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Abstract — In this article, a residual evaluation of operator equation is considered in the framework
of computer-assisted proof. Our computer-assisted approach ensures the existence and local uniqueness of
weak solutions to some nonlinear partial differential equations. Based on Newton-Kantorovich theorem, our
numerical method is a variant of existing methods such as [1, 2, 3, 4]. Residual evaluation for operator
equation plays important role in validating numerical solutions. In order to get accurate residual evaluation,
some smoothing techniques have been proposed. Main objective of this article is to obtain a sharp bound
evaluation with high order Raviart-Thomas mixed finite element.

1 Introduction

Let Q be bounded polygonal domain in R? with arbitrary shape. R is the set of real numbers. In this article,
we are concerned with Dirichlet boundary value problem of the semi-linear elliptic equation of the form:

—-Au = f(Vu,u, ), in Q, (1)
u =0, on 90

where f : H}(Q) — L?(Q) is assumed to be Fréchet differentiable. For example, f(Vu,u,z) = —b- Vu —
cu+ cou® + cau® + g with b(z) € (L®(Q))?, ¢, c2,c3 € L®(R) and g € L?(NQ) satisfies this condition. Verified
computation approach will be adopted to explore the existence and local uniqueness of weak solution of
(1). Namely, if an approximate solution is given by certain numerical method, we will try to validate the
existence of exact solution in the neighbourhood of the approximation. In the classical analysis of variational
theory, weak solution of Dirichlet boundary problem (1) is defined in variational form:

Find u € H}(R), satisfying (Vu, Vo) = (f(Vu,u,z),v), for all v € Hj(R). (2)

Here,
(Vu, Vo) := / Vu-Vudz and (f(Vu,u,z),v):= / F(Vu,u, z)vdz.
Q Q

Now we put V = H}(Q) and rewrite f(Vu,u,z) as f(u) for simple form. Let us define linear and nonlinear
operators A, N : V = V, (Au,v)v := (Vu, Vv), (N (u),v)v := (f(u),v). Furthermore, we define F : V. — V
as F(u) := Au — N(u). The original problem (1) is equivalent to the following nonlinear operator equation:

Find u € V, satisfying F(u) =0. 3)
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F :V — V is assumed to be Fréchet differentiable mapping. Let & € V, C V' be an approximate solution to
€q.(3). Fréchet derivative of F at 4 is denoted by F'[d} : V — V. In order to verify the existence and local
uniqueness of the exact solution in the neighborhood of 4, we consider to apply the Newton-Kantorovich
theorem [5, 6] to eq.(3).

Theorem 1. Assuming Fréchet derivative F'[i] is nonsingular and satisfies
17 @~ F@)ly < o

for a certain positive . Then, let B(4,2a) := {ve V:|lv—-1illy <2a} be a closed ball centered at 4 with
radius 2a. Let also D D B(4,2a) be an open ball in V. We assume that for a certain positive w, it holds:

176 (F' v} = F'w)llvy € wllv - wllv, Vv,we D.
If aw < % holds, then there is a solution u € V of eq.(3) satisfying

1—\/1—2aw. @)

lle = dllv < p:=
w

Furthermore, the solution u is unique in B(4, p).

Remark 1. To apply Newon-Kantorovich theorem, we will calculate the constants below explicitly.

7@ v,y < C1, (5)
IF@)lv < Capn, (6)
|F'v] = Flulllvy < Csllv-w|v, Vo,weDcCV. )

Therefore, if C2Ca 5 C3 < 1/2 is confirmed by verified computations, then the existence and local uniqueness
of the solution are proved numerically based on Newton-Kantorovich theorem.

The main topic of this article is to evaluate the residual bound for F(4), i.e.
IF @]l < Cop (8)

In the following, we would like to introduce several ways to evaluate eq.(8). Suppose function 4 € V}, to be
an approximation of exact solution of eq.(3), where V}, is certain finite element subspace V;, C V. Our aim is
to obtain good estimation of this residual bound. First, we introduce several evaluation methods in Section
2. Second, we show numerical results in Section 3 to demonstrate the efficiency of our proposed method.
For reader’s convenience, we write down the details for implementation of Raviart-Thomas element method
in appendix.

