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Stationary Phase Method, Feynman Path Integrals
and Integration by Parts Formula

By

Daisuke FUIIWARA™

Abstract

The primary aim of this paper is a short introductory guide to the following two topics:
1. Stationary phase method for oscillatory integrals over a space of large dimension.
2. Outline of proof of convergence of Feynman path integrals.
In the last part of the paper, the following results of recent research are added.

1. An integration by parts formula for Feynman path integrals:
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X,¥

=- / F(y)Div p()e™ P D(y) —iv / F(y)DSx)p(n1e” P D(y),

Qx,y Qx‘_v

under suitable assumptions. This formula (0.1) is an analogy to Elworthy’s integration by parts formula
for Wiener integrals (cf. [3]).

2. A semiclassical asymptotic formula which holds in the case of F(y*) = 0. Here y* is the stationary
point of the phase S(y), i.e. 65(y*) =0.
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§ 1. Path Integral Defined by Feynman

For simplicity we restrict ourselves to the case where the configuration space is R!. In this
case Lagrangian function with potential V(z,x) is

L(t,%,x) = %ﬁ -V, x).

The case where non zero magnetic potential is present is discussed in [13]. Action of path 7y is

b
500 = [ L3, yonar
a
A classical path is the solution of the variational problem,
65(v0) =0, y@=y, ) =x

A classical path satisfies Euler equation:
d2
YO+ oV y®) =0,

y(b)=x, yla)=y.
Our assumption for potential V(z,x) is the following (cf. W. Pauli [20]).

Assumption 1.1. 1. V(z,x) is a real continuous function of (¢,x). If ¢ is fixed, then it is a

function of class C* in x.
2. For any m > 0 there exists v,, > 0 such that

max  sup |37V (,x)| < vm(1+ [x))m* 270},
'al:m(f,x)ela,b] x R4
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With this Assumption 1.1 one can prove the following

Proposition 1.2. Let o > 0 be so small that

2
d
1.1) “"8"2 <1.

If |b —a| < po, then for any x, y € R there exists a unique classical path 'y such that y(a) =y
and y(b) = x.

Let A be an arbitrary division of the interval [a, ] such that
(1.2) Aia=Tp<T1<---<Ty<Tjyy =b.

Wesett;=T;—Tj_1,j=1,2,...,J+1and [A|= max 7;.
=T h-nd + Al 1< g1
Assume that |A| < po. We set xp =y, x;41 = x. Forany x; € R, j=1,2,...,J, we define a

piecewise classical path ya(r) which is the classical path for 7j_; <t < T; and satisfies
(1.3) ya(T)) =x;, (j=0,1,2,....0+1).

7a may have edges at T;.
Given a functional F(y), we often abbreviate F(y,) as F5. Once A is fixed, it is a function of

(x341,%7,. - .,%1,%) and we denote the dependence of F(ys) on (xy41,%y,...,X1,%0) by writing

F(ya) = FA(xy41,%y, . . ., X1,%0)-

Let v = 2nh~!, where h is Planck’s constant, and €, the space! of paths starting y at time
a and reaching x at time a. Given a functional F(y) of ¥ € Q,, Feynman [4] considered the
following integral on finite dimensional space

(1.4) I[FA)A;v,b,a,x,y)

J+1 v 1/2 (ivSCra) . ) J
= [1 p F(ya)(Xr+1,%75- - - s X1,X0) " YA+ 1AL RL R0 I1 dx;.
- \2nit; -

Feynman defined his path integral by the formula:
(1.5) [ Fopes i = tim MEN&Y b.ax).
Quy -

The integral I{FAl(A; v,b,a,x,y) of (1.4) is called time slicing approximation of Feynman path
integral (1.5).

Does the right hand side of (1.5) give a finite number? Since the integral (1.4) does not
converge absolutely, the following questions should be answered.
Q1 Does I[FAl(A; v, b, a, x,y) exist for fixed |A] > 0?

!In these notes Q is a symbol which expresses vaguely notion of path space.
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Q2 Does the | Al}mOI[FA](A; v,b,a,x,y) exist?

§2. Oscillatory Integrals

§2.1. What is Oscillatory Integral

First we discuss question Q1 above.
Once the division A of the interval is fixed, I[F5](A; v, b, a,x,y) is a special case of the fol-

lowing type of integrals called oscillatory integrals:
/ a(x,y)e”*dy,

where ¢(x, y) is a real valued function of (x,y) € R™ x R” and a(x, y) is a function of (x,y). ¢ is
called the phase function and a is called the amplitude. Integral (1.4) is the case where m = 2

andn =J.

Precise meaning of oscillatory integral (2.1) is the following (cf. [14]). Consider arbitrary
family of fast decreasing C*° functions {we(y)}e>0 C S(R) which converges to 1 in the topology
of £. Here £ is the space of C* functions with topology of uniform convergence on every
bounded closed intervals together with its all derivatives.

Definition 2.1. Let
@.1) 109 = lim / wey)alx, y)e* D dy,
€— R”

Now we give a sufficient condition for oscillatory integral (2.1) to exist.
Assume x € R™,y € R” and the following conditions.

A1 Phase function ¢(x,y) € C*°(R™ x R") is real valued and for any multi-indices a, with
o]+ 18] = 2
|97 $(x,3)| < Cap-
A2 Let (d, ; Oy, #(x,)) be the n x n square matrix with (j, k) element dy J dy, #(x,y). Assume that
there exists C > 0 such that

| det(dy,0,,6(x, )| > C >0

for any (x,y) € R™ x R". Here det means the determinant.
A3 The amplitude function a(x,y), together with its all derivatives, is uniformly bounded on

R™ x R”",
Theorem 2.2 (cf. [1]). Under the conditions A1, A2 and A3 the oscillatory integral I(x)

exists. Moreover there exist a positive constant C such that

@) <Cv™? max sup |9%a(x,y)|.
|e|<n+2ycRr



90

Under the conditions A1, A2, A3 for any fixed x € R™ there exists one and only one critical
point y*(x) of ¢(x,y) as a function of y, i.e. y*(x) is the solution to system of equations

dy,4(x,y*(x)) =0, (=12,...,n).

