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Abstract

A Bayesian power-utility maximization is considered, where mean-
return-rates of risky assets (or, more precisely, the market price of risk)
is an unobservable random vector and the Arrow-Pratt’s risk-aversion
parameter is larger than 1. It is shown that the optimal expected utility
grows hyperbolically in the long run if we omit the effect of the risk-free in-
terest rate. This provides a sharp contrast to the results of “non-Bayesian”
settings: for instance, in the case of constant market price of risk, the op-
timal expected power-utility grows ezponentially in the long run.

Keywords: Bayesian CRRA-utility maximization, partial information,
long-term growth rate, hyperbolic growth, hyperbolic discount, Kelly port-
folio, fractional Kelly portfolio.

1 Introduction

In the present article, we introduce major findings of Hayashi, Miyata and Sekine
(2012), where the expected power-utility maximization of terminal wealth

(1.1) U™ (z) = sup Euy (X77)

is considered in a continuous-time financial market, consists of one riskless asset
and n-risky assets. Here, we use notation for the CRRA-utility function

z!=7

u('Y)(m) = 1 _ ’Y’




where Arrow-Pratt’s relative risk-aversion parameter is set as
v >1,

and we denote by X7°" the wealth of a self-financing investor at the terminal date
T € Ry, where z € Ry, is an initial wealth and 7 := (m¢);¢[0,7) is & dynamic
investment policy. In particular, we assume that the so-called market price of
risk vector ) is a hidden, unobservable random variable, which means that (1.1)
is a partially-observable (or Bayesian) optimization problem (see Section 2 for
the detail of the setup). For this problem, we are interested in the long-term
growth rate of optimal expected utility, i.e., writing

T
UTN(z) = ugy (x) exp { / 8;log U+ (fv)dt} ,
0

we are interested in the asymptotic behaviour of 9; logU®*")(z) as t > 1. We
obtain the following hyperbolic long-term growth rate,

1
(1.2) orlogUT M () = (1 — y)r — g? +¢(T) as T — oo,
where r is the constant risk-free interest rate and ¢(T) is a function “smaller”
than 1/T as T — oo (see Proposition 5.2 and Remark 5.2 for the details). It
is interesting to see that (1.2) provides a sharp contrast to the result of “non-
Bayesian” case: if the market price of risk vector ) is constant, then, we have
the exact expression,

87 log U™ (z) = (1 — =) ( ; %m?) |

(see (3.3)), i.e., this optimal non-Bayesian power-utility grows exponentially
with respect to T, and the (norm) of the market price of risk vector affects the
growth rate. It is also interesting to see that the right-hand-side of (1.2) has a
“universal” value: it is independent of the law of A (except for the residual term
¢(T)), and the hyperbolic term depends on the number 7 of risky-assets (= the
dimension of driving Brownian motion) only.

Remark 1.1 (“Endogenous” Hyperbolic Discounting). The above hyperbolic
growth of optimal power-utility plays an interesting role in the lifetime con-
sumption maximization problem,

o0 t ;
(1.3) UM(z) := supE exp {—/ p(u)du} u(~)(c)dt,
(m,c) 0 0

which is studied in Miyata (2012), [15]. To consider (1.3), a similar market
model with partial information is employed and a Bayesian self-financing in-

vestor with the wealth process (X;"™°);>o is considered, where z € R, . is an
initial wealth, 7 := (7;);>0 is a dynamic investment policy, and ¢ := (c;)¢>0 is
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a dynamic consumption plan, and, for a given discount rate process (p(t)):>0,
the maximization is considered with respect to both 7 and ¢. Actually, with the

hyperbolic discount rate
B
t) =06+ ——
p(t) =0+ 70—,

we can characterize the critical values (4, 8) to ensure the solvability of (1.3), i.e.,
|[UM(z)| < oo holds if and only if one of the following conditions are satisfied,

(a) >4, or (b)d=¢dand B> j

(see [15] for details). Among mathematical finance literatures, Zervos (2008),
Bjork and Murgoci (2010), Eckland, Mbodji and Pirvu (2011), and so on treat
optimal consumption problems on finite horizon with hyperbolic discounting.
They all consider the problems with a priori hyperbolic discounting rates. It is
interesting to see that, in Bayesian setting, contrarily to the above-mentioned
studies, hyperbolic discounting is derived as a natural consequence, i.e., the
critical and “minimal” discounting rate

contains a hyperbolic term.