2 Several ways for residual evaluation

In this section, we would like to consider the residual evaluation in the form of

IF@y = sup LE=N@)y - 1(VE, Vo) = (£(3), v)]

0wV llvllv O#veV Ilollv

in several ways. If an approximate solution satisfies & € H2(Q2) N V4, it follows

I(Vzi, Vv) - (f(’[t), U)l = sup I('—Aﬁ, v) - (f(ﬁ)7v)' <C 2||Aﬁ + f(a)”L2 (9)
llvllv 0#£veV llvllv - '

|F7@llv = sup
0#veV

Here, C, , means Sobolev’s embedding constant, which satisfies ||ullzr < Ceplulmr, 2 <p < o) forueV.
We point out that the evaluation (9) does not work when V}, is taken as C? finite element functions, such
as P (piecewise linear) or P; (piecewise quadratic) elements. This is because A# does not belong to L?(Q)
anymore.

To weaken the condition on i, we will introduce several methods that do not need the H2-regularity of
approximate solution. The first method to be introduced is fast but gives little rough bound. The second
one has accurate estimation with smoothing technique. The third one is based on Raviart-Thomas mixed
finite elements [9, 10, 11], which can provide better bound for residue if higher order elements are used.
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2.1 Simple bounds

Let V}, be a finite element subspace of V, such that Vj, := span{¢i,...,¢n}. Let up := Pru € V,, be an
orthogonal projection of u € V, defined as (V(u — ug), Vug) = 0, Vv, € Vj, In this part, we will show simple
upper bound of residue. In the following, we denote v, by the projection of v, i.e. Ppv. From the classical
error analysis, such as Aubin-Nitsche’s trick, we have

lv = vnllze < Cupllv = willv, (10)

lv—wrllv <llvllv and Jlwrllv < llvllv. (11)

Here C) is a priori error constant for projection Pj. The full discussion of this constant on arbitrary domain
is shown in [12]. For vy, € V}, the residual bound of eq.(8) is given using inequalities (10) and (11)

|(Va, Vv) - (£(4),v)|

IF@lyv =
0£veV lvllv
B |(Va, V(v = vn)) — (£(@),v — vn) + (Vi Vun) — (f(@), va)|
= sup
0#veV ”'l)“v
< sup I(f(ﬁ')yv - vh)l + su I(V’&, V’Uh) - (f(ﬁ)7 Uh)l
0veV lvllv 0#veV llvllv
< Cullf@le=+Cr (12)

where the quantity C; is defined by the following procedure

[(Vi, Vor) = (f(@),ve)] [(Vd, Vug) = (f(@), va) [(Va, Vup) = (f(@),vn)] lonllv
vt T o ol * TonT ol
0£veV llvllv oSy, \4 st (111% 1%
< sup |(vu! V’Uh) - (f(’lL), Uh)l = Cr-
0%£0nEVa llonllv

Let €; be &; := (Va, Vé;) — (f(@), i), (i =1,...,n). Since v, € Vj, We can express vp, as Up i= i Cidi-
Let us put ¢ := (c1,...,cn)? and € := (e1, ...,&4)". Let further D be n x n matrix whose (i, j)-elements are
given by (V¢;, V¢;). Then, C, follows

Vi, Vor) — (F(@), nooe
Cr= sup 1VBYU) U@l Zamiaed  ldelele oy pon 0, o)
0F£vn €V [lvrllv ceRr  VctDe ceR* VtDe

From inequalities (12) and (13), we obtain
IF@llyv < Crllf@)llzz + 1D~ l2lelia- (14)

