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1 Introduction

This article is a short guide to “representation theory in non-integral rank” introduced recently
by Deligne [De107]. In the modern mathematics, duality plays central roles in various fields.
For instance, in many important cases one may recover a (topological, differential or algebraic)
space from the commutative ring of regular functions on it with some extra structure. This
phenomenon suggests us the existence of ”non-commutative geometry” whose subjects are spaces
which are presented by non-commutative ring of “functions” on them.

In representation theory, there is an important duality called Tannaka-Krein duality be
tween some algebraic structure and its representation category. For a finite group $G$ , let us
consider the category 7&p(G) consisting of all finite dimensional complex representations and
homomorphisms along them. The tensor product of representations gives the category 7&p (G)
an additional structure and make it $s\infty called$ symmetric tensor category. The duality states that
one can recover the group $G$ from its representation category 7&p(G). Of course there are lot of
tensor categories which are not of the form $\mathcal{R}ep(G)$ . By the duality we can regard these tensor
categories as generalized groups.

Many classical groups arise in families indexed by a natural numbers $d\in$ N. For example,
the symmetric groups $\mathfrak{S}_{d}$ , linear groups $GL_{d},$ $O_{d}$ and $Sp_{d}$ , and so on. The aim of this article
is to introduce families of tensor categories, indexed by a continuous parameter $t\in \mathbb{C}$ , which
cannot be realized as representation categories of any groups but interpolate usual representation
categories of these groups in some sense. In the point of view of the duality described above,
we can say that these categories are consisting of representations of some virtual algebraic
structures, namely the classical groups $\mathfrak{S}_{t}$

” or $GL_{t}$
” of non-integral rank $t$ . These families

capture structures which are “stable” or “polynomially dependent” with respect to rank in
representation theory of classical groups.

2 Preliminaries

In this section we give a brief introduction about some basic definitions and facts we use.
Throughout this article, a symbol $k$ denotes a commutative ring. Tensor product over $k$ is
simply denoted by $\otimes$ .

2.1 Linear categories and Tensor categories

A k-linear categow is a category enriched over the category of k-modules. More precisely,
a category $C$ is called k-linear if for each $X,$ $Y\in C,$ $Hom_{C}(X, Y)$ is endowed with structure
of k-module and the composition of morphisms are k-bilinear. A k-linear category is called
pseudo-abelian if it is closed under taking direct sum of objects and taking image of idempotent.
Any k-linear category $C$ has its pseudo-abelian envelope $\prime p_{S}(C)$ , which is pseudo-abelian, contains
$C$ as full subcategory and has the universal property such that any k-linear functor $Carrow \mathcal{D}$ to
a pseudo-abelian k-linear category $\mathcal{D}$ factors the embedding $Carrow \mathcal{P}s(C)arrow \mathcal{D}$ uniquely up to
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isomorphism. We can construct the envelope by adding the direct sum of objects and the image
of the idempotents formally into the category.

Note that a k-linear category with only one object is just a k-algebra of its endomorphism
ring. Thus we can regard general k-linear categories as “k-algebras with several objects” as
in the title of a pioneering article [Mit72]. The pseudo-abelian envelope of a k-linear category
with one object is equivalent to the category of finitely generated projective modules over the
opposite algebra.

A k-braided tensor category is a higher categorical notion of a commutative ring. It is a k-
linear category $C$ equipped with a k-bilinear functor $\otimes:C\cross Carrow C$ , an object $I\in C$ and functorial
isomorphisms $(X\otimes Y)\otimes Z\simeq X\otimes(Y\otimes Z),$ $I\otimes X\simeq X\simeq X\otimes]\lfloor$ and $X\otimes Y\simeq Y\otimes X$ which
satisfy some coherence axioms. To compute something in a braided tensor category we have an
useful graphical language of “string diagrams“. Each object in the category is represented by a
colored string and each morphism between objects is drawn as a figure connecting these strings
from the top of the page to the bottom like an electric circuit. The axioms of braided tensor
category implies that we can transform diagrams up to isotopy without affecting the morphisms
they represent. For example, we denote a morphism $f:X_{1}\otimes X_{2}\otimes X_{3}arrow Y_{1}\otimes Y_{2}$ by a diagram
something like that:

$X_{1}$ $X_{2}X_{3}$

$[\ldots\ldots\ldots.|\ldots\ldots\ldots.|\ldots$

$f$

$|\ldots\ldots\ldots\ldots.|\cdots\cdots\cdot$

$Y_{1}$ $Y_{2}$

Composition of such morphisms is expressed by vertical connection of diagrams and tensor
product by horizontal arrangement:

$Y_{1}\ldots\ldots\ldots.Y_{2}|...|_{-}$ $X_{1}\ldots..X_{2}\ldots..X_{3}|..\ldots|..\ldots|\ldots$

$X_{1}\ldots..X_{2}\ldots..X_{3}|..\ldots|..\ldots|\ldots$

$f$

$g$ $0$ $f$ $=$ $I\ldots|.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot\ldots.|..\cdot.\cdot.\cdot.\cdot.\cdot.\cdot$ .

$|\ldots\ldots.|\cdots\cdots\cdot|\ldots\ldots.|\ldots$

.

$|\ldots\ldots\ldots\ldots.|\cdots\cdots\cdot$
$|\ldots\ldots..|^{g}\ldots|\ldots\ldots..|.$ .

$Z_{1}Z_{2}Z_{3}Z_{4}$ $Y_{1}$ $Y_{2}$ $Z_{1}Z_{2}Z_{3}Z_{4}$

$X_{1}$ $X_{2}$ $X_{3}$ $V_{1}$ $V_{2}$ $X_{1}$ $X_{2}$ $X_{3}$ $V_{1}$ $V_{2}$

....1..........1..........1... $|\ldots\ldots\ldots..|\ldots.$

. $\cdot\cdot\cdot$l..........I..........l........l...........l.....
$f$ $\otimes$ $h$ $=$ $f$ $h$

$|\ldots\ldots\ldots\ldots.|\cdots\cdots\cdot$ $|\ldots\ldots\ldots..|\cdots\cdot\cdot$ $|\ldots\ldots\ldots\ldots.|\ldots\ldots.$ $|\ldots\ldots\ldots..|\cdots\cdot\cdot$

$Y_{1}$ $Y_{2}$ $W_{1}W_{2}$ $Y_{1}$ $Y_{2}$ $W_{1}W_{2}$

A braiding isomorphism $X\otimes Yarrow Y\otimes X$ is represented by a crossed strings:
$X$ $Y$

$Y$ $X$

Note that the morphism above may not be equal to the inverse of the braiding isomorphism
$Y\otimes Xarrow X\otimes$ Y. In the graphical language we distinguish them by the sign of the crossing, the
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overpass and the underpass. When they coincide, the category is called a k-symmetric tensor
category. In this case we do not need to mind which string is in the front so we can simply write
this diagram by $”\cross$ ”.