The organization of the present article is as follows. In Section 2, we for-
mulate our financial market model with partial information. After introducing
the setup, in Section 3, we mention about the standard baseline results: Mer-
ton’s optimal power-utility result, which grows exponentially with respect to
the terminal time 7. In Section 4, we introduce the results on Bayesian CRRA-
utility maximization of terminal wealth, which is studied in Karatzas and Zhao
(2001). In Section 5, we analyze the long-time asymptotics of the optimal
Bayesian CRRA-utility, and observe its hyperbolic growth in power-utility case.
In Appendix, we mention about a dynamic programming approach to solve our
Bayesian CRRA-utility maximization.

2 Market Model

Consider a continuous-time financial market, consisting of one riskless asset and
n-risky assets. The price process S? := (S?):>0 of the riskless asset is given by

(2.1) S9.=e™,

where r € Ry is the constant risk-free interest rate. The price process S :
(81,...,8™)T7, St := (8);»0 of n-risky assets, where (-)T denotes the transpose
of a vector or a matrix, is defined in the following way: Let (2, F, ]P’) be a
standard probablhty space endowed with the n-dimensional Brownian motion
= (W,...,W™)T, Wi := (W});>0, where Wy € R" is constant, and the



n-dimensional random variable A, which is independent of W. The law of ) is

denoted by v, i.e., 3
v(dz) :=P()\ € dz).

We alway assume

(2.2) /Rn |z|lv(dz) < o0

(or a stronger condition (4.1)). We call this probability space the reference
probability space. On (R, F, P, (F;):>0), where

Fi = o(Wy;u € [0,1]),
we define
(2.3) dS, = diag(S;)o(t, S;)dWs, So € R,
where 0 : Ry x R} 3 (¢,y) — o(t,y) € R"*™ satisfies ¢/ < 00" (¢,y) < col
for any (,y) € Ry x R with some constants 0 < ¢; < ¢z and diag(z) denotes
the diagonal matrix whose (i,1)-element is equal to the i-th element z* of z :=
(z',...,2™)T € R™. The stochastic differential equation (abbreviated to SDE,

hereafter) (2.3) has a unique strong solution, which implies that F; D ¢(S,;u €
[0,%]). Moreover, we see that

¢
(2.4) W, = W, +/ a(u,Sy,)™? {diag(Su)'ldSu — rldu} ,
0

which implies that F; C o(Sy;u € [0,t]). Hence, we deduce the relation
(2.5) Fi = 0(Sy;u €[0,¢])

for all £ > 0. We next define the filtration (Gt)t>0 by

(2.6) G = F Va(N),

and the probability measure P on (£2, V;>0G;) that satisfies

(2.7) dP|g, = Z,dP]g,

for each t > 0, where

T gy PP
Zt:-——exp A (Wt_WO)—Tt .

We call P the real-world probability measure. By Cameron-Martin-Maruyama-
Girsanov’s theorem, the process W := (W;)¢>o0, given by

(2.8) W := W, — M,
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is a (P,G;)-Brownian motion. Combining (2.3) and (2.8), we obtain the P-
dynamics of S,

dS; = diag(S;) {u(t, St)dt + o(t, St)dWi}, So € RY,,
where we define the mean-return-rate vector
p(t,y) :=rl+o(t,y)A

with 1 := (1,...,1)T € R™. Here, note that W and X are independent under the
real-world probability measure P since the increment Wy, — W;, of the (P, G:)-
Brownian motion W is independent of Go = o(}). Also, note that P(A € 4) =
P(\ € A) = v(A) for any A € B(R").

Remark 2.1. For agents having information (F;);>0, the market price of risk
A= {07 p-r1)}t,S)

of S, which is a Gp-measurable random variable, cannot be directly observed.
It is a hidden variable, which has to be estimated. The law v of ) is called the
prior distribution of A, and the conditional expectation

(2.9) M =E\F], t>0,

where E[-] denotes expectation with respect to I, is called the Bayesian estimator
of A. From the Bayes rule, we see

5 - E[ZF

(210 AT

where we denote by E[-], expectation with respect to P. The denominator of
(2.10) can be expressed as

(2.11) E[Z:|F] = F(t, W, — Wo),
where
(2.12) F(t,y) :=/n exp (zTy — %t) v(dz),

and the numerator of (2.10) is equal to VF(t, W;). So, we see that
(2.13) At = Viog F(t, W, — Wp).