Let H(x,y*(x)) be the Hessian matrix of ¢(x,y) with respect to y at y = y*(x), i.e. H(x,y"(x))
is the n x n symmetric matrix of which (j, k) element is 9, j 9y, H(x,y* (x)).

Theorem 2.3 (Stationary Phase Method). Suppose that conditions A1, A2 and A3 are sat-
isfied. Then

2” n/2 i * . *
109 = (1) |detH(x,y" ()] ~'/2 ¥ =2 ndH sy @Dl e D a(r, y (1)) + v~ r(v,3).

Here Ind(H(x, y*(x))) is the number of negative eigenvalues of matrix H(x,y*(x)). For anyk >0,
there exist K(k) > 0 and Cy, > O such that for any a with |a| <k,

@ < B1 gp2
2.2) |0Zr(v,x)| < Ci Iﬁfriléal)(((k) yseul{)" lax ay a(x, y)l.
B2 | <K (k)

a(x,y*(x)) is called the amplitude of the main term and v~lr(v,x) is the remainder (cf. [14]
and [1] for more information).
§2.2. Time Slicing Approximation is Oscillatory Integral

In order to answer question Q1, we prove conditions A1, A2, A3 of § 2 hold for (1.4).
From now on we always assume

2.3) b —a| < po.

For any x,y € R the classical path y* with y*(a) =y, y*(b) = x is unique. We write
(2.4) S(b,a,x,y) = SH").

Calculation shows:

Proposition 2.4. If |b — a| < po, S(b,a,x,y) is of the following form:

lx—y?

2(b _a) +(b _a)¢(b’a7x7y)-

S(bsaax3y)=

The function ¢(b,a, x,y) is a function of (b,a,x,y) of class C ! and there exists C > 0 such that
|¢(b,a,x,y)| < C(A+ x>+ Y.
Moreover, ¢(b,a, x,y) is a C* function of (x,y) and for any m > 2

max sup |afa}’,3¢(b,a,x,y)‘ =Ky < 00.
2< el +|BI<m (4 y)cR?



In particular,

2, -1
<_( L A
=73 8

Let A be the division of time interval [a, b] such that
Ara=TH<hh< --<Tj<Tjy; =b.

Assumption 2.5. For any multi-index a = (ay, . .. @y+1) there exists Ca.A > 0 such that
I+l
, H 8ijFA(x_]+1 y Xy e+ 5 X1 axO)I < Caf,A'
j=0
We discuss time slicing approximation of path integral.
(2.5) I[FAl(Asv,b,a,x,y)

J+l, oy (172 VS )
IVSA(XT 415X 5o X1 .
= (2 - ) / FA( 41,X7, -+« , X1, Xp)e' AT+ 2o 10X0) Ty ;.
j=1 \ 27T R/ =1

We show that this is an oscillatory integral which satisfies conditions A1, A2, A3 of § 2. Con-
dition A3 is clearly satisfied. We check condition A1.

J+1

SAGes+1,%75- -5 x1,%0) = S(YA)Xy41,%7, ., x1,%0) = D S(T5,Tj—1,%j,%xj—1)
=1

J+1 Xi—Xi—1 2
(I_f__f__'_ + Tj¢(7}‘77}’—lvxjvxf“1))‘

=Z 2Tj

=1

Note that

(2.6) O, SA(xs+1,%1, .- -, X1,X0)
Xi—Xji—1 Xi—Xj+1
J J J J
- + +Tj8x.¢j(xj,xj_1)+Tj+18x.¢j+1(xj+1,xj).
J J
Tj Tj+1

Here we used abbreviation:
¢j(xjaxj—1) = ¢(TjaTj—1,xj,xj—l)-

It follows from (2.6) and Proposition 2.4 that condition A1 is satisfied.
Now we check condition A2. Consider J x J matrix ¥ whose (j, k) element is

\ij = axjakaA(x1+1,XJ, o3 X1,X0) (.]ak =1,2,...,J).
Then we divide the matrix ¥ into two parts.

\PZHA-FWA,
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where : . :
(— _ —— 0 0 0 \
T T2 L)
1 1 1 1
—_—— == —— 0 0
T2 T2 T3 T3
1
0 - 0 0
Hpy = T3
1
T
1 1 1
\ 0 0 0 -_— = —/
T T7 T+l
and W, is the matrix whose (j.k) element is
(ajgj(Tj¢j+Tj+l¢j+1) if j=k
0y, 0x.Tid; if k=j—1
Q.7) wig=14 * 719 ’ d
Ox; O, Tk if k=j+1
|0 if |j—kl>2.
The matrix Hj is a constant matrix with determinant
detHA=11+72—|—---+‘rJ+1: (b—a) .
T1T2...TJ+1 TIT2...TJ41

It has its inverse H, I Regarding W, as an perturbation, we write

¥ = Hy(I + Hy 'Wa).

Proposition 2.6. Let 0 < p1 be so small that py < po and kou? < 1. Let |b—a] < p1. Then

for any (xj11,%s,...,x1,%0) € R'+2

(1 —op?y < det(I+Hy 'Wa) < (1 +iops}y’,

and
b—-a)

(2.8) (1 —xpsdy’
T17T2...TJ+1

< detW = det(Hyp + Wy) < (1 + xop3)’ -
1

(b—a)

T2...TJ41

Condition A2 for I[FA](A;v,b,a,x,y) follows from this proposition if |b — a| is small (cf.

(7).

Consequently, we have proved that conditions A1, A2 and A3 for § 2 are satisfied if |b—a| <
u1 and A is fixed, Hence I[FA](A; v, b, a, x,y) has a definite value. We answered Q1 of §1.
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§2.3. Kumano-go & Taniguchi Theorem
We always assume that [b — a| < y; in the following.
We apply stationary phase method to I[FA1(A;v,b,a, x,y). Let y* be the classical path such
that y*(a) =y, y*(b) = x.

Theorem 2.7. If |b—a| <y, then IndHy = 0 and

v

———)l/zefvsm(det(1+H—‘W*))“1/2p(A v,b,a,x,y)
27i(b — a) A A T

IFs8;v,b,a,%,) = (

with some function p(A,v,b,a,x,y). Here Wy is Wa evaluated at x; = y*(T}).