The notion of dual space in the category of finite dimensional vector spaces can be generalized
for any symmetric tensor categories. A k-symmetric tensor category is called rigid if every object
in it has the dual.

2.2 Tannaka-Krein duality for Algebraic groups

In this article, “an algebraic group” stands for an affine group scheme. Recall that an affine group
k-scheme $G$ is a spectrum of a commutative Hopf algebra $\mathcal{O}(G)$ over $k$ . The group structure
of $G$ , namely the unit $\{1\}arrow G$ , the multiplication $G\cross Garrow G$ and the inverse $Garrow G$ , is
induced from the Hopf algebra structure of $\mathcal{O}(G)$ , the counit $\mathcal{O}(G)arrow k$, the comultiplication
$\mathcal{O}(G)arrow O(G)\otimes \mathcal{O}(G)$ and the antipode $O(G)arrow \mathcal{O}(G)$ respectively. In addition, there is a
one-to-one correspondence between morphisms $G_{1}arrow G_{2}$ of algebraic groups and morphisms
$\mathcal{O}(G_{2})arrow O(G_{1})$ of Hopf algebras.

A representation $V$ of $G$ is a k-module $V$ together with an action $Garrow GL_{V}$ . It is equivalent
to say that $V$ is equipped with a suitable map $Varrow V\otimes \mathcal{O}(G)$ , in other words, $V$ is a comodule
over the k-coalgebra $\mathcal{O}(G)$ . We denote by $\mathcal{R}\ell p(G)$ the category of all representations of $G$

which are finitely generated and projective over $k$ . The k-algebra structure of $\mathcal{O}(G)$ allows us
to take tensor product of representations and makes $Rxp(G)$ a symmetric tensor category over
$k$ . Moreover. with the help of the antipode, we can define the contragradient representation of
a given one. This is the dual object of the original one so the category $\mathcal{R}ep(G)$ is rigid.

These notions are easily generalized in $\iota$‘super algebraic geometry” but we need an additional
remark. A supermodule over $k$ is nothing but a $Z/2\mathbb{Z}$-graded k-module so it has a natural action
of the group $\{\pm 1\}$ , called the parity action, such that the element $-1$ acts by $v\mapsto(-1)^{\deg v}v$ .
When we consider a representation of a supergroup $G$ on a supermodule $V$ , it is natural to fix
a homomorphism $\{\pm 1\}arrow G$ via which $\{\pm 1\}$ acts on $V$ by parity. So in this article we define
an algebraic supergroup $G$ to be a pair $(\mathcal{O}(G), \epsilon)$ consisting of a (super-)commutative Hopf
superalgebra $O(G)$ over $k$ and a Hopf superalgebra homomorphism $\epsilon:\mathcal{O}(G)arrow \mathcal{O}(\{\pm 1\})$ such
that the conjugation action of $\{\pm 1\}$ on $\mathcal{O}(G)$ coincides with the parity action. A representation
of $G$ is a supercomodule over $\mathcal{O}(G)$ on which $\{\pm 1\}$ acts by parity via the map $\epsilon$ . Note that for
a non-super algebraic group, if we take the trivial map as $\epsilon$ , these notions are compatible with
previous ones. We define Raep $(G)$ as same as above.
Example 2.1. Finite groups. For a finite group $G,$ $\mathcal{O}(G);=k[G]^{*}$ defines its algebraic structure.
Its algebraic representations are same as usual ones.
Example 2.2. Profinite groups. The projective limit $G=L^{m_{i\in I}G_{i}}$ of a projective system of
finite groups is again algebraic. Every representation of $G$ is defined over some of its component
$Garrow G_{i}$ .
Example 2.3. Linear supergroups. There is a Hopf superalgebra $\mathcal{O}(GL_{m|n})$ which represents the
functor

$\{k-superalgebra\}arrow$ {group}
$A\mapsto GL_{m|n}(A)$

where

$GL_{m|n}(A);=\{$ invertible matrix $(\begin{array}{ll}x_{ij} \xi_{il}\eta_{kj} y_{kl}\end{array})|x_{ij},$ $y_{kl}\in A_{0},$ $\xi_{il},$ $\eta_{kj}\in A_{1}\}$ .

$(1\leq i,j\leq m, 1\leq k, l\leq n)$
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More explicitly we can describe it as

$\mathcal{O}(GL_{m|n})$ $:=k[x_{ij}, y_{kl}.\xi_{il}, \eta_{kj}][\det(x)^{-1}, \det(y)^{-1}]$

where the generators $x_{ij},$ $y_{kl}$ are even and $\xi_{il},$
$\eta_{kj}$ are odd. We take as $\epsilon$ the map which sends

$-1$ to diag$(1, \ldots , 1, -1, \ldots, -1)$ . These data define the algebraic supergroup $GL_{m|n}$ .
Similarly, if we associate the standard supersymmetric (resp. skew supersymmetric) inner

product to $k^{m|n};=1k^{m}\oplus k^{n}$ , we can define the algebraic supergroup $OSp_{m|n}$ (resp. $SpO_{m|n}$ )
consisting of matrices which respect the inner product. Note that each of these supergroups acts
naturally on $k^{m|n}$ . It is called the regular representation of the supergroup.

Tannaka-Krein duality for algebraic groups, mainly developed by Saavedra Rivano [SR72],
and Deligne [DM81, De190, De102], says that the algebraic group $G$ can be reconstructed from
its representation category 7&p(G) when we are working over the field of complex numbers.

Theorem 2.4. Suppose that $k\iota s$ an algebraic closed field with chamcteristic zero. For a rigid
abelian k-symmetric tensor category $C$ , the conditions below are equivalent.