Remark 2.2. W, which is expressed as (2.4), can be interpreted as “cumulative
Sharpe ratio of the market”:

t
W, =W, + / o (s, So)~" {diag(S,)~1dS, - ridt}
0

t
=Wpy + / (“vol. matrix”);!(“return of Ss” — “return of S2”1).
0



Next, on this financial market, consider a self-financing investor whose avail-
able information flow is (F;)¢>0. The wealth process X*7 := (X;"");>0 of the
investor is defined by the SDE

n i n ) 0
o1 axer—xer {3 At (1-3°A) S xra

i=1 i=1
where € R, is the initial wealth of the investor and 7 := (#!,...,7")7,
7t := (7})t>0 is a dynamic investment strategy of the investor, which is Fy-

adapted. For a given finite time horizon 7' € R, ; and initial wealth z € R |,
consider the utility maximization of terminal wealth,

(2.15) UTY(z) := sup Euy) (X77),
neAT
where
T s 041
T 1 >0, )
(2.16) up(@) =4 1-v "7
logz ify=1

is the CRRA-utility function with Arrow-Pratt’s relative risk-aversion parame-
ter v and

n-dimensional F;-progressively measurable,}

fOT |f:]?dt < 0 as.

oy = {(ft)te[O,T]

is the totality of admissible investment strategies.

Remark 2.3. Similar market models with partial information, where unob-
servable random market price of risks are employed, are studied in Brennan
and Xia (2001), Cvitanié¢ et. al. (2006), Karatzas (1997), Karatzas and Zhao
(2001), Lakner (1995), Pham and Quenez (2001), Rieder and Béauerle (2005),
Xia (2001), and Zohar (2001), for example.

3 Exponential Growth of Optimal Power-utility
with Constant )\

Before analyzing Bayesian utility maximization (2.15), in this section, we con-

sider a special “non-Bayesian” situation: let v(dz) := d,,(dz) be the Dirac’s

delta measure, i.e., let A := Ay € R™ be a constant vector. Then, the solution

to (2.15), which has been originally investigated by Merton (1969, 1971), is now
well-known and described as follows:

(A) The optimal investment strategy #(7) := (7%§7))t€[0,T] € of7 is given by

31) 4= %(aaTrl(u A %(aT)*(t,st)A.
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(B) The associated optimal wealth process (Xt(.”)te[O,T] is written as
1
32) X .= x2"" = zexp {;/\T (W + At) + (r - —|,\|2) }

(C) The optimal utility is computed as

(3.3) UTD(2) = Bugy (R57) = ugy) (el *#H7) .

In this constant \ case, since the optimal strategy (3.1) is T-independent, we
can re-define the investment strategy #(7) := (7?57) )t>0 by (3.1) and the wealth
process X := (Xt(") )t>0 by (3.2) on the time interval [0, 00). Let

& = {(ft)t20§ (ft)te[O,T] € o forall T > 0} .

We then see the following long-term optimalities of X0, We note that, for
obtaining (II)-(IV) below, the ezponential growth of optimal power-utility (3.3)
(with v # 1) with respect to T is essential.

(I) (Mazimizing long-term growth rate). We have that, for any 7 € &,

hm —1—10ng"< 11m —;:logX(l) ~-I'(1) as..

T—co T
where
/ 1 2
-I'(l):==r+ §|>\| .
For the proof, see Theorem 3.10.1 of Karatzas and Shreve (1998) [8].
(II) (Mazimizing long-term growth rate of expected power-utility). When 0 <
v < 1, we see that, for any 7 € &,

T 1 S\ . 1 O
Tl—l—l-;réo T log Eu(y) (X77) < Tll_r)r;o T log lEu(7)(X§17)) =I'(y).

When v > 1, we see that, for any 7 € &,

lim %logEU(y)(X;w) 2 hm T log IF“"‘('v)(‘)((w)) =T

T—oo

Here, we set

r() = (1= ) (1 3-1AP).

