnegative initial data ug € L' satisfying M := [, updz < 8, let
u be the nonnegative mild solution of (CP) on [0,7). Then by Proposition
3.3, the function H(t,s) = [ju*(t,0)do satisfies that for almost all ¢t €
(0,7),
OH — 47r3(9§H — HOo,H <0, a.a. s>0.

At s =0 and s = +o0,
H(t,0) =0, H(t,+0) =/ u*(t,0)do :/ u(t,z)de = M.
0 R2
At the initial time ¢t = 0,

lim (H(t,s) —V(t,s)) = /Osua(o) do—M<0 (s>0).

t—0+
Hence, by calculations similar to those in [33], we obtain
H(t,s) <V(ts), t>0, s>0.

Therefore we have the following.

Proposition 4.1 (Proposition 5.3, [33]). It holds that for each 0 <t < T,

S L)
/ u*(t,va)dag/ Uy (t,0)do  for all s> 0.
0

0

As an application of Proposition 4.1, we have the following.

Theorem 4.1 (Theorem 5.1, [33]). For the nonnegative initial data ug € L*
satisfying

M = ug dxr < 8,
R2



169

let u be the nonnegative mild solution u of (CP) on [0,T). Then it hold that
foreach 0 <t <T,

(46) 11+ u(t) log( +u®)l < (1 + Unr()) log(1 + Un ()],
(A7) @l < 1Un@ll, forall 1<p< oo

Hence the solution u exists globally in time and for every 1 < p < oo the
decay estimates

(4.8) lu(®)lly < Crrpt P for ¢ >0

hold, where Crp, s a positive constant depending only on M and p.

Proof. Take convex functions @ from [0, o) to [0, 00) as follows:
®(v) =(14v)log(l+wv), @v)=1"(1<p<o0).

Then (4.6) and (4.7) with 1 < p < oo follow from Proposition 4.1 and (ii) in
Proposition 3.1. Letting p — oo in (4.7) with 1 < p < oo, we obtain (4.7)

for p = 0.
Global existence follows from (4.6) and Proposition 2.2. The decay esti-
mates (4.8) follow from (4.7) and (4.5). O

5 Uniqueness of weak solutions with delta
functions as initial data

In this section we discuss the uniqueness of weak solutions of (CP) with
initial data Mdy, where 0 < M < 87 and ¢ is the Dirac delta function at
the origin. For this purpose, we begin with the definition of weak solutions.

Definition 5.1. A function v on (0,00) x R? is said to be a weak solution
of (CP) with initial data MJ,, where M € R, if

(i) v € C((0,00); L} N LH3),
(ii) SUPg<t<1 t1/4””(t)“4/3 < o0,

(iii) for any ¢ € C§°([0, 00) x R?), v satisfies

0 = My(0, 0)+/ / (Orp+Ap)v dmdt+/ / V- (v(VN*v)) dzdt.
o Jre o Jre
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The following theorem implies the uniqueness of nonnegative weak solu-
tions of (CP) with initial data My, where 0 < M < 8.

Theorem 5.1 (Theorem 4.1, (34]). Let v be a nonnegative weak solution of
(CP) with wnitial data Mdy. If 0 < M < 8m, then v = Up.

Remark 5.1. Uniqueness seems to be still open for M > 8m, and generally,
for weak solutions with finite measure as initial data.

The proof of Theorem 5.1 relies on the following proposition.

Proposition 5.1 (Proposition 4.2, [19]). Let f,g: R? — [0,+00) be contin-
uous and integrable functions satisfying

(i) f, f*(o)do < [; g°(0) do for all s > 0,

(ii) g is radially symmetric and non-increasing with respect to |x|,
(i) fyo £(&) dz = fruag(c) da,

(iv) fge|2|4f(2) dz = [ou|2|%(z) dz < 0.
Then f = g.

In what follows, we give the outline of the proof of Theorem 5.1. By
Definition 5.1, we first observe that for the nonnegative weak solution v of
(CP) with the initial data Mdy, it hold that for every 0 <t < T,

/ v(t,z)dzr = M,
R2

M
2u(t,x)dz =4M (1 — —)t.
| lePult,z)de = 4m(1- )

Since sz Um(t,z)der = M and Uy is also a nonnegative weak solution of
(CP) with initial data MJdo, we have

M
2 frd —_— —
| 1ol Un(t,2) do = 4M(1 Sﬂ)t.
Hence, for every 0 < t < T,
(5.1) / v(t,z)de = | Up(t,x)dz(= M),
R? R?

(5.2) legv(t,x)d:c::/ |z|2Un (2, ) de.
R? R?



We claim that for every ¢ > 0,

(5.3) /v*(t,a)dag/ Uy(t,o)do for all s> 0.
0 0

Indeed, for an arbitrary number 7 > 0 being fixed, define the function
w(t,z) =v(t+7,z) on [0,00) x R2. Then we see that w is in C([0,00); L' N
L*?) and a nonnegative mild solution of (CP) corresponding to the initial
data v(7) € L*NL*3. Since [p, v(7)dzr = M < 8r, applying Proposition 4.1
yields that for each ¢ > 0,

S S s
(5.4) / v'(t+7,0)do = / w*(t,0)do < / Uy(t,o)do for all s> 0.
0 0 0

We observe ||v*(t+7) — v*(t)||; — 0 as 7 — 0 by the contraction property of
the decreasing rearrangement, and hence, letting 7 — 0 in (5.4), we conclude
(5.3).

Now we can apply Proposition 5.1 as f = v(t) and ¢(t) = Un(¢) (¢t > 0)
by virtue of (5.1), (5.2) and (5.3), and obtain v(¢) = Uy (t) for every t > 0.
Thus we establish Theorem 5.1.

6 Remarks on another parabolic-elliptic stem
of drift-diffusion type

Consider the following Cauchy problem for a parabolic-elliptic system of
drift-diffusion type in R?:
Ou=Au—V-(uVy), t>0,z€R?
(KS),, { =AY + 1) = u, t>0,z € R
u(0,z) = ug(x), r € R2.
The difference between (KS), and (CP),, is only the equation on 3. For

a nonnegative initial data ug € L!, let (u,7) be a nonnegative solution of
(KS),, on the time interval [0,T), and define the function

H(t,s):/ w(to)do, 0<t<T, s3>0,
0

where u* is the decreasing rearrangement of u with respect to z. Similar to
the way the differential inequality (3.2) is derived, we obtain that for almost
allt € (0,7),

OH — 4ns0*H — HO,H <0, a.a.s > 0.
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Assuming M := fR2 up dzr < 8, by the similar procedure to that in Section
4 we deduce that for all t € (0,7),

/ u*(t,a)daﬁ/ Uy (t,o)do for all s >0,
0 0

lu@®llp < IUn(B)]l, for all 1 <p < oo,

where U); is the radially symmetric self-similar solution of (CP) satisfying
(1.3). Hence the solution (u,%) exists globally in time and the following
decay estimate

lu@®)ll, < C 2, ¢ 0
holds for every 1 < p < o0, where C is a positive constant depending on M
y P
and p.
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