1. $C\simeq \mathcal{R}ep(G)$ as k-symmetric tensor categories for some algebraic group $G$ .

2. There is an exact symmetric tensor functor $Carrow Vec_{k}$ called $a$ fiber functor. Here $Vec_{k}$ is
the category of all finite dimensional vector spaces over $k$ .

3. For every object $X\in C$ , there is some $n\geq 0$ such that $\Lambda^{n}X=0$ .

Moreover, under these conditions, $G$ is unique up to isomorphism.
This theorem also holds for algebraic supergroups, by replacing $\mathcal{V}ec_{k}$

“ with $SVec_{k}$ ”, the
category of superspaces, and “some $\Lambda^{n}$ ” with “some Schur functor $S^{\lambda}$ ”.

3 Representation categories in non-integral rank

In this section we construct representation categories $\underline{\mathcal{R}e}p(G_{t})$ of non-integral rank $t\in k$ , which
interpolate the usual representation categories $\mathcal{R}ep(G_{d})$ of a family $G_{d}$ of classical groups of
rank $d\in$ N.

3.1 Orthogonal groups in non-integral rank

Let us consider the k-symmetric tensor category $\mathcal{R}ep(O_{d})$ , the representation category of the
orthogonal group $O_{d}$ . Recall that $O_{d}$ has a regular representation $V_{d};=k^{d}$ . The element of
$O_{d}$ respects the inner product $e:V_{d}\otimes V_{d}arrow k$ so it is a $O_{d}$-homomorphism as well as its dual
$\delta$ : Ik $arrow V_{d}\otimes V_{d}$ . Let us represent them by cup and cap diagrams:

$V_{d}$ $V_{d}$

$V_{d}$ $V_{d}$

When $k$ is a field with characteristic zero, since $O_{d}$ is reductive and $V_{d}$ is faithful, one can
show that every representation of $O_{d}$ can be obtained as a direct summand of a direct sum of
representations of the form $V_{d}\otimes\cdots\otimes V_{d}\otimes V_{d}^{*}\otimes\cdots\otimes V_{d}^{*}$ . So let us consider the small subcategory
$Rep_{0}(O_{d})$ of $\mathcal{R}ep(O_{d})$ consisting of representations of the form as above. When $k$ is so, by the
fact above, we can recover the whole representation category $\mathcal{R}\ell p(O_{d})$ by taking the pseudo-
abelian envelope of 7&p $o(O_{d})$ . Since $V_{d}$ is self-dual by its inner product, it suffices to consider
representations of the form $V_{d}^{\otimes m}$ .
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The remarkable fact is that the structure of $7\ p_{0}(O_{d})$ “almost only” depends on polynomials
in $d$ . It means that for fixed $m$ and $n$ , the dimension of the space of all homomorphisms
$V_{d}^{\otimes m}arrow V_{d}^{\otimes n}$ is stable when $d\gg O$ and the structure constants of composition and tensor product
of morphisms are polynomial in $d$ . In fact, if $m+n$ is odd then there are no homomorphisms
between $V_{d}^{\otimes m}$ and $V_{d}^{\otimes n}$ ; otherwise every homomorphism is written as a linear combination of
distinguished ones which are represented by Bmuer diagmms. Here a Brauer diagram is a
complete pairing on a set consisting of $m+n$ points. The first $m$ points are listed in the top of
the diagram and others the bottom. For example, if $m=3$ and $n=5$ , these below are typical
examples of Brauer diagram:

For each Brauer diagram, we can make an $O_{d}$ homomorphism by “coloring” strings with the
representation $V_{d}$ :

$V_{d}$ $V_{d}$ $V_{d}$

$\mapsto$

$V_{d}$ $V_{d}$ $V_{d}$ $V_{d}$ $V_{d}$

where right-hand side is a homomorphism obtained by taking composition and tensor product
of $e$ and $\delta$ along the diagram. More explicitly, it is a homomorphism $V_{d}^{\otimes 3}arrow V_{d}^{\otimes 5}$ which sends

$v_{i}\otimes v_{j}\otimes v_{k}\mapsto\{\begin{array}{ll}\sum_{1\leq a,b\leq d}v_{j}\otimes v_{a}\otimes v_{b}\otimes v_{b}\otimes v_{a} if i=k,0, otherwise\end{array}$

where $\{v_{1}, \ldots, v_{d}\}$ is a orthogonal basis of $V_{d}$ . Now let $B_{m,n}$ be the set of Brauer diagrams
on $m+n$ points (the empty set if $m+n$ is odd). Then we have a coloring map $kB_{m,n}arrow$

$Hom_{O_{d}}(V_{d}^{\otimes m}, V_{d}^{\otimes n})$ above and we can show that this map is surjective, and is bijective when
$d\geq m+n$ .

To compute composition of morphisms, we can transform diagrams along local transforma-
tions, for example,

$=$ $O=d\cdot id_{k}$

and its mirror and rotated images. The first equation describes the self-duality of $V_{d}$ , the second
the symmetricity of the inner product and the last says that the object $V_{d}$ is of dimension $d$ .
By imitating this composition law. we can define the composition $0_{d}:kB_{m,n}\otimes kB_{l,m}arrow kB_{l,n}$
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of Brauer diagrams for each $d\in$ N. For example,

$=d$ .

The tensor product $\otimes_{d}:kB_{m,n}\otimes kB_{p,q}arrow kB_{m+p,n+q}$ is defined similarly but is easier than
composition since it is nothing but arranging diagrams horizontally and actually does not depend
on $d$ .

Using this structure, let us define a symmetric tensor category $\underline{\mathcal{R}e}p_{0}(O_{d})$ whose objects are
formal symbols 11, $\underline{V}_{d},$ $\underline{V}_{d}^{\otimes 2},$

$\ldots$ and morphisms are $Hom_{O_{d}}(\underline{V}_{d}^{\otimes m}, \underline{V}_{d}^{\otimes n});=kB_{m.n}$ . Its composi-
tion and tensor product are $0_{d}$ and $\otimes_{d}$ respectively, and its symmetric braiding isomorphism
$\underline{V}_{d}^{\otimes m}\otimes\underline{V}_{d}^{\otimes n}arrow\underline{V}_{d}^{\otimes n}\otimes\underline{V}_{d}^{\otimes m}$ is the Brauer diagram of crossing strings:

By definition we have a natural symmetric tensor functor $\underline{\mathcal{R}e}p_{0}(O_{d})arrow \mathcal{R}ep_{0}(O_{d});\underline{V}_{d}\mapsto V_{d}$ which
is full and surjective on objects. In addition, if we restrict this functor on the full subcategory
which contains objects of the form $\underline{V}_{d}^{\otimes m}$ for $2m\leq d$ , the restricted functor is fully faithful.