(III) (Mazimizing long-term upside-chance large deviation probability). Let 0 <
v < 1. We have that, for any 7 € &,

1 1 z,m im L 1 oe O
— fad LEEN < — —
lim —logP (TlogXT > k(’y)) < Th—{réoTIOgP (TlogXT > k(v) ),

T—oo T
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where the target growth rate k() > —I"(1) is defined by
, 1
(3.4) k(v) = -I"(y) =r+ 2—7—2I>\|2'

For the details, see Pham (2003).

(IV) (Minimizing long-term downside-risk large deviation probability). Let v >
1. We have that, for any 7 € &,
lim 1 logP 1 log X7)" < k(y) ] > lim 1 log P 1 log X < k()
Tooo T T r = = T—oo T r = ’
where the target growth rate r < k(vy) < —I"(1) is defined by (3.4). For
the details, see Hata et. al. (2010).

Remark 3.1 (Kelly and fractional Kelly portfolios). The log-optimal portfolio
#(1) is sometimes called the GOP (Growth Optimal Portfolio) by the property
(I), or the Kelly portfolio. The latter name comes from the pioneer work by Kelly
(1956) [10]: the optimality in (I) can be interpreted as a corollary of the result
obtained in [10]. Also, the power-optimal portfolio #(*) with the risk-aversion
parameter v > 1 is sometimes called the fractional Kelly portfolio, which has
been proposed to decrease the “risky” features of the “full” Kelly portfolio #(1):
see Chapter IV and Section 27 of Chapter III of Maclean et. al. (2011) [12].
Note that the above (II) and (IV) characterize long-term optimalities of the
fractional Kelly portfolio #(V) (y > 1).

4 Bayesian CRRA Utility Maximization

In this section, we introduce the solution to our Bayesian CRRA-utility maxi-
mization (2.15), which has been obtained in Karatzas and Zhao (2001), [9], in
an essential form.

For v =1, i.e., log-utility case, we see the following.

Theorem 4.1 (Theorem 3.2, Example 3.3 and 4.4 of [9]). Assume
(4.1) |2|%v(dz) < oo.
]R'n.
For any T,z € Ry, the following are valid.
1. The optimal wealth process X(T:1) := (Xt(T’l))te[o,T] is given by
(4.2) XY = geF(t, W, — W),
where we use (2.12).
2. The optimal strategy #(TD) = (#{TV) )ielo,7] that satisfies

)

XTD = x25 "0 e 0, 1]



70

is given by

43)  #"Y = (o(t,8) ") (YFE) (t, Ws — Wo) = (0(t, S5)T) 1A,

where we use (2.9).
3. The optimal expected utility is expressed as

UTD(z) =logz + T + EF(T, Wy — W) log F(T, Wr — W)
T
=logz +rT + %E / | Ae|2dt.
0

Proof. The first two assertions are derived directly from Example 3.3 of [9]. To
see the third assertion, we first deduce

EF(T, Wr — Wp) log F(T, Wr — Wp) = Elog F(T, W — W).

Use It6’s formula and (2.13) to see that

- - LI 1 [t.
(4.4) log F(t, Wy — Wp) =/ Adw, - 5/ |Au|?du
0 0
t 1 t
= / AdBy + = / [Aul?du,
0 2 Jo

t
Bt:=Wt—//\udu, t>0
0

where

is a (P, F:)-Brownian motion by Cameron-Martin-Maruyama-Girsanov’s for-
mula. Note that

t t
E / o |2du = / QuE [EDF]l® < EPA? < oo
0 0
for any ¢ > 0. Hence, it follows that

- . 1 T .
Elog F(t,W; — Wo) = SE / | Ae|2dt.
0
O

Next, we consider a power-utility, which is more risk-averse than the log-
utility, i.e., employ (2.16) with

(4.5) v € (1,00).
To treat this situation, we introduce, for 0 <t < T < o0,
(4.6) GIN(t,y) =E [F(T,y + W, - Wo)3 ]