How does p(A,v,b,a,x,y) behave as |A| — 0? This is the core of the problem.
The next theorem was known earlier (cf. [15]).

Theorem 2.8 (Kumano-go & Taniguchi). Assume |b—a| < ug. Assume that F), satisfies the
following property:
For any K > 0, there exists Ak independent of A such that if |ag| < K|a1| <K, ...,|as1| <K

[ o7
[3,‘,{3‘ 8;;’ .. .aOOFA(XJ+1,. .. ,JC())l S AK.

Then

1%

12 .
m) e p(A;v,b,a,x,y).

I[FA](A;V’baaax’y) = (
Moreover for any k > O there exist K(k) > 0 and Cy > 0 such that as long as |ag| <k, |as1]| <k,

(2.9) |97, 920 plA; v, b,a, %, )| < ClAkw-

XJ+1
Here K(k), Cy are independent of A and of J.

If we let J — oo then the bound C,{AK(k) obtained by (2.9) may go to co. In order to answer
Q2 of § 1 we have to improve Kumano-go & Taniguchi Theorem.

§2.4. Stationary Phase Method for Integrals over a Space of Large Dimension
— Main Theorem —

Assume |b —a| < y;. Let y* be the unique classical path starting from y at time a and
reaching x at time b. Let x; =y*(T;)for j=0,1,2,...,J+1. Weset

T1T2...TJ+1

b-a)

Here HeSSx;‘,x;_,,...x;‘ Sa(xs+1,%s,-..,%1,%0) denotes the Hessian matrix at (xj,x;_;,...x]) of

) det(Hess, xr SA(K 41, %7, - -, X1, %0)).

D(A;b,a,x,y) = det(I + H{'W;) = (

XJ e

SA(xXj+1,Xx7,--.,Xx1,%0). Now we have
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Theorem 2.9. The function D(A;b,a,x,y) is of the following form:.
(2.10) D(A;b,a,x,y) = 1 + (b — a)®d(A;b,a,x,y).

Here for any K > 0 there exists a positive constant C independent of A such that if |e|, 8| < K,
then

2.11) |02 9Pd(A;b,a,x,y)| < Ck.
Additional assumption is needed for us to improve Kumano-go & Taniguchi Theorem,

Assumption 2.10. The functional F(y) satisfies the following condition:
For any integer K > 0 there exist constants Ax > 0 and Xx > 0 such that for any A and for Ve ;
satisfying |ao| < K,|a1| < K,...,|as+1| £ K, the following inequality holds:

(2.12) 920921 -+ Og 4 Fa(xs 1, %0, 31, %0)| < AgXigt.
Here Ak, Xx may depend on K but are independent of A and of J.
Remark 1. F(y) = 1 satisfies Assumption 2.10 above.
The next theorem states a desired result. We can let |A| — 0.

Theorem 2.11 (cf. [7] [16]). 2 Suppose that F(y) satisfies Assumption 2.10. Further és-
sume |b—a| < yy. Then
I[FA](A’ Vabaaaxay)

1/2 WS(y*) 1
14 vS(y . —-1/2 F * -1 b Q, b .
= (2 l(l )) € D(A b7a1xay) ( () ) v ( a)’( v, 7aaxay))

The following estimate for r(A;v,b,a, x,y) holds: For any integer K > 0 there exist nonnegative
integer M(K) and constant Cg > 0 such that

(2.13) |9¢ 0P r(A;v,b,a,x,y)| < CxAm)
if ||, |B8| < K. Both M(K) and Cx may depend on K but are independent of A and of J.
Theorem 2.12. In the case F(y) =1,
I[1](A;v,b,a,x,y)

1/2 .
= (_—_Zm'(;— a)) "D b,a,x,y) VA (1+v7 (B - a)’r(A; v,b,4a,x,)).

Here r(A;v,b,a, x,y) satisfies the same estimate as (2.13).

Z A sharper result is given in [11].



Corollary 2.13. Under the same assumption as in Theorem 2.11,

14

/2
_—'—) elVS(Y )D(A;b,a,xa)’)_l/zg(A;V,b,aa%}’)-
2ni(b —a)

IFA);v,b,a,%,) = (

Here g(A;v,b,a,x,y) is a function with the the following property:
For any integer m > O there exist M(m) and C,, independent of A, J such that if @, B < m then

(2.14) |02 0P 8(A;v,b,a,%,y)| < CnAnim).

The right hand side of (2.14) remains bounded if |A| — O.

In view of discussions above we introduce new norms. Let A be a division of interval [a, b]
and {x ,}f:& be as above. For nonnegative number m, constant X > 0 and nonnegative integer
K we define a norm of functional F(y) by the following equality

J+1 _

2.15) IF || g x 43 = sup (1+ [xp1]+ -+ + |xo) ™| T] X“"ilag.’F(yA)',
@9 <K,y <K j=0
Ep4 1 Hp)ERIH2

Moreover, we define
(2.16) WFll gmk,x) = S‘ip | F Il {m,k,x,4} 5
where sup is taken over all divisions A of interval [a, b].

Remark 2. Assumption 2.10 is equivalent to the assumption that for any nonnegative inte-
gerK=0,1,2,3,... there exists constants Xx > 0 such that

(2.17) Ak = ||F|l g0,k x¢} < 00
Kumano-go [16] generalized Theorem 2.11 above in the following way.

Theorem 2.14. Assume that F(y) satisfies the following condition: There exist a constant
m 2> 0 and a positive sequence {Xx; K =0,1,2,3,...} such that

(2.18) 1F || gk ) < 00

Then Theorem 2.11 is true except for the remainder estimate: For anyK =0,1,2, ... there exists
M(K) such that

(2'19) (1 + |x| + |y')—m,a§a}€r(A’ V’baa,x)y)l S CK”F”{m,M(K),XM(K)}

if ||, |B8] < K. Both M(K) and Cx may depend on K but are independent of A and of J.

95



96

Corollary 2.15. Assume that F(y) satisfies the following condition: There exist a constant
m > 0 and a positive sequence {Xx;K =0,1,2,3,...} such that

(2.20) “F”{m,K,XK} < 0.