Now let us denote by $\underline{\mathcal{R}}_{A}e(O_{d})$ the pseudo-abelian envelope of $\underline{7\ }p_{0}(O_{d})$ . By the universal
property of envelope we obtain a full symmetric tensor functor $\underline{\mathcal{R}e}\rho(O_{d})arrow \mathcal{R}ep(O_{d})$ . Moreover,
if $k$ is a field with characteristic zero, this functor is essentially surjective.

Remark that $d$ in the coefficients above is just a scalar. Thus we can replace the integral
parameter $d\in N$ with an arbitrary $t\in k$ and construct a continuous family $\underline{\mathcal{R}}ep(O_{t})$ of k-
symmetric tensor categories. This is the definition of the representation category of orthogonal
groups in non-integral rank. Recall that the endomorphism ring $End_{O_{t}}(\underline{V}_{t}^{\otimes m})$ is called the
Brauer algebra. So in the another point of view, studying the category $\underline{\mathcal{R}e}p(O_{t})$ is also to study
finitely generated projective modules of all Brauer algebras simultaneously.

We can take another definition of $\underline{\mathcal{R}e}p(O_{t})$ using generators and relations as we do for
algebras. That is. first we can construct the “free symmetric tensor category” generated by
morphisms $\underline{V}_{t}\otimes\underline{V}_{t}arrow I$ and $Iarrow\underline{V}_{t}\otimes\underline{V}_{t}$ and obtain $\underline{\mathcal{R}e}p(O_{t})$ by taking quotient of the
free category modulo the ideal generated by relations we listed before (replacing $d\in N$ with
$t\in k)$ . $\underline{\mathcal{R}}_{A}e(O_{t})$ has an universal property which says that for any pseudxabelian k-symmetric
tensor category $C$ , the category of k-symmetric tensor functors $\underline{\mathcal{R}}eA(O_{t})arrow C$ is equivalent to
the category consisting of data $X\in C,$ $X\otimes Xarrow I$ and $Iarrow X\otimes X$ satisfying these relations.
As a consequence, for each $m,$ $n\in N$ we also have a natural tensor functor $\underline{\mathcal{R}}ep(O_{m-n})arrow$

$7\ p(OSp_{m|n})$ . Thus, perhaps surprisingly, the family of categories $\underline{\mathcal{R}e}p(O_{t})$ interpolates the
representation categories not only of groups $O_{d}$ but of supergroups $OSp_{m|n}$ . It is conjectured that
these are all quotient symmetric tensor categories of $\underline{\mathcal{R}}ep(O_{t})$ when $k$ is a field with characteristic
zero. That is, if the parameter $t\not\in Z$ is a non-singular $\underline{7\ }p(O_{t})$ has no non-trivial quotient;
otherwise it has quotients 7&p $(OSp_{m|n})(m, n\in N, t=m-n)$ in addition to trivial ones.
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Note that as a variation we can adopt the skein relation of Birman-Wenzl and Murakami type
instead of symmetricity to obtain quantum analogue of this category, that is, the representation
category of quantum groups in non-integral rank.

3.2 Construction for other groups
We shortly list below how to interpolate the representation categories of other classical groups.
Example 3.1. Symplectic groups. The construction of $\underline{\mathcal{R}\ell}\rho(Sp_{t})$ is as same as that of orthogonal
groups but in this case we use a skew symmetric inner product instead of symmetric one. So
one of the relations should be replaced with that:

Then it interpolates all 7&p $(SpO_{m|n})$ . In fact, when we ignore the braiding, the tensor category
$\underline{\mathcal{R}e}p(Sp_{t})$ is equivalent to $\underline{7\ }\rho(O_{-t})$ .
Example 3.2. General linear groups. Since $V_{d}=k^{d}$ is not isomorphic to $V_{d}^{*}$ as representations
of $GL_{d}$ , we must distinguish these two kind of objects. We represent them by a down arrow $\downarrow$

and an up arrow $\uparrow$ . We have the evaluation $V_{d}^{*}\otimes V_{d}arrow k$ and the embedding of the identity
matrix $karrow V_{d}\otimes V_{d}^{*}$ . We represent them by directed strings

$V_{d}^{*}$ $V_{d}$

and

$V_{d}$ $V_{d}^{*}$

so that the direction coincides those of arrows at the ends of the string. These maps generates
$\mathcal{R}ep(GL_{d})$ . Our $\underline{\mathcal{R}e}p(GL_{t})$ is generated by objects and morphisms imitating them and its relation
is same as before. The space of morphisms $Hom_{GL_{t}}(\underline{V}_{d}^{\otimes m}, \underline{V}_{d}^{\otimes n})$ is spanned by directed (or
walled) Brauer diagrams. The singular parameters are $t\in Z$ and it interpolates all $\mathcal{R}ep(GL_{m|n})$

for $t=m-n$. The conjecture of classifying its quotients is proved by Comes [Com12]. We can
also deform this category using the relations of Hecke algebra to obtain the representations of
quantum $GL_{t}$ .
Example 3.3. Symmetric groups. $\mathfrak{S}_{d}$ also acts on $V_{d}=k^{d}$ by the permutation on the basis. We
have four 6$d$-homomorphisms which generate $\mathcal{R}ep(\mathfrak{S}_{d})$ ; the duplication $\iota:karrow V_{d}$ , the summing
up $\epsilon:V_{d}arrow k$ , the projection on the diagonal $\mu:V_{d}\otimes V_{d}arrow V_{d}$ and the embedding to the diagonal
$\triangle:V_{d}arrow V_{d}\otimes V_{d}$ . These satisfy the relation of Frobenius algebra of dimension $d$ . $\underline{\mathcal{R}e}p(\mathfrak{S}_{t})$ is
now defined by these generators and relations of dimension $t\in k$ and then interpolates $\mathcal{R}\ell p(\mathfrak{S}_{d})$

for $d\in$ N. $Hom_{\mathfrak{S}_{t}}(\underline{V}_{d}^{\otimes m},\underline{V}_{d}^{\otimes n})$ is spanned by so-called partition diagrams which correspond to
the partitions of a set of $m+n$ points. In the next section we generalize this construction for
wreath products.