1 1 |z2
= | F(T 12)5 — e
- (T, y + Vtz2) (27T)7e dz




where we use (2.12). Here, recalling that

F(t,y) = exp (%W) /Rn exp (—-;— z - %m v(dz) < exp (%Iyﬁ) :

we see that

2 2
S/ . ly+ Vel |2
re (2m)2 24T 2

“(575) = (s

hence, the integral in (4.6) has a finite value. Moreover, we see that, for 0 <
t<T < o0,
VG (t,y) <K [(VF - F5)(T,y + W, - W)

_ 122

= (VF'FL:'—I)(T,y+\/‘t-z) e 2 dz

1
Rn (2m)%

and that the above integral has a finite value. Indeed, when t = 0, these
equalities are trivial, and, for 0 < ¢t < T, we deduce that

vr( ) <exp (10 [ 1elen (<5 s = Y[ ) wia) < exp (110 iy

and that

(VF-FL;)(T,y+ \/Ez)‘ 271 763"7—(12

(2m)%
= 1 ly + Viz|? |z|2}
<ED [ — By
<EWN | @ eXp{ 9T 2 [

—E|) (%)_exp{%}

We now see the following.

Theorem 4.2 (Theorem 3.2, Example 3.5 and 4.6 of [9]). Assume (2.2) and
(4.5). For any T,z € Rsg, the following are valid.

1. The optimal wealth process X (T = (Xt(T’w)te[o,T] is given by

rt G(T”Y) (T - t, Wt - Wo)

(Ty) _
(4.7) XV =ze G (T, 0) ,

where we use (4.6).
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2. The optimal strategy #(T7) := (ﬁt(T’Y) )te[o,T] that satisfies

#(Tv)

XTI = xo t€[0,T]

is given by

L VGTN(T — ¢, W, — Wo)
GTN(T — t, Wy — Wo)

(48) " = (o(t,S)T)
3. The optimal expected utility is expressed as

~
(4.9) U™ (z) = u(.,)(xeTT){GW)(T, 0)} :

In [9], the so-called martingale method is employed to solve this problem
with partial information. In Appendix, we describe a different solution method,
using a standard dynamic programming.

Example 4.1 (Gaussian Prior). This example treats a slight generalization of
computations demonstrated in Cvitanié et. al. (2006). Let » ~ N(I, L), i.e.,

T T z)} dz,

1
v(dz) = (2m)/2/det(L) exp{ 2

where L € R™*" is a symmetric and positive definite covariance matrix and
l € R" is a mean vector. Then, the Bayesian estimator (2.9), which is expressed
as (2.13), is computed as

(4.10) Mt =Vieg F(t,W,). = (L™ +tI)"* (W, + L™1).

Indeed, we see F(t,y), given by (2.12), is computed as
1
F(t,y) =exp {E(y + LWL+t Ny + L)

Lyl

5 5 log det(I + tL)} .

Let
Kiy:=(L" '+t '=L({I+tL)" = ([ +tL)"'L
and define, for 8 € (0,1),

PO (9) = Kr {w (I - t0K7) "' + K;l} Kr.

We recall that
I —t0Ky =I —t6(I + TL)™'L
=(I+TL)"Y{I+ (T -t)L}
>(I+TL)"'>0



for all ¢ € [0,T] and 6 € (0,1). So, P{T)(6) is a well-defined, symmetric and
positive definite matrix. Also, we may notice that (Pt(T)(G))tG[O,T] solves the
differential Riccati equation

%P =0P%? Py=Kr.

Using these functions, we deduce that (4.6) is calculated as
(4.11) G (t,y)

0
=exp| o (L +y)TRTO)(L 7 +y)
-3 {I"L™* 1+ logdet(I + TL)} - 3 logdet (I — tOK7)|,

where we set

2| =

Indeed, defining

ki :=K;L™'l and
ke =" L7 K, L™ — 1T L™ — log det(I + tL),

we see
GTN(t,y)
1 ¢ -1
=expq 0 5Y KTy+kTy+§liT

1
X / Lﬂ exp <6 EzTKTz +Vilkr + K7y) Tz | — =|2|* } dz
re (27)2 2 2

=exp [9 (%yTKTy +kiy + %KT) — %log det (I — t0K7)

2

+ t—z—-(L”ll + )" Kr (I - taKT)_1 Kp(L™+ y)} ,

hence, the expression (4.11) is obtained from this calculation. Inserting (4.11)
into (4.8) in Theorem 4.2 and combining this with (4.10), we obtain

A 1, .. o
1, 1o B .
=;(UT) L(t, Sy PED, (%) (L™t 4+t .
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5 Long-time Asymptotics

5.1 Log-optimal Case

First, consider the log-utility case, assuming (4.1). Then, both the optimal
wealth (4.2) and the optimal investment strategy (4.3) are T-independent. So,

we re-define
by (4.2) and

by (4.3). We may assume that F; (¢ > 0) is the P-completion of oc(Wy;u < t).
We then see the following.