Then conclusion of Corollary 2.13 is true except for the estimate: For any K =0,1,2,... there
exists M(K) such that

(2.21) (1+ |x| + [y ™| 92 Pe(A;v,b,a,%,9)| < Ck||IF |l immck) Xupcio}
if |a|, |8l < K. Both M(K) and Cx may depend on K but are independent of A and of J.

§2.5. Proof of Main Theorem

We give an outline of the proof of Theorem 2.11. We begin with the simplest case. Let A be
the simplest division of [a, b] such that

(2.22) A:a<T<b.

We consider piecewise classical path ya. We write 1y =T —a, 72 =b—T and y = ya(a),
2= Ya(T), x = ya(b). We can write

S(xazay) = SA(X, Z,}’) = Sl(Z,)’) +S2(x) Z)a

where
r d |z —yl?
(2'23) Sl (Zay) = L(ta d_-‘YA(t)’ YA(t))dt =— ¢1 (Taaa Z, J’)
a t 27
b d |x—2z)?
(2.24) S2(x,2) = / L, Zi—n(t), ya(t))dt = +¢2(b,T,x,2).
T t T2

Further we consider

v \1/2, vy 112 .
I — ( ) / F 3 Zs 'VS(X7Z,}’)d ,
2miT) (2711'1'2) R x.z,y)e z

here we assume F(x, z,y) and its all derivatives are uniformly bounded on R3.
Let z* be the critical point of the phase and define D«(S : x,y) by

71

T2
D, (S :x,y)= Hess, S(x, z, ‘ .
2+ ( y) I 2+ S( Zy)z=z*

71

We can write

(2.25) D (S:x,y) =1+ 1172d(S : x,Y).
For any K > 0 we have the estimate

(2.26) |97 2d(S : x,y)| < Ck,

as far as @, 8 < K. Regarding v(1| 'y T, 1y as a large parameter we apply stationary phase
method and we have



Lemma 2.16 (cf. [7]).

v 1/2 . *
1= (__) WS D (S - : —1/2
2ri(T1 +12) ¢ CREY

i‘rlrzazzF(x, z*,y)

+v lrmb V,T1,T2,X, ]
2v(t1 +712)Dx(S : x,y) 17260471, 72, %,3)

(2.27) x [Pz .+

Moreover, for any m > 0, there exist a constant Cy, > 0 and an integer M(m) > 0 such that as

faras |az| <m, |ag| <m

(2.28) 072050b(v, 1,72, %, )|
(2.29) < Cnmaxsup |0%20P1 95 F (x,7,y)|.
z€R

Here max is taken for all §1 with |81| < M(m) and B> < a3, Bo < ayp.

F(x,z*,y) is the amplitude of the main term and other is the remainder.
Corollary 2.17. If F(y) =1,

% 1/2 " _ _
@30) 1= (garrs) D ) T L 4y by, T2 ),

and for any a, B there exists a constant Cog > 0 such that

Ia)?afb(va TlaTZaxay), < Caﬁ

Outline of Proof of Theorem 2.11
We first perform integration by x;. Next we carefully treat integration by x; and so on. We
successively treat integration by x1,x2,x3,. ..,x;. Ateach step we apply stationary phase method
and use a small trick at each step.

The part of the right hand side of (2.5) which is related to x; is

v N2, v 12 (83,1 (x2,%1)+S1.0(x1 %))
@3 h=(5) (5) /&mﬂmwwmmmwhﬂm+wmmap
27iTy 27iTy R

We apply Lemma2.16. Then

v 1/2
2mi(Ty +T2))
X eiVSZ'O(xz,XO) (Pl [F](x.]-i-l-)x.l,- .. axz,x0)+R1 [F](XJ+I,XJ,. .. ,XZ,XO)).

232) L = (

P[Fl(xj4+1,x1,...,X2,X0) is the main term. R;[F}(x;+1,Xs,...,X2,X0) is the remainder.
Let Az be a new division of [a, b] such that

(2.33) AMia=hTH<h<B< - <Tj<Ti41=b.

97
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Then the main term is expressed as

PiFYxy41,%0, - - 1 %2,%0) = Fay(Xy11,%0, - ., %2,%0) D (52,1 +81,0:%2,30) /2.

As aresult of (2.27) and (2.28), R{[F1(xj+1,XJ,. .., X2,X0) can be written

(2.34) Ri[FY(xj41,%7, .- ,%2,%0)

= Dyx(S2,1 +51,05%2,%0) "1/

172 . -132
X (———Dx* (82,1 +51,0:%2,%0) " I Faxs41,%5,- - , X2, X1, X0)
2v(t1+12) !

(1172)

+ b(V,x1+],XJ,.--,x2,x0)).

Ri[FY(xj41,X1,--.,%2,%0) is a complicated function with respect to x, but is relatively simple
with respect to variables (x;+1,XJ, - .. ,¥3,X0). In fact, we have the following fact. For all m > 0
there exist constant C,, > 0 and an integer M(m) > 0 such that if |ao|,|@2| < m, then for any

Bl+l,ﬁ.la- .. 1ﬁ3

(2.35) |aﬂ’+'aﬂf . ..ag3agzax‘f)°b(v,xj+1,xj, vy X2,%0)|

XJ+1 Yxy

/ 14
<Cnmax  sup |0541051 . 9595295007 F(ya))-
YSM(m)  y eR 4 3 1
a{)Sao,aa <ey
Here we must note that the differential operator with respect to x; for j > 3 is the same on both
sides of the above inequality (2.35).

Remark 3. The remainder term (2.34) is small, O(v~! min{71,72}). In particular if F(y) =
1 the remainder term is O(v_11172).

Next we treat integration with respect to variable x;.
o Integrate Pi[F] by x,. We get as result P,P\[F]+ RyPi[F]. P,Pi[F] is principal part and
R, P{[F] is the remainder.
e But do not integrate R [F] by x; and leave it.
Next we treat integration by x3, In the following expression the left of the symbol — means
operation and the right of the symbol — is the result of operation:
e we integrate PP [F] by x3 — P3P,Pi[F1+ RsBP[F).
e We integrate R[F] by x3 — P3Ri[F]+ R3R[F].
e We do not integrate R, Pi[F] by x3.
When we treat integration by x4,
e Integrate AP P|[F]1 — P4PsPoPi[F1+ RaBsBP [F].
e Integrate P3R1[F] — P4PsRi[F]+ R4Bs R [F].
e Integrate RyPi[F] — P4RyPi[F)+ R4R2Pi[F].