These categories are of course closely related to each other. For example, we have “restriction
functors” $\underline{\mathcal{R}e}p(GL_{t})arrow\underline{7\ }p(O_{t})arrow\underline{7\ }p(\mathfrak{S}_{t})$ corresponding to the embedding $\mathfrak{S}_{d}\subset O_{d}\subset GL_{d}$ .
We can also treat representations of a parabolic subgroup

$GL_{d_{1}}\cross GL_{d_{2}}\subset\{$ $(_{0}^{*}$ $**)\}\subset GL_{d_{1}+d_{2}}$

in non-integral rank for instance.
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Moreover, each linear group above has its “Lie algebra” in its representation category. For
example, the Lie algebra of $GL_{t}$ is defined by $\mathfrak{g}1_{t}:=\underline{V}_{t}\otimes\underline{V}_{t}^{*}$ and the bracket $\mathfrak{g}1_{t}\otimes \mathfrak{g}t_{t}arrow \mathfrak{g}1_{t}$ is

which interpolates the commutator $a\otimes b\mapsto ab-ba$ . Similarly, $0_{t};=\Lambda^{2}\underline{V}_{t}$ and $sp_{t};=S^{2}V_{t}$ .
Etingof [Eti09] also defined infinite dimensional “Harish-Chandra bimodules” as ind-objects of
the category on which the Lie algebra acts.

3.3 Wreath product in non-integral rank

The wreath product $Gl\mathfrak{S}_{d}$ of a group $G$ by $\mathfrak{S}_{d}$ is the semidirect product $G^{d}x6_{d}$ where $\mathfrak{S}_{d}$

acts on $G^{d}=G\cross G\cross\cdots\cross G$ by permutation. Taking wreath product $l\mathfrak{S}_{d}$ of rank $d$ induces
the endofunctor on the category of algebraic groups or algebraic supergroups. In this section we
interpolate this functor to non-integral rank for reductive groups.

Assume for a moment that $k$ is a field with characteristic zero and consider the case that $G$ is
a reductive group. In this case we can construct the representation category 7&p $(G ?\mathfrak{S}_{d})$ of the
wreath product from $\mathcal{R}ep(G)$ without the information about $G$ itself in the following manner.

First we define tensor product of categories. The tensor product $C\otimes D$ of Ik-linear categories
is a k-linear category which satisfies the following universal property: the category of k-bilinear
functors $C\cross \mathcal{D}arrow \mathcal{E}$ is equivalent to the category of Ik-linear functors $C\mathbb{R}\mathcal{D}arrow \mathcal{E}$ . It consists of
objects of the form $X\otimes Y$ for each $X\in C$ and $Y\in \mathcal{D}$ and morphisms are

$Hom_{C\mathbb{E}D}(X\otimes Y, X’\otimes Y’)$ $:=Hom_{C}(X, X’)\otimes Hom_{D}(Y, Y’)$ .

Since we work in pseudo-abelian k-linear categories, we should take its pseudo-abelian envelope.
Then for groups $G_{1}$ and $G_{2}$ , we have a functor of taking external tensor product $\mathcal{R}ep(G_{1})\otimes$

$\mathcal{R}ep(G_{2})arrow \mathcal{R}ep(G_{1}\cross G_{2})$ . When $G_{1}$ and $G_{2}$ are reductive, it is well-known that every irreducible
representation of $G_{1}\cross G_{2}$ is a direct summand of $L_{1}\otimes L_{2}$ for some irreducible representations
$L_{1}\in \mathcal{R}ep(G_{1})$ and $L_{2}\in \mathcal{R}ep(G_{2})$ ; thus this functor induces a category equivalence. Note that
for non-reductive case, this functor is fully faithful but not essentially surjective in general; in
fact $\mathcal{R}ep(G_{1})\otimes \mathcal{R}ep(G_{2})$ is no longer abelian. To resolve this obstruction we need the notion of
tensor product of abelian categories in Deligne‘s article [De190] but we do not treat here.

Next suppose that a finite group $\Gamma$ acts on a k-linear category $C$ . We denote by $C^{\Gamma}$ the
subcategory of $C$ which consists of $\Gamma$-invariant objects and morphisms. When $\Gamma$ acts on another
group $G$ by group automorphisms, it also naturally acts on 7&p(G) by twisting G-actions.
Then the category of invariants $\mathcal{R}ep(G)^{\Gamma}$ is equivalent to $\mathcal{R}ep(G\rangle\triangleleft\Gamma)$ since for a $\Gamma$-invariant
object V $\in$ 7&p(G) we can define the additional action of $\Gamma$ on $V$ canonically and a $\Gamma$-invariant
morphism is just a G-homomorphism which commutes with those F-actions.

Now consider the symmetric power Sy$m^{}$ $(C);=(C^{\otimes d})^{\mathfrak{S}_{d}}$ of $C$ , the subcategory of $C^{\otimes d}=$

$C\mathbb{H}C\otimes\cdots\otimes C$ consisting of $\mathfrak{S}_{d}$-invariants. By the preceding arguments, for a reductive group $G$

over a field with characteristic zero we have Sy$m^{}$ (7&p (G)) $\simeq \mathcal{R}$ep $(G ?\mathfrak{S}_{d})$ . The operator $Sym^{d}$

is defined as a 2-functor from the 2-category of all k-linear categories to itself. Here 2-category
is a higher categorical structure which consists of 0-cells (e.g. categories), l-cells between two 0-
cells (e.g. functors) and 2-cells between two l-cells (e.g. natural transformations) and a 2-functor
is a mapping between two 2-categories which respects these structures. If $C$ is a braided (resp.
symmetric) tensor category, Sy$m^{}$ $(C)$ also has a canonical structure of braided (resp. symmetric)
tensor category. So Sy$m^{}$ is also a 2-endofunctor on a 2-category of braided or symmetric tensor
categories.
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Now let $C$ be a braided tensor category. For each object $X\in C$ we have an 6$d$-invariant
object $[X]_{d}\in Sym^{d}(C)$ defined by

$[X]_{d}:=(X\otimes I\otimes\cdots\otimes I)\oplus(I\otimes X\otimes\cdots\otimes I)\oplus\cdots\oplus(I\otimes I\otimes\cdots\otimes X)$ .