Proposition 5.1 (Example 5.1 of [9]). For any 7 € &, it holds that
(5.1) m LElog X5™ < Tim ~Elog X = r + ~E|A?
) T—oo T T —“r5T T 2 '
Proof. From Proposition 4.1, we can deduce that
fim ~Elog X2 < Tim ~Elog X
Tooo T 4T = T—oo T &A1

holds for any = € &. Using (4.4) and Fubini’s theorem, we can see that the
right-hand-side of the above is equal to

Fr ey 1 T 3 12
(5.2) r+Tanc1’o-2-T | E|A¢|*dt.
Recalling the definition (2.9) of At, we can apply the martingale convergence
theorem to (A:):>0 to deduce that

(5.3) Moo 1= Jlim At = E[NFw] P-as.,

where Foo := Vi>0F:. Moreover, we see that Ao = A, P-a.s.. Actually, from
(2.8), we see that
1
t
From this, we deduce that lim;_, %Wt = ), P-a.s. since we have lim;_, %Wt =
0, P-a.s. by the strong law of large numbers. Hence, the %#,-measurability of
A follows. So, we deduce that (5.2) is equal to the right-hand-side of (5.1). O

W, = %Wt+,\.

Remark 5.1. We can also deduce that, for any 7 € &7,

—_— 1 . —_— 1 g} (1) 1 2
— L — —_ —_ -9..S..
llm T log XT llm T log XT 7 + 2 |A| P a.s



Indeed, the above inequality follows from Theorem 3.1 of [8]. To derive the
expression of the right-hand-side of the above, using (4.4), we write as

1 1

log)zig,l) =r+ 'J:MT + _Q_T_<M)T’

1
T
where we define .
Mt = / 5\,1- dBu
0
We first deduce that

1 N N 2
Jim FM)r = fim 2 [ Al = P Pas,

where we recall 5\t — A, P-a.s. as t — co. We next deduce that

. Mr (M)t
= lim
T—oo T T—o0 (M>T T

=0,

where the strong law of large numbers for square-integrable martingales is ap-
plied, recalling lim7_, o (M)T = 00 on {A # 0}.

Remark 5.2. The portfolio #(1) € & is sometimes called the Bayesian Kelly
portfolio.

5.2 Power-optimal Case

We next consider power-utility case. In this subsection, in addition to (2.2) and
(4.5), we assume that

(6.4) wv(dz) = f,(2)dz with f, € L°(R"), which is continuous at 0 € R™.

()
/ exp <-% Iz — z|2) v(dz),

We define two functions,

o(z) = (%)
(t,z) = (-237;)

Eh (? + )\) = h(z)y(t,z)dz
Rn

0|3

w3

recalling that
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for any bounded Borel measurable function h : R — R. Using these, we see that

(5.5) GTM(¢,y)
1

_ ly+ vEz? [ (2m)? y+viz\ |’
()T () exp {
“\T T—t) TPl2T -0
n 2 ks
YT —t\? T —t Vi y+Viz\?
x /Rn ( 97T ) xp ( ot |2~ =¥ |Y\D T dz.
Also, when t = T, we see that

(5.6) GTN(T,y) = (2%) » (ﬁ) : exp {2—(7-%5:} vON(T, y),

where we define

TON(T,y) =

[ (=h) e (-2 |- 2
re \ 27T p 29T 'y—ly

We deduce the following.

Q=

2
)w(T,y;z) dz.

1
Lemma 5.1. (1) [¢(t,9)| < [|fullo and [¥ON(T,y)| < |Ifull& for (T,y) €
R+ x R",
(2) tll)rgo Y(t,z) = f,(z) for each z € R™, if f, is continuous at x € R™.

(3) Jim ¥O(T,y) = £,(0)7 for each y € R™.