2.2 Accurate bounds with a smoothing technique

The simple bound (14) is a rough bound. Overestimation often causes failure in verification. Next, another
method for evaluating the residual bound is introduced. This is based on the smoothing technique proposed
by N. Yamamoto et. al. [13]. Here, smoothing means to approximate vector Vi by smooth function.
According to [13], if P, (piecewise linear) elements are used for approximate solutions, the residual evaluation
becomes almost the same as the rough bound in (14). On the other hand, using higher order element, this
smoothing technique works very well [14]. Let X, C H!(f) be a finite element subspace that does not vanish
on boundary of Q. Let p;, € (X1)? be the vector function defined by

(pr — Vi,v*) =0, Vo* € (X)% (15)

Namely it is the L2-projection of Vit € (L?(R2))? to pn € (X»)?. pr makes the quantity ||p, — V|2 small.
Further the following Green’s formula holds for py, [13]:

(pn, Vv) + (div pp,v) =0, YveV. (16)
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Therefore, using p, and inequalities (10), (11), (13) and eq.(16), we have
|(Vi, Vo) = (£(2),v)|

lF@lv = sup

0A£veEV ||U|lV

- suwp [(Va, V(v = vp)) = (f(@),v = va) + (Vi, Vor) = (f(@), vn)]
0%veV lvllv

< swp [(Vi, V(v = vp)) = (f(d),v — vp)] ‘c
0£veV llvllv

< swp | (Vi = pr, V(v = va)) + (pr, V(v — vp)) — (f(@),v — vp) | Lc,
0FveV llvllv

< sup IVé ~ prllzzllv = vallv + ||div pn + f(@) || L2lv — vnllz2 +C
0£veV llvllv

< |IVa - paliz + Culldiv pa + f(@)lz2 + |D™ lzle]iz. 1n

One can use the bound (17) instead of (14). The smoothing element pj, is obtained by solving an additional
linear equation (15), which takes extra computational costs. Meanwhile, for a certain good approximate
solution, e.g. using P, (piecewise quadratic) elements, residual bound (17) becomes drastically small [14].

Remark 2. One can consider another evaluation with H(div,Q)-smoothing elements [{]. A smoothing
function g € H(div, Q) satisfying g = Vi and div q + f(4) =~ 0 yields

IF@lv < IVé = gllzz + Cez2lldiv g + f(@)]| 2.

One feature of this estimation is that it seeks the smoothing function in ¢ € H(div,Q) D> (HY(Q))?, which
can provide better approzimation of Vi, compared with the one in eq.(15).

2.3 Raviart-Thomas mixed finite element on triangle element

Inspired by Remark 2, we are concerned with a smoothing technique using mixed finite elements as below.
Here, we would like to introduce Raviart-Thomas mixed finite element [9, 10, 11]. We follow discussions in
[10, 11). Let H(div, Q) denote the space of vector functions such that

H(div, Q) := {¢ € (L*(Q))* : div y € L*(Q)} .
Let K}, be a triangle element in triangulation of 2. We define
Pi(Kp) : the space of polynomials of degree less than & on Kjp,

Rip(0K4) := {p € L*(0Kp) : ple, € Pi(e;)}, for any edge e; of 9K
Functions of Ry(8K}) are polynomials of degree < k on each side e; of K}, (i = 1,2,3). For k > 0, we define

RT.(Kh) = {qé (L*(Kn))? : q= ( Z: )+Ck . ( Z >, ak, bi,s i € Pk(Kh)}‘

The dimension of RT}(K}) is (k + 1)(k + 3). We now introduce basic result about RT:(K}) spaces.

Proposition 1. Let e; be subtense of verter i (= 1,2,3) and i), = (ngi),ngi))t be an outward unit normal
vector on boundary e;. For q € RT(Kp), it follows

{ div g € P(Khp),
q-7ie, € Ri(0K4)-

Moreover, the divergence operator is surjective from RTx(Kp) onto Pip(Kp), i-e. div(RTx(Kp)) = Pe(Kh).
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Proposition 2. For k > 0 and any g € RT(K}), the following relations imply ¢ = 0.