On characteristic zero, one can show that every object in Sy$m^{}$ $(C)$ is a direct summand of a
direct sum of objects of the form $[X_{1}]_{d}\otimes[X_{2}]_{d}\otimes\cdots\otimes[X_{m}]_{d}$. Moreover, the morphisms between
them are generated by those listed below as same as in the case of symmetric groups: $\iota:Iarrow[I]_{d}$ ,
$\epsilon:[I]_{d}arrow I,$ $\mu_{XY}:[X]_{d}\otimes[Y]_{d}arrow[X\otimes Y]_{d},$ $\Delta_{XY}[X\otimes Y]_{d}arrow:[X]_{d}\otimes[Y]_{d}$ , and in addition,
$[f]_{d}:[X]_{d}arrow[Y]_{d}$ for each morphism $f:Xarrow Y$ in $C$ . We represent them by following diagrams:

$[I]_{d}$ $[X]_{d}[Y]_{d}$ $[X\otimes Y]_{d}$ $[X]_{d}$

$\iota=$
$\epsilon=\downarrow$

$\mu_{XY}=$ $\Delta_{XY}=$

$[I]_{d}$ $[X\otimes Y]_{d}$ $[X]_{d}$ $[Y]_{d}$ $[Y]_{d}$

Every morphism in Sy$m^{}$ $(C)$ is a k-linear combination of “C-colored partition diagrams”, that
is, diagrams consisting of these parts. For example, the diagram

$[X_{1}]_{d}$ $[X_{2}]_{d}$ $[X_{3}]_{d}$

$[Y_{1}]_{d}$ $[Y_{2}]_{d}$ $[Y_{3}]_{d}$ $[Y_{4}]_{d}$

denotes a morphism $[X1]_{d}\otimes[X_{2}]_{d}\otimes[X_{3}]_{d}arrow[Y_{1}]_{d}\otimes[Y_{2}]_{d}\otimes[Y_{3}]_{d}\otimes[Y_{4}]_{d}$ where $f:X_{2}arrow Y_{1}\otimes Y_{2}$ ,
$g:X_{1}\otimes X_{3}arrow Y_{4}$ and $h:Iarrow Y_{3}$ . These data satisfy relations of some kind of so-called Frobenius
tensor functor. These below are the complete list of its axioms:

$\triangleleft=$ $=\mu$ , $r\{=$$\psi=\psi$ , A $=A$ , $=k$ ,

$Y^{/}=r_{\sigma}$ , $/ \int_{\backslash }=R^{\sigma}$ ,
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$\iota=d\cdot id_{I}$ .

Here $\sigma$ denotes the braiding isomorphism of $C$ ; recall that the braiding of Sy$m^{}$ $(C)$ is rep-
resented by crossing of strings. Now let us define $\underline{Svm}^{t}(C)$ , the symmetric power of $C$ in non-
integral rank $t\in k$ , to be a k-braided tensor category generated by these morphisms and
relations with replacing the scalar $d\in N$ above with $t\in k$ . We denote its object by the notation
$\langle X\}_{t}\in\underline{Svm}^{t}(C)$ instead of that of the corresponding object $[X]_{d}\in Sym^{d}(C)$ . $\underline{Svm}^{t}$ is also a
2-endofunctor on the 2-category of braided tensor categories. As same as before, for each $d\in N$

we have a natural full braided tensor functor $\underline{Svm}^{d}(C)arrow Sym^{d}(C)$ which is essentially surjective
when $k$ is a field with characteristic zero. We also have restriction functors

$\underline{Svm}^{t_{1}+t_{2}}(C)arrow\underline{Svm}^{t_{1}}(C)\otimes\underline{Svm}^{t_{2}}(C)$ , $\underline{Svm}^{t_{1}t_{2}}(C)arrow\underline{Svm}^{t_{2}}(\underline{Svm}^{t_{1}}(C))$ ,
$\langle X\}_{t_{1}+t_{2}}\mapsto(\langle X\rangle_{t_{1}}\otimes I)\oplus(IB\{X\rangle_{t_{2}})$, $\langle X\rangle_{t_{1}t_{2}}\mapsto\{(X\rangle_{t_{1}}\}_{t_{2}}$

correspond to the embeddings $\mathfrak{S}_{d_{1}}\cross \mathfrak{S}_{d_{2}}\subset \mathfrak{S}_{d_{1}+d_{2}}$ and $\mathfrak{S}_{d_{1}}1\mathfrak{S}_{d_{2}}\subset \mathfrak{S}_{d_{1}d_{2}}$ . The basis of the
space of morphisms

$\langle X_{1}\rangle_{t}\otimes\langle X_{2}\rangle_{t}\otimes\cdots\otimes\langle X_{m}\rangle_{t}arrow(Y_{1}\rangle_{t}\otimes\langle Y_{2}\}_{t}\otimes\cdots\otimes(Y_{n}\}_{t}$

is also parameterized by the partitions on the set of $m+n$ points; but the non-symmetricity of
the braiding complicates its description so we omit it here.

Note that we use different notations from that in the original article [Morll]; Sy$m^{}$ instead of
$\mathcal{W}_{d}$ and $\underline{Svm}^{t}$ instead of $S_{t}$ . Our new notations are inspired by Ganter and Kapranov [GKII]. In
their article they defined the exterior power of category using spin representations of symmetric
groups. We can also interpolate this exterior power 2-functor to non-integral rank.

3.4 Structure of symmetric group representations

In this section we assume that $k$ is a field with characteristic zero. We introduce the result of
Comes and Ostrik [COII] which describes the structure of $\underline{\mathcal{R}}_{A}e(\mathfrak{S}_{t})$ .