Proof. (1) The assertion is straightforward to see.
(2) We see that

Jim (t,z) = lim (%) ! /Rn exp (—% Iyl2) fv (w - -\;-t-y) dy = fu(z)

by the dominated convergence theorem.
(3) We see that

|[v(T,y) - £

z 2

vy—1\72 vy—-1 1

< S R PV,
—[Rn (2mT) eXp( T | 7 =17

By the dominated convergence theorem, the desired assertion follows. O

dz.

o(1.52)" - no}




With the help of this lemma, we obtain the following. Recall a notation in
asymptotic analysis: we write “a(T") ~ b(T") as T — c0” when lim7_,, a(T")/6(T) =
1 holds.

Proposition 5.2. It holds that
(6.7 UTN(z) =u(yy(ze'T) {

~uy)(ze’) {

and that

(5.8) X}Tﬂ) = eXp{g' log (1 - %) + 7T — log ¥(T, 0)
1 .- - 1 Wr — W,
— ~ Wol? + =1 T,—1];.

Proof. (5.7) is derived from (4.9) and (5.6), using Lemma 5.1. (5.8) is computed
from (4.7), (5.5), and (5.6). o
Remark 5.3 (Hyperbolic Growth). From (5.7), we see that

8y log U (z) = (1~ )r — £+ €(T),

where we set €(T) := y07 log UO)(T,0). The residual term €(T) is “smaller”
than 1/T as T'— oo in the sense that

/1 " e

which is deduced from Lemma 5.1 (3).

lim - llog £,(0) = 1og ¥M(1,0)| < oo,
T—oc0

Remark 5.4 (Bayesian Fractional Kelly Portfolio). Let v > 1. Define the
Bayesian fractional Kelly portfolio #(7) := (ﬁth) )e>0 € & by

- 1 _ °
w7 = ;(aT) L(t, Sp) e

As mentioned in Remark 3.1, from a practical point of view, this portfolio may
be a candidate for long-term “risk-averse” investment. Write the associated

wealth process as X := (X't("))tzo, ie.,

X0 .= x277 150,

7
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We can deduce that

- . -1 (T .
log Xq(j) = log X;T’"’) + log GTN(T, 0) + 7272 / | A¢|?dt
0

and that . )
T (1) _ c(Tm| _ Y~ 2 p
lim 7 {logXT log X7 } o IAl¢ P-as..

T— o0

5.3 Cost of Uncertainty

In this subsection, we evaluate a “cost of uncertainty of A” in the long run,
which is proposed and discussed in [9]: We consider an “inside” investor, whose
available information flow is (G:):>0, where we use (2.6). Note that, for this
insider, the market price of risk vector A is observable at time 0 and so, it
can be regarded as a constant. The insider’s CRRA-utility maximization is

described as
sup E [u)(X7™)|G0],
wedg
where maximization is considered over the space & of n-dimensional G;-progressively

measurable processes (f;)cfo,r) so that foT |f:|2dt < oo a.s. From (3.3), we de-
duce that o

sup E [uy) (XE™)|Go] = ugy) (2ol +FHIT)

nef

Let
ﬁ(T:"/) (3;) :=E | sup E [U('y) (ij"ﬂ)lgo]
TeEAf
=E [u(y) (el HP1IT)]

be the expected optimal utility for the inside investor, and we are interested in
evaluating the ratio of two optimized expected utilities U(T"") (z) and U(T7)(z).
We then see the following.

Proposition 5.3. It holds that

(5.9) UTD(z) ~TTV(z) asT — 0
and that, for v > 1,
1—21 n
(5.10) UTN(z) ~ T () (—7—1—1) as T — oo.

We may interpret that, for log-utility-investors, “cost of uncertainty of A” be-
comes negligible as T — oo, while for power-utility-investors who are risk-averse
than log-utility-investors, the “cost of uncertainty of \” does not disappears even
when 7' — oo.
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Proof. We see that, from Theorem 4.1,
UTN(z)  logz+ (r+iEA?)T
UTN(2)  1og ¢ + (r + 5 fOTJEIS\tht) T
7 logz + (r+ iE|AJ?)