¢ Do not integrate R3P,P;[F] by x4.
e Do not integrate R3R[F] by x4.

etc.
Repeating this operation, I[FAl(A;v,b,a, x, y)4is expressed as a sum of many terms.

(2.36) IIF1(4;v,b,a,%,y) = Ao(A;v,b,a,5,) + 3 Ajy ooy

Here Ao(A;v,b,a,x,y) is the main term through all steps, i.e.

Ao(A;v,b,a,x,y) = (___v_)l/zeivs(b,a,x,)’)PJPJ 1...Pi[F]
PGS 27i(b — a) S A
The sum 3’ expresses taking sum over some sequences { js,, js,_;s- -, Js; } Which is a subse-

quence of the sequence {/,J—1,/—2,...,1} and Ajs, sy »rdsy 18 the term which came from
skipping integration with respect to variables x;; WL TR A

We can show the term Ao(A;v,b,a,x,y) coincides with the main term of stationary phase
method of I[FAl(A;v,b,a,x,y) with respect to whole variables (x;,x;_1,...,x1). That is

14

12 o
——— ) &"0D@k 2Ry,
2m'(b—a)) e (A;b,a,x,y) ")

AO(A’ V,b,a,x,y) = (

The term A Jsgrdsg_y reerrdsy 18 of the following form:
/¢ 1/2 o . . . .
23T)  Ajqiy_ i =TI ( - ) / / & neey iy g gy i)
Sp Sg__lr"’ § . . — .
l ! k=1 27{1(7.',5[(4-1 T]Sk ) RL’
¢
X ajsg’jsg_l 1'“;]&1 (xJ+1 ’xj.\'[ Yo ’xjsl ,xO)kH] dxjsk )
Here
¢
Ssgudsg_yrdit CI 1Koy X 5%0) = 30 (S e (e, %55 )+ S sy, Gy 1 X))
02750 —1 1 ¢ 1 =1 k+1°7%% k+1 k k Sk k
anda; e (Xy31,x5 ,...,xj. ,x0) is a function satisfying the following estimate: For an
]"f’]“f—l’ aJSI +1, ]S[’ I ./Sl’ 0

m > 0, there exist K(m) and C(im) > O such that as long as Iarjskl <m,(k=1,2,...,£) and
lao| <m,|ass1| <m

L . ¢

a Ji 4

(2.38) |ogit! a;;okﬂ axjs:k jo, sy rrdsy FI+1Xjg -2y 1 %0)| < Clm) (kH1 T )AK(m)XK(m)‘
:1 =

Now we apply Kumano-go& Taniguchi theorem to the right hand side of (2.37). We can prove
that

1/2
o ot v MO - (A:
AJSea.’I[_ls-“a]Sl =V (27”(b—‘a)‘) € b'kf’jse—l’"'"]s] (A’V’b’a’x’y)’
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and we have the estimate

4
|0xii! 920b (&;v,b,a,x,y)| < Co(m)* Cm)ARmXiim 11 Ty, -
k=1

XJ+1 jsl’j“l—l 1"'7j5|

From here we have

\ 4

! _ /2 ivS(b,ax.y) A:
2 A sy ey = (m) e c(A;v,b,a,x,y),

where
C(A; V7baaaxay) = Z, V_[bjsg :js[__, v--~yjsl (A’ V’b’a’x’y)’

and we have that

4
|957+19%0c(A;v,b,a,%, )| < T v C1m) Cm)AKmyXkmy [1 T,
k=1

J
< ComAgem [ IT (14 CLmXiemy;) — 1]

j=1
< v 1T M)Ak myXkom)(b — a).

with some constant C’(m) independent of A and of J.
Theorem 2.11 is now proved. Similarly we can prove Theorem 2.12 ([5]).

§3. Application to Feynman Path Integral

§3.1. Existence of 'AI}mOD(A, b,a,x,y)
We shall prove that the limit
lim I[1](A;v,b,a,x,y)
|A|—0

exists (cf. [9], [6] and also [13]). Existence of I Al}mol [F1(A;v,b,a,x,y) for more general F(y) is

proved in [16]. See also [10].
We begin with

Theorem 3.1. The limit

G.1) D(b,a,x,y) = lim D(A,b,a,x,5)
exists and
(3.2) D(b,a,x,y) = 1 +(b—a)*d(b,a,x,y).

For any K > 0 there exists Ck > 0 such that for all a and B with |a|,|B| < K,
|02 dPd(b,a,x,y)| < Ck.
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Remark 4. 1. As one can see from next Theorem, D(A, b, a, x,y) converges uniformly to-
gether with its all derivatives with respect to (x, y).
2. D(b,a,x,y) is called Van Bleck-Morette determinant (cf. [19], [9]).

To prove Theorem 3.1, we have only to prove the following Theorem (cf. [8], [13] or [9]).

Theorem 3.2. Assume |b —a| < ;. Let A be an arbitrary division of [a,b). Let A be an
arbitrary refinement of A. Define d(A,A'; x,y) by the following equality.

D(A;b,a,x,y) ,
_— = — A';x,y).
DA b.ary) 1+ |A|(b—a)d(A,A;x,y)
Then for any a and B, there exists C, g independent of A, A’ and of (a,b, x,y) such that

(3.3) |02 9Pd(A,A':x,y) < Copp.