Recall that an indecomposable object in a pseudo-abelian Ik-linear category $C$ is an object
which has no non-trivial direct sum decompositions. If all $Hom$ ’s of $C$ are finite dimensional,
$C$ has the Krull-Schmidt property; that is, every object in $C$ can be uniquely decomposed as
a finite direct sum of indecomposable objects. In this case. an object in $C$ is indecomposable
if and only if its endomorphism ring is a local ring. A block is an equivalence class in the
set of indecomposable objects with respect to the equivalence relation generated by $L\sim L’$ if
$Hom_{C}(L, L’)\neq 0$ . A block is called trivial if it consists of only one indecomposable object $L$ and
it satisfies $End_{C}(L)\simeq k$ .

We define an indecomposable object $\underline{L}_{t}^{\lambda}\in\underline{\mathcal{R}e}p(\mathfrak{S}_{t})$ for each Young diagram $\lambda$ in the following
manner. Let $m$ be a size of $\lambda$ and let $P_{t,m};=$ End$\mathfrak{S}_{t}(\underline{V}_{t}^{\otimes m})$ , which is called the partition algebm.
There is a natural surjective homomorphism $P_{t,m}arrow k[\mathfrak{S}_{m}]$ so the irreducible $k[\mathfrak{S}_{m}]$-module $S^{\lambda}$

corresponding to $\lambda$ can be regarded as an irreducible $P_{t,m}$-module. Take a primitive idempotent
$e_{t,\lambda}\in P_{t,m}$ such that $P_{t,m}e_{t,\lambda}$ is the projective cover of $S^{\lambda}$ . We define $\underline{L}_{t}^{\lambda}\in\underline{\mathcal{R}e}p(\mathfrak{S}_{t})$ as its image
$e_{t,\lambda}\underline{V}_{t}^{\otimes m}$ .

Example 3.4. First ]$\lfloor=\underline{V}_{t}^{\otimes 0}$ is clearly indecomposable and we denote it by $\underline{L}_{t}^{\emptyset}$ for all $t$ . If $t=0$

then End$\mathfrak{S}_{0}(\underline{V}_{0})\simeq k[x]/(x)$ is local so $\underline{V}_{0}$ is also indecomposable and $\underline{L}_{0}^{\square }=\underline{V}_{0}$ . Otherwise we
have a primitive idempotent

$e:=t^{-1} \int$

$\uparrow$
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whose image $e\underline{V}_{t}$ is isomorphic to $1=Lt$ . The complement $(1-e)\underline{V}_{t}$ is indecomposable and
denoted by $\underline{L}_{t}^{\square }$ . In the same manner we can compute

$S^{2}\underline{V}_{t}\simeq\{\begin{array}{ll}(\underline{L}_{0}^{\square })^{\oplus 2}\oplus\underline{L}_{0}^{\Pi}, if t=0,\underline{L}_{1}^{\emptyset}\oplus(\underline{L}_{1}^{\square })^{\oplus 2}\oplus\underline{L}_{1}^{\Pi}, if t=1,(\underline{L}_{2}^{\emptyset})^{\oplus 2}\oplus\underline{L}_{2}^{\square }\oplus\underline{L}_{2}^{\Pi}, if t=2,(\underline{L}_{t}^{\emptyset})^{\oplus 2}\oplus(\underline{L}_{t}^{O})^{\oplus 2}\oplus\underline{L}_{t}^{\Pi} , otherwise\end{array}$

and

$\Lambda^{2}\underline{V}_{t}\simeq\{\begin{array}{ll}{}_{\underline{L}_{0}}H, if t=0,{}_{\underline{L}_{t}}H\oplus\underline{L}_{t}^{\square }, otherwise.\end{array}$

Comes and Ostrik [COII] proved that these are the complete list of indecomposable objects
in $\underline{\mathcal{R}e}p(\mathfrak{S}_{t})$ . Moreover they determined the morphisms between them.

Theorem 3.5. 1. The map $\lambda\mapsto\underline{L}_{t}^{\lambda}$ from the set of Young diagmms to the set of indecom-
posable objects in $\underline{7\ }p(\mathfrak{S}_{t})$ is bijective.

2. If $t\not\in N$ , all blocks in $\underline{\mathcal{R}e}p(\mathfrak{S}_{t})$ are $tr^{I}imal$.

3. Let $d\in$ N. For each Young diagmm $\lambda=(\lambda_{1}, \lambda_{2}, \ldots)$ of size $d$ , let $\lambda^{(j)}=(\lambda_{1}^{(j)}, \lambda_{2}^{(j)}, \ldots)$ be
the Young diagmm defined by

$\lambda_{i}^{(j)}=\{\begin{array}{ll}\lambda_{i}+1, if 1\leq i\leq j,\lambda_{i+1}, otherwise.\end{array}$

Then $L_{d}^{\lambda^{(0)}},$ $L_{d}^{\lambda^{(1)}},$

$\ldots$ genemte a block in $\underline{\mathcal{R}e}p(\mathfrak{S}_{d})$ and all non-trivial blocks are obtained
by this construction. Morphisms between them are spanned by

$\underline{L}_{d}^{\lambda^{(}}\underline{L}_{d}^{\lambda^{(1)}}m_{0)_{\frac{\vec}{\beta_{0}}\vec{\frac{}{\beta_{1}}}\vec{\frac{}{\beta_{2}}}}}ididid\alpha_{0}\alpha_{1}\alpha 2\bigcup_{\gamma_{1}}^{\sim}\bigcup_{\gamma_{2}}^{\underline{L}_{d}^{\tilde{\lambda^{(2)}}}}$. . .

where $\beta_{n}\alpha_{n}=\alpha_{n-1}\beta_{n-1}=\gamma_{n}$ for $n\geq 1$ and other non-trivial composites are zero. The
functor $\underline{7\ }p(\mathfrak{S}_{d})arrow 7\ p(\mathfrak{S}_{d})$ sends $L_{d}^{\lambda^{(0)}}$ to the irreducible module $S^{\lambda}$ for each $\lambda\vdash m$ and
the other indecomposable objects to the zero object.