/ g 7 puds =0, Vi € Re(8Kn),
OKn

f g q—1dz =0, Vgx_1 € (Pe—i(Kn))®.
Kn

The Raviart-Thomas finite element space RT}, is given by

RT; = {Ph € (LX()? : pulkn = ( ‘;: ) +ek ( ; ), ak, b, ¢k € Pe(Kn),

pr + 1 is continuous on the inter-element boundaries. }

It is a finite dimensional subspace of H(div, ). Further let us define Mj, := {v € L%() : v|k, € Pi(Kn)}.
It follows div(RTy) = My, (cf. Chapter IV.1 of [11]).

2.4 A residual bound with RT; element

For the residual bound estimation, the smoothing technique in Subsection 2.2 works well to give accurate
bounds. Some general smoothing techniques have been proposed in [2, 4, 13], etc, where smoothing functions
pr € (HY(Q))2 or H(div, Q) are often used. One feature of proposal method is that we can use the basic
property of Raviart-Thomas element, div(RTx) = M, for getting effective residual estimation. For given
fn € My, this property enbables us to define a subspace of RT}, as

th={ph€RTk:divph+fh=0}.

Furthermore, we define v, € M}, by an orthogonal projection of v € L2() such that (v—vp,wp) =0, Vwy €
Mj,. Assuming an error estimate ||[v—vx||r2 < Ca, [Jv]|v for v, € M}, is obtained. Also we define f5 (@) € M}
by the projection of f(i) € L2(Q). Finally, inequalities (10) and (11) give the following evaluation of the
residual bound using pn, € Wy, (4),

[(Va, Vo) — (£(a),v)|

F(i =
IF @) 0#veEV llvllv
_ (Vi = pn, V) + (pr, Vo) — (f(@),v)]
= sup
0AVEV lvllv
< sup (V& — pn, V)| + su |(div pp, + f(@),v)]|
0%veV llvllv 0£veV flvllv
< ||V12 _ ph”L2 + sup l(dlv Pr + fh(u) + f(u) - fh(u)1 'l))l
O#£veV flvllv
= "Vﬂ—ph[|m+ sup I(f(u)—fh(u)vv—vh)l
O#veV vllv
< |IVé = prlle2 + Cm,, £ (@) = fr(@)]|z2- (18)

Remark 3. Proposed estimation (18) holds for k > 0. If the approzimate solution 4 is obtained from Vj,
which has member function to be piecewise (k + 1)-th polynomial. An effective choice of functional space
Wy, is to choose Wy, is subspace of RTy, and M}, spanned by Py, elements. The rate of convergence can be
expect to be || Vi — pp |12 = o(R¥*1) and || f — falle = o(hF+1).

3 Computational result

Now we will present numerical results to illustrate our method. All computations are carried out on Mac OS
X 10.6.7, 2x2.4 GHz Quad-Core Intel Xeon (Westmere) with 64GB RAM by using MATLAB 2011a with



a toolbox for verified computations, INTLAB [16]. We use Gmsh [17] (http://geuz.org/gmsh/) to obtain
triangular mesh. Let us treat the following model problem. Here, 2 is assumed to be hexagonal domain,

~Au = u? +10, in Q,
u=0, on 99.

There are two approximate solutions @;,4y € Vj, given by finite element method. These are displayed in
Figure 1, 2 with the mesh size 27%. For the first approximate solution @, verification results are shown in
Table 1, 2. Here, we use P, (piecewise linear) and P, (piecewise quadratic) elements for getting ;. We
adopt RTp space for Py-element and RT; space for Ps-element.

Comparing two cases in Table 1 and Table 2, we can observe that higher order elements yield improved
result .