Proof. We prove Theorem 3.2 through several steps. Let A be
Ara=Th<Ni<h<---<T)<Tjy1=b

and A’ its refinement

A:a=Th= o< <2< --<Tp <TNp+i
= Tl = E,O < 7‘2,1 < ...... < T27P2 < T27p2+1
=h=N< - <TG <T11<Try12<

v <Trtpp <Trvipp+1 =T =0

Set7;=Tj —Tj-1 Tjk = Tjs — Tjs-1.
The piecewise classical path corresponding to division A’ is denoted by

YA’(xJ+11xJ+1,p/+1 yoees Xy e 3 X1 X, pyy e - ,x1,17x0)(t)7
which will be abbreviated to y,/(¢). Its action is
SAI(XJ+1,XJ+1’I,J+1,. o3 XJy ooy X1, X pyy e -y X1,1,%0)-

In the following, we use a special sequence of refinements AQ, A, A@ AU+D of A
such that A® = A, AU+D = A’ and A® is a refinement of A®—1,
We define AV by

AV:a=Ty=Tio<Tiy<Tiz<-<Tip <Tip+
==T1<Tz<'--<T1<TJ+1=b.
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AW is different from A only in [Tp, 7] where AY) and A’ define the same division.
We denote by Yomy(X7+1,%7, - - -1 X1,X1,p; - - - s X1,1,%0) the piecewise classical path corresponding

to division A,
We define A® so that A®@ is different from A" only in [T7,T3] and it defines the same

division as A’ in [T}, T2]. A® is
A®:a=Ty=Tig<Ti1 < <Tip <Tip+
=T1=Do<D) < <TDp, <Dz py+1
=B <hG< --<Tj<Ti=b.
Similarly , AW is defined for j = 3,4,...,J.
We compare D(AY); b, a, x,y) with D(AU=D; b, a, x, y).
We claim that for j =1,2,...,J+1
(34) D(AY;b,a,x,y) = DAY~ V;b,a,x,)D(6}; T;, Tj—1,%},%;_1)
= D(AY™V;b,a,x,y) (1+T3d(6;: T}, Tj—1,%,)) .

Here 6 denotes the division of [T;_1, T;]

(3.5) 0i:Tio1=Tjo<Tj1 < <Tjp, <Tjp;+1=T;.
For any any a, 8 there exists Cog > 0 such that
(3.6) |0298d(6,;T;,Tj—1,%,y)| < Cap-

Let us admit the claim to be true for the moment. Then it follows from (3.4) that
J+1
D(A';b,a,x,y) = D(A;b,a,x,y) [ (1+75d(6;:Tj, Tj-1,%,))-
j=1

We define d(A,A’;b,a, x,y) by

J+1
I1 (14 2d@5 T, Tj-1,%,y)) = 1 +|Al(b — a)d(A,A":b,a,x,).
1

]:
Then estimate (3.3) holds. Therefore, Theorem 3.2 is proved once the claim is proved.
We prove the claim for j = 1. As we defined by (3.5)

61:a=To=Tip<TN1<Ti2<:-<Tp <TNp+1=T.
Let ¥s, (X1,p,+1,%1,p; - - - X1,1,%1,0) be the piecewise classical path such that ys (77 ;) = x1,j,
j=0,1,..., p1 + 1. We write its action by
p1+1

S5, (X1, py+1: X1, g5 -+ -1 X1,1,%1,0) = 2 ST gy Tt =1, X1 5 X1 k—1)-
k=1
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The action of S(y,a)) is written as

3.7 S(Yam) = Sam(Xy41,X7, .-, X1, X1 p 5 - - -, X1,1,X0)
J+1 p1+1
= > 8Ty, Tj—1,%j,xj—1) + 2 ST ks T k1, X1 s X1 k1)
j=2 k=1
J+1
= ZS(T;',Tj—l,xj,xj—l)+561(x1,p1+1,x1,p1,---,xl,l,xl,o)-
=

In calculating det(HessSy)), we first fix (xy4+1,xs,...,%1,%) and consider the critical point

(& py»- -7 1) With respect to (x p,, ..., X1,1).

(3.8) det(l'lﬁss(x;*,p1 ek ) SAD KT 15 X3 X1 s X1 pyo e -1 X1,1,%0))
= det(Hess(xT’pl o) S61(X1,py+1,X] py -+ » X1 1,X1,0))
T1
= P1+1 D((S];T],TO,X],XO).
[I71;
k=1

Since
* *
S(51 (xl,p1+11xl,pl geee 7-x1,1axl,0) = S(T],R,X},X{)),

we know that for fixed (xy41,...,x1,x0)

J+1
(B9 Sa0GI+1,X0, - X1, X p - X 15%0) = D ST, Tj—1,%5,%j-1) + S(T1, To, X1,%0)
=2

= SA(Xs+1,%7, - . -, X1,X0)-
Calculation shows
det(HeSS(x’J",...,x?‘,xi",p] vt ) Sam) = det(Hessys | ox Sa) x det(Hess,x pyr D) Ssy lxl - )-
It follows from this and Theorem 2.9 applied to &; that

(3.10) DAW; b,a,x,y) = D(A;b,a,x,y)D(61;Ti, To, X}, y)
= D(A;b,a,x,y) (1 +13d©61;T1, To, %, y)) -

For any a, g there exists C,p > 0 such that

(3.11) |070Pd(61;T1,To,x,y)| < Cap.

Similarly, the claim can be proved for j > 1. Hence Theorem 3.2 is proved. O
§3.2. Convergence of Feynman Path Integral

Next we prove lAI}mol[l](A; v,b,a,x,y) exists. Existence of I AllimOI[F 1(A;v,b,a,x,y) for

more general F(y) is proved in [16]. See also [10].
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Theorem 3.3. 3 The limit

(3.12) K(v,b,a,x,y) = |A1%m01 (11A,v,b,a,x,y)

exists. Moreover K(v,b,a,x,y) is of the form:

\4

12
i=m) @ DG, a4y b))

(.13)  Ko,b,axy) = (
For any a, B there exist a positive constant Cog such that
(3.14)  1023r(v,b,a,%,y)] < Cap.

Remark 5. 1. Moreover I[1](A, v, b, a, x,y) converges uniformly together with its all deriva-

tives with respect to (x,y).
2. The function K(v,b,a, x,y) is the fundamental solution (Feynman propagator) of Schré-

dinger equation (cf. [S], [6], [9] and [13]).
3. (3.13) and (3.14) prove semi-classical asymptotic formula for Fundamental solution
(Feynman propagator) of Schrédinger equation. This is another proof of famous formula of

Birkhoff [2] (cf. [9]. See also [19]).
We have only to prove that I[1}(A; v, b, a, x,y) is a Cauchy net with respect to |A.

Theorem 3.4. % Assume that |b —a| < ). Let A be an arbitrary division of the interval
[a,b] and A’ be its arbitrary refinement. Then
(3.15) I[11(A";v,b,a,x,y) —1[1)(4; v,b,a,x,y)

v 12 ivS(bax
— vS(b,a,x,y) . -1/2 ’
(zi=a) D(Asb,a,x,y)”'/q(8,A',v,b,a,x,5).