That is to say, to consider the object $\underline{L}_{t}^{\lambda}$ is to consider the irreducible module $S^{\overline{\lambda}}$ for all
$d\gg O$ simultaneously. Here A is given by adding the long bar to the top of $\lambda$ :

$\lambda=F^{\supset}\mapsto$

This theorem is generalized by the author [Morll] for the symmetric power $-Sy\underline{m}^{t}(C)$ of semisim-
ple abelian category $C$ .
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Example 3.6. Let $d=3$ . The indecomposable objects and the blocks of $\underline{Re}p(\mathfrak{S}_{3})$ are illustrated
as

$|||_{\bigotimes_{L-}^{-}-m-F^{T}-\ovalbox{\tt\small REJECT}-}.|\ulcorner-----------------------------\lrcorner---------------------------.-.-\urcorner$

$L—————|^{\coprod^{-}\mathbb{R}-H]}|\ulcorner-------------$-コ $-\ovalbox{\tt\small REJECT}----------------------\lrcorner-----.-.-\urcorner||$

$\llcorner||$

「

$\underline{\overline{H}}_{------------}^{------------}F-\text{田_{}-----}^{-----}-\text{囲_{}--------\text{」}}^{------.-.-}-\cdot$

$L^{\prod_{-}^{-}}\lrcorner\ulcorner\urcorner$ $\llcorner\lrcorner||\ulcorner\neg\ovalbox{\tt\small REJECT}_{1}^{1}$ $L_{--\lrcorner}^{--}|F]_{1}^{\neg}\ulcorner$ $\llcorner\lrcorner|\overline{F_{-}}]_{1}|\ovalbox{\tt\small REJECT}\ulcorner\neg$ $\llcorner\lrcorner|||\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}^{1}\ulcorner\urcorner|$ . . .

and only $\emptyset,$ $\square$ and $H$ survive in $\mathcal{R}ep(\mathfrak{S}_{3})$ as $S^{1R},$ $sF$ and $H$ respectively.
Now let $K;=k(T)$ be a field of fractions of the polynomial ring and $\underline{\mathcal{R}e}\rho(\mathfrak{S}_{T})$ be the

representation category of rank $T$ defined over K. They also proved that each indecomposable
object in $\underline{\mathcal{R}x}\rho(\mathfrak{S}_{t})$ can be lifted to $\underline{\mathcal{R}e}p(\mathfrak{S}_{T})$ ; that is, for each idempotent $e\in$ End$\mathfrak{S}_{t}(\underline{V}_{t}^{\otimes m})$ whose
image is an indecomposable object $\underline{L}\in\underline{\mathcal{R}}ep(\mathfrak{S}_{t})$ , there is an idempotent $f\in$ End$\mathfrak{S}_{T}(\underline{V}_{T}^{\otimes m})$ such
that $f|_{T=t}=e$ . Let us denote by Lift $(\underline{L})\in\underline{\mathcal{R}e}p(\mathfrak{S}_{T})$ the image of $f$ . Clearly if $\underline{L}_{t}^{\lambda}$ is in a trivial
block Lift $(\underline{L}_{t}^{\lambda})\simeq\underline{L}_{T}^{\lambda}$ . Otherwise, for $d\in \mathbb{N}$ and $\lambda^{(k)}$ as in the theorem above, they showed that

Lift $(\underline{L}_{t}^{\lambda^{(k)}})\simeq\{$ $\underline{L}_{T}^{\lambda^{(k-1)}}\oplus\underline{L}_{T}^{\lambda^{(k)}}\underline{L}_{T}^{\lambda^{(k)}}$

if
$k_{e}=0$

,

otherwise.

Using this fact, we can compute the formulae of the decomposition numbers of tensor product,
external tensor product or plethysm for all $d\in N$ simultaneously. Some of these formulae are
known since the mid 20th century but they include strange “meaningless representations” which
are discarded in the result. In our language, these meaningless representations are in fact the
object in $\underline{\mathcal{R}e}p(\mathfrak{S}_{d})$ which disappear in $\mathcal{R}ep(\mathfrak{S}_{d})$ and certainly have their own meanings.
Example 3.7. We have

$\underline{L}_{t^{\otimes}}^{\square {}_{\underline{L}_{t}}H_{\simeq\underline{L}_{t}^{\square }\oplus\underline{L}_{t}^{\Pi}\oplus}{}_{\underline{L}_{t}}HF\ovalbox{\tt\small REJECT}}\oplus\underline{L}_{t}\oplus\underline{L}_{t}$

for generic $t\in k$ . Then for $d=3$ as in the figure above, we have

Lift $(\underline{L}_{3}^{\square })\otimes$ Lift $(){}_{\underline{L}_{3}}H\simeq\underline{L}_{T}^{\square }\otimes {}_{\underline{L}_{T}}H$

$\simeq\underline{L}_{T}^{\square }\oplus\underline{L}_{\tau\oplus(\oplus\underline{L}_{T})\oplus\underline{L}_{T}}^{m{}_{\underline{L}_{T}}HF\ovalbox{\tt\small REJECT}}$

$\simeq$ Lift $(\underline{L}_{3}^{\square })\oplus$ Lift $(\underline{L}_{3}^{\coprod})\oplus$ Lift $(\underline{L}_{3}F)\oplus$ Lift
$(\underline{L}_{3}\ovalbox{\tt\small REJECT})$

so
$\underline{L}_{3^{\otimes}}^{\square {}_{\underline{L}_{3}}H_{\simeq\underline{L}_{3}^{\square }\oplus\underline{L}_{3}^{m}\oplus}{}_{\underline{L}_{3}}H_{\oplus\underline{L}_{3}}^{\supset\ovalbox{\tt\small REJECT}}}$

.
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Reducing it to the usual representation category $\mathcal{R}ep(\mathfrak{S}_{3})$ , we obtain

$\mathscr{F}_{\otimes}H_{\simeq \mathscr{F}}$ .

In the same manner, for $d=4$ , we can deduce

$\underline{L}_{4}^{\square }\otimes {}_{\underline{L}_{4-A\lrcorner}}H{}_{\underline{L}_{4}}HF\ovalbox{\tt\small REJECT}\simeq L^{\square }\oplus L^{m}\oplus\oplus\underline{L}_{4}\oplus\underline{L}_{4}$

and
$\mathscr{F}\otimes sF_{\simeq \mathscr{F}\oplus Sffi_{\oplus}ff_{\oplus}\ovalbox{\tt\small REJECT}}$

.
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