Figure 1: 4; (mesh size &) Figure 2: 4y (mesh size {%)
Table 1: 4, : Py, pn € RTy Table 2: 4; : P2, pn € RTy
277 | [IVay = pallze Caon ) 277 | Vi — pallre Can P

0.8535529 0.8784776 Failed
0.4386991 0.4448818 Failed
0.2285006 0.2300250 Failed
0.1133988 0.1137812  0.4449100

0.1157183 0.1177798 0.5753173

0.0388055 0.0390525 0.1437490

0.0164818 0.0165182 0.0573078
Failed due to out of memory

O U W

SO R W

Next, we present results with respect to i which is from P, finite element space. In Table 3, comparison
of each evaluation (14), (17) and (18) implies our proposed one works well. Numeric values on last column in
Table 3 express upper bound of absolute error p using (18) residual bounds. Based on Newton-Kantorovich
theorem, we prove that there is a solution in B(4, p).

Table 3: Residual evaluations for 1o

277  (14) (17) (18) p

8.8164705 0.6179577 0.1838180  Failed
4.4524279 0.3107222 0.0587483 0.2363734
21723425  0.1541978 0.0243075  0.0863220

U W
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A Notes of Raviart-Thomas elements on triangle
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In this part, we would like to note representations of the lowest (RT) and 1st order (RT}) Raviart-Thomas
element on a triangle element K},. Vertices of K are numbered as 1, 2, 3. Their coordinates are (z1,%1),
(x2,92), (x3,y3). Let us denote a; = T;yk — Tkyj, bi = ¥; — Yk, € = Ty — T; where (i, j,k) are even
permutation of (1,2,3). Here, we put subtense of each vertex as e; with direction from j to k. See Kj in

Figure 3. Then it follows

3 (z3,93) 3 (X\Y)
n2 n
€1
e f{h
€3
1 l 2
(z1,41) n3 (0,0) ns (h,0)

Figure 3: Triangle elements K} and K

1 oy »n
les| = (7 +2)/2, D=|1 z2 w2 |=bjex — bicj.
1 z3 y3

Furthermore, the unit normal vector n; on each side is given by

T ng) |ei| ¢ ’

where o = D/|D| is corresponding to the direction of numbering. Namely,

o= 1, (4,j,k : counter clockwise rotation),
1 -1, (44,k : clockwise rotation).

For q € RTy(Kp), degrees of freedom are given by

/ g-n prds, ¢r € Ri(0Ky), for k>0,

8Khn

/ q-Qe-1ds, Qe_1 € (Pe—1(Kn))?, fork>1.
Ky

A.1 RI, element

For py € RTy, the representation of RTp element p, on a triangle K}, is given by

a
Pthh=(a;)+as<z)

(19)

(20)

Let us explain how to determine coefficients c;. Three freedoms are given by the following form, which is

equivalent to (19) in case of k = 0.
Yi = les| pa -
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Figure 4: RTo(K}) Figure 5: RT;(Kp)

Notice that pp - n; = pa|(a; 4;) - 7, we have

1
ngl) né ) xgngl) + yzn(zl) a1 v1/le1] -by —c @ o g2
n(12) ngz) xgn?) + ygnf) ay | =] vfleel | &= o| —=b2 —c2 a2 o | =1 7
n® 0 n® 4 yndd o3 73/ les| —bs —c3 a3 a3 3

Using facts for i = 1,2, 3,
Zai=D, Zbi=Zci=0,
Ybhizi=D, Yaxi=3y cix; =0,
Yeayi=D, Yayi=3 by =0,
and oD = |D|, we have
_Z’Yﬂi __Z"/z‘yi o ~Z%‘
N

Therefore, RTj element on K} can be expressed with freedoms ~;

3 3
=N [ T2 ) b,
ph‘K}, - ; |D| < y - yl ) ;’Yﬂ/’u

where 1); are base functions of RT finite element space.