Moreover, for all @, B, there exists C, g such that

(3.16) |0298q(A,A';v,b,a,x,y)| < CaglAl(b - a).

Proof. We prove the theorem along the same line as the proof of Theorem 3.2. We again
use the sequence of refinements AQ, AO A@_ . AU+D of A which appeared in the proof of

Theorem 3.2. We claim that fork =1,2,...,J+1

(3.17)  I[11(A%;v,b,a,x,y) — I[[11A%D; v,b,a,x,y)

1/2
- (76=a) % 60 D(a;b,0,2.) 120, A4V, b, 5,9,
Wo—a

3For more information see [9] and [12].
4cf.[8] and [13]



For any a, B there exists a positive constant C, g such that
la;; axlf)q(A(k)a A(k_l); v, baaaxvy)l S Cll,ﬁT]%-
Let us admit the claim to be true for a moment. Then we have

(318) 1[1](A/;V7b1aaxay)—I[l](A;Vab)aax’y)

J+1
=Y (I111AP;v,b,a,x,y) - I[11(A%D; v, b,a,x,y))

~ o
+

1
1 1/2
=3 (5e0—=) 2 50050 DA b, ax, 7)1 2q(A®, A%Ds v, b, . x,3)
i=1 \2mi(b —a)

12
(ﬁbv__a)) SaxI DA b, a,x,y) " 2q(A, A v, b,a, x, ).

Here
J+1

q(A AN v,b,a,x,y) = Zq(A(k),A(k'l);v,b,a,x,y).
k=1
For any a, S there exists a positive constant C, g such that

a B ’ il
(3.19) laxl onq(A,A ;v,b,a,x,y)l < Cwﬁki-:l ‘r%

Therefore Theorem 3.4 is proved once we admit the claim.

Proof of the Claim for k = 1. First we compare INKAD; v, b,a, x, y) with I[1]J(A; v, b,a, x,y).
Using (3.7), we have

(3200  1111AYV;v,b,a,x,y)

Jﬁl( v )1/2/ JZH 11[
= : exp(iv Y. S(T;,Tj—1,xj,xj—1)) [] dx;
j=2 \27it; R/ P j=2 P P j=1 !

p1+1 y 1/2 ) )41
x I1 ( - ) [ exp(ivSs, (X1,p,+1,X1,py 5+ - -, X1,1,%X1,0)) del,k]
k=1 \27iTyk RP1 k=1

Let xi‘:k = ya(T1 ;) for 1 <k < p;. Then it is the critical point with respect to (x p,,...,X1,1)
of 8s, (x1,p;+1,%1,p;»- -+, %1,1,%1,0), and just as in (3.9) the critical value is

* *
S§1 (xl,pl-l-lyxlypl,- .. 7x1,1 5x1,0) = S(Tl’ Tbaxlax())'

We fix (x;,...,x1) and integrate with respect to (xy p,,...,x1,1) in (3.20). Then it follows from
Theorem 2.11 and the fact above that

nnaY;v,b,a,x,y)

J+1( v

1/2 J
F, Xj41,- .-, %0)EXPEVSA(X L1, X5y ..y X1, X dx;
=1 27rirj) /RJ AW /A1 0)eXp(vSA(Xy+1,X; 1 ()))jl;l1 j

= I[FA(I)/A](A; V,baaaxay)’
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with
S12(y 4 T
FA(‘)/A(V,xJ-i-l geee axO) = D(61 > Tl ) TOaxl ay) (1 + 7rA(1)/A(V) T] ) To, x, ,)’))) .
Here D(61;Th,To,x1,Y) is given by (2.9) and used in (3.10). So we know that it is of the follow-
ing form:
3.21) D111, To, x1,) = 1 +77d (613 T, To, X1, %0)-
This means that we have
Fyw /a0 X141,%05- -, X1,%0) = L+ 71 fawa (v, Th, To, 1, %0),

and we have the estimate for fjq) /A(v, T, Ty, x1,Xo): For any a,f3 there exists a positive constant

Co g such that
Iaﬁ aﬁ)fA(l)/A(V) Tl ’ TO,X] ,xO)l S Ca”g

Now we can write

(3.22) 111AY;v,b,a,x,y) - I111(A; v, b,a,%,y) = I[Fpn /o — 11(A;v,b,,x,)
= 11 fx0/al(A v, b,4,x,5).

We can apply corollary 2.13 to the right hand side of above equation and obtain

v

12 ’
. ) ¢"SCXI DA b, a,x,y) " 2g(AD, A:v, b, a, x, y).
2ni(b —a)

B fawa)8,v,b,0,5,5) = (
Here g(AV, A; v,b,a, x,y) has the following property: For any a,f there exists Cy g such that
(3.23) |92 08 g(AM, A;v,b,a,x,y)| < Capi.

This means that

(3.24) 11AYV;v,b,a,x,y) — I[11(A; v, b,a,x,y)

v 12 ivS(b,a,x
Y S %) D(A: =172 (A A )
(Zm'(b-—a)) e (A;b,a,x,y)" /°q(A™,A;v,b,a,x,y)

The claim for k = 1 is proved. Similarly, we can prove the claim for k¥ > 1. Theorem 3.4 is

proved. O

§4. Integration by Parts Formula for Feynman Path Integrals

§4.1. Some Operators of Trace Class

Let Ho = Hé (a, b) be the Sobolev space of order 1 with vanishing boundary condition. Let
p: Ho — L%(a, b) be the canonical embedding and p* : L?(a,b) — Ho its adjoint.



Remark 6. It is well known that pp* = Gy, where Gy is the Green operator of Dirichlet
boundary value problem of ordinary differential equation:
dZ
4.1 ——dﬁu(t) = f(1), and u(a) =0 = u(b).

Proposition 4.1. Let B: L*(a,b) — L*(a,b) be a bounded linear operator. Then both of
linear operators p*Bp: Ho — Ho and pp*B: L* — L? are of trace class. Their traces are

equal, i.e.
(4.2) trp*Bp = trpp*B.
Let B be a bounded linear operator in L2(a, b). It is clear from the previous Proposition that

the linear mapping pp*B: L*(a,b) — L*(a,b) has an integral kernel, i.e. there exists k(s,?) €
L?([a, b] x [a, b]) such that for all f € L*(a,b),

b
(4.3) pP*Bf(s) = / k(s, ) f()dt.