T logz + (r + 55 OT]Elj\tlzdt)

—1 asT — o0

since limr_,c0 % fOT E|\;|2dt — E|A]? as we see in Proof of Proposition 5.1.
Hence, (5.9) follows. To obtain (5.10) with v > 1, we write the optimal expected
power-utility of the “insider” as

O (z) =u(,) (') / e~ T g, (2)dz.
Rn
By Laplace’s method, we see that

lim {Tﬂ;l_)}f / eTETE f(2)dz = £,(0)

T—o0 27y

Hence, it follows that

ﬁ(T,v)(x) ~ Uy (xeTT) {Z:I_ZE (T:Vj) }E f,(0) as T — co.

Combining it with Proposition 5.2, we complete the proof. W
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A Appendix: HJB Approach

In this appendix, we sketch a standard dynamic programming approach for
solving Bayesian CRRA-utility maximization (2.15), which is different to the
martingale method, employed in [9]. First, we reformulate (2.15), introducing
a measure-change. Note that

Eu(y)(X37™) = EZruy) (X37) = EZru) (X2™),

where we write 3 5 3 3
Zt = ]E[Ztlft] = F(t, Wt - Wg)

and use (2.7) and (2.11) since X*™ is F;-adapted. Combining (2.1), (2.3) and
(2.14), we see

dXE™ = X {rdt +al ot St)th} XS =g,
So,
d(X7T)Y = (XFP)Y [(1 -7) {r - % |JtT7rt|2} dt+ (1 - v)ﬂzatth] )

Hence, we have
T
1- —y (1— 1-~v 2
(X517 = 270" My (1 = 7)o m) exp { S [ oy dt} ,
where we define
t t

(A1) Mi(a) = exp (/ oI dW, — %/ |au|2du) .

0 0

Let %_,Sl) be the totality of n-dimensional progressively measurable process p :=
(Pt)tcjo,r} on the time-interval [0,T] so that fOT |pt|?dt < oo a.s. and that

EMr((1 -v)a)=1. Fora € %121), we define the probability measure If”g?‘) on
(2, Fr) by the formula

aB

= Mi((1 —7v)a), tel0,T].
Fi

By Cameron-Martin-Maruyama-Girsanov’s theorem, the process (Wt(a))te[O,T]y
defined by

¢
Wt(a) =W, — (1 - ’Y)./o aydu,

is an n-dimensional (]f”;?‘), F:)-Brownian motion. Recall that, when a:=0 "7 €

%qgl), we have

(A.2) logEr(XT)'=7 = (1 —v)(logz + rT)

=(c) 7 = v1=7) [T 2
+ logE}.” exp § log F(T, Wy — W) — 5 lag|” dt 3,
0
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where E{*)(-) denotes expectation with respect to P
We now consider, for 0 <t < T < o0,

(A3) VD(t,y) =

_ T—t
inf log ]Eg *) exp {log F(T\Y. (y)t Wo) + _’ZL’_‘/z_l_)_ / Iaslzds} ,
0

a€EUT—+

where we set a suitable %r_;, a subset of %él_)t, and define the process (Ys(y)) s€[0,T—1]
by
aYW = (1 - y)agds +dW, ¥V =y.

The associated HJB equation is written down as

_ _1 2 : _ T Y(y=1), 2
(A1) oV =3 (AV +|VV]?) + alenlfn {(1 va' VV + 5 lal® ¢,

V(T,y) =log F(T,y — Wo).

Here, we see
2

(1-7)a"VV + 7(7 )I |2 = —g—z——ll 'a - %VV

y-1 2
X vV,
AL
So, the minimizer in (A.4) is given by

Vv

_ 1
&= -
Y
and (A.4) is rewritten as

s _8V =-;-AV + %IVVP,
V(T,y) =log F(T,y — Wp).
Noting that L := e7" satisfies
~a,L=3AL, L(T,y)=F(T,y-Wo)%,
we deduce the expression for the solution to (A.5)
V(t,y) = ylog & [F(T, Wy — Wo) | W =]
From (A.2) and (A.3), we see that the relation
UT(z) = ug(zeT) exp {717 (0, Wo) }
holds. So, we can deduce the expression
U (z) = uy (') {E [F(T, Wr ~ Wo)F] }

which is nothing but the representation (4.9). After demonstrating the so-called
verification steps, we can establish all assertions in Theorem 4.2.