Remark 4. The image of RTo(K}) is given in Figure 4. Further for ¢ € (L*(R))?, let us define linear
functional, Fi(q) = |e;|{q(z;,y;) - ni} (i =1,2,3). It follows

Q] =

Fi(¢) =65 = { (1): 8 ; ;g: 1<4,5<3.

A.2 RT, element

Next let us consider 1st order Raviart-Thomas finite element. _Degrees of freedom are denoted by v; €
R (¢ =1,...,8). For simplicity, we will transform triangle K} to K}, which has vertices (0,0), (h,0), (X,Y)

in Figure 3.
— (32 1 2\1/2 X\_1(c -bs ) _
h= (b3 +c3)"2, (Y) h(bs o )( by ) D =hy,

I Y e 2 (Y n=_"_(0)
el \ —(X=h) )0 P e[\ X )7 T el \ <k )

In the following, we would like to explain R7} element on K. BT} element py, is represented on K,

o o1 + a2 + agy T
prlg, = ( s + oz + oy ) +(a7x+a3y)< y )
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Coefficients a; are obtained by the following method of determination with respect to ;. For i = 1,2,3,
degrees of freedom are given by (19) and (20),

1 0
/ph-ni¢jds=%-, /Ph'ni¢kd3=7i+3a / Dh - ( 0 )ds=77, / Ph'( 1 )ds='ys,
€i € K Ky

i

where ¢;, ¢x denote piecewise linear functions on e;, satisfying @;(z;,y;) = ox(zk, ¥x) = 1, ¢z, Uk) =
odx(xj,y;) = 0. So that we have

3Y  Y(X+2R) Y2 _3(X—h) —(X—h)NX+2h) —(X-h)Y RY (X + 2h) hy?2 o
-8y  -—2xy  -2v? ax 2x2 2XY o o o 3
o 0 0 —-3h —n2 0 0 0 a3 ot
| 3y v@x+h 2v2  _3(X-h) —(X- M@X+h) =X =R RY@X+R) 2ny?2 ag | _ ~a
6| -3y -XY -y2 3X X Xy 0 0 ag |7 5
o 0 0 -3h —2hn2 0 0 [} ag 76
6 2(X + h) 2y 0 ° ° 2 L AX + X2 (2X + h)Y/2 a7 21753
° 0 ° 6 2(X + k) 2y 2X + MY/2 v2 8 8

Solving above linear system, we have the value of each coefficients. Then, RT; element is described on Ky,

8
Prli, = D W¥s
i=1

where 1; are base functions as following

—2r+ {éy‘i-f- ;’—l(xzx— 2%‘,—:zry) ) ,
-y + 5@y - $v°)
h-z— (X8 + $ay )
~2y+ 3y’ ’

P =

Y2 = —

—2X +3(X£3h)z — 3X(X — h)y + £(—2? + (£72)zy)

2
Ys = 1o ( -2Y + ghﬁx_ (X - 2n)y + #(—zy + (X52)?) ) ’
w o=
—2h + 6z — 3(ZL)y + 2 (—22 + (X52)xy)
< 3y+%f—xy+'(15—;—’l)y"’) Y )

ve = — X—(g-’ﬁ,ih)z+£(3x+h)y+%(x2_§xy))
6 Y - g4 (=hyy 4 Aoy — £42)

b= (PR ),

Y5 =

’

h|D] = oy + (B5R)
ve = 5[ —CX-Rmo+FX+Rny+ () - 2’(L——f—x:2-){,h LAY
D|D| —(X = 2h)y + (P)ay — 2(2=5H)y?

Remark 5. See Figure 5 for degrees of freedom to RT,(Kp). A linear functional is defined by Fi(q), (i =
1,...,8) for g € (L*(Q))?, such that

n<q)=/qq.n,¢,,,ds, Fz+3(<1)=/qq-m¢nd8, FT(q>=/khq.(}))dm, Fg(q)=/}_“q.(‘l’)dz

where (I,m,n) are even permutation of (1,2,3). Then, we have Fi(¢;) = &5, (1 <14,j <8).
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