Proposition 4.2. k(s,t) has the following properties:
1. Restriction k(s,s) of k(s,t) to the diagonal subset of [a,b] X [a,b] is well-defined for almost
b

all s, and/ |k(s,5)|*ds < .
2. Moreover, “

b
4.4) trpp*B = / k(s 5)ds.
a

§4.2. Divergence Operator

We fix (x,y) € R?, and we set H,, = {y € H'(a,b); y(a) = y,y(b) = x}. Hyy is an infinite
dimensional C*° manifold. The tangent space of H,, at point y € H,, is identified with H,.

Let p be a continuous mapping p: H,, >y~ p(y) € Ho. Since p(y) € Ho, p(y) is expressed
as a function p(y,s) of variable s, i.e. p(y,s) = pp(y)(s). It satisfies p(y,a) =0 = p(y, b), itis an
absolute continuous function of s, its derivative d;p(y, s) exists almost everywhere and d; p(y, s)

satisfies

b
[ 1aptroiar < oo
a
We regard p(y) as a vector field on H,,, because Hp is the tangent space to H,y at y.

Definition 4.3 (Admissible Vector Field). We say that p(y) is an admissible vector field if
p(y) has the following properties:
1. There exits a C! mapping q: Hyy — L*(0,T) such that

4.5) P =p*q(y), (y € Hyy).

107
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2. The Fréchet differential Dg(y): Ho > h — Dq(y)[h] € L*(0,T) can be boudedly extended to
a bounded linear operator B(y) in L%(0,T); that is, for any h € Hy,

(4.6) Dq(y)[h] = B(y)ph.
It is clear from Definition 4.3 that for any & € Hp,
4.7) Dp(y)[hl = p*Dq(y)[h] = p* B(y)ph.

Definition 4.4 (Divergence of an Admissible Vector Field). Suppose that p(y) is an admis-
sible vector field. Then we define its divergence Div p(y) at y in the following way:

(4.8) Div p(y) = trDp(y) = trp" B(y)p.

Proposition 4.2 enables us to use another expression of Div p(y).

Proposition 4.5. Suppose that p(y) is an admissible vector field. Then there exists the ker-
nel function k,(s,t) of the map pp*B(y), and
4.9) Div p(y) = trpp*B(y) = /a ’ ky(s,s)ds.

Remark 7. One can see our definition (4.8) of Div is akin to but slightly different from that

of “divergence” in [18], [17].

§4.3. Integration by Parts Formula

Suppose a functional F: H,, — C has Fréchet differential DF(y) at y € H,, and that there
is a density function f, € L%(a,b) such that

b
4.10) DF (y)[h] = / f(s)ph(s)ds, (Vh € Hp).
Then we denote f,(s) by ?;8;) or by 6y6(s) F(y),i.e.
b
4.11) DF(y)[h] = / ﬂy—)ph(s)ds, (Vh € Hop).
a O¥(s)

Definition 4.6. Let m be a non-negative constant. We say a functional F(y) a m-smooth
functional if F(y) satisfies all of the following conditions:
F1 Functional F(y) is a infinitely differentiable map from H Ya,b)to C.
F2 At every y € H,y functional F(y) has Fréchet derivative DF(y) with density functional
oF(y) .
,i.e.
6y(s)

b
(4.12) DF(y)[h] = / fsfy%)ph(s)ds, (Vy € Hyy, Vh € Ho).



oF
F3 5 E‘y)) is a continuos function of s if y € H,, is fixed. It is infinitely differentiable with
YS
respect to y € H,yy if s is fixed.

F4 For any nonnegative integer K there exists a positive constants X such that

OF (y)
oy(s)

Remark 8. An m-smooth functional is Feynman path integrable (cf. [16] and [10]).

< 0.
{m,K Xk}

(4.13)

u
s€la,b]

In accordance with this notation we use also the following notation.

o
Let p(y) be a vector field as in Definition 4.3 above. Then we use the symbol 1) for B(vy);
that is 50(y)
Dgolhl == Cph,  (Vh € Ha)
Thus

0
Dp()lh] = p* —%(y—yzph, (Vh € Ho).

(1] 0
And we denote the kernel function k,(s,?) of the map pp*B(y) = pp* ‘(15(77) by g ;‘{t’;)

)
——p(y,s), 1.e. forany h € Hy

ay(@)
b
op(y,s)
4.14 D h](s =/ h(t)dt.
4.14) PDp(y)[h](s) o ph(z)
Remark 9. Using this notation, we can write
b
. 6p(y,s)
4.15) Div = / ds,
( p(y) o)

for a vector field p(y) as above.

Definition 4.7. Let m’ be a nonnegative number. We say that the vector field p(y) is an
m’-admissible vector field if it has all the following properties:
P1 p(y)is admissible; that is, there isa C I mapping q: Hy, — LZ(O, T) such that p(y) = p*q(y)

for y € H,.,, and for all h € Ho, Dg(y)[h] = ‘5‘(15_(7’),);,, where 24
%

is a bounded linear
&y

operator in L(a, b).
P2 The kernel function

op(y,s) of op* 6q(y)

is continuous in [0,T] x [0,T]. For each K =
sy@y O P oy

0,1,2,..., there exist positive numbers Yx and Bk such that
(4.16) Bg > sup {|p(¥, )| {m kye} + sUP 1050V (m kvi)
s€[0,T] s€[0,T]
op(y,
+ su 85———p ©,5) .
1€[0,T) 0Y®) |l {m & v}
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Theorem 4.8 (Integration by Parts Formula). Let b —a < py. Assume F(y) is m-smooth
functional and p(y) is an m’-admissible vector field on H, with some m and m’. Further
assume that Div p(y) is m’-smooth and DF (y)[p(y)], DS(¥)[p(y)] are F-integrable. Then the
following integration by parts formula holds:

4.17) /Q DF(y)[p(y)]e”* " D(y)
- / F(y)Div p(y)e*S P D(y) — iv /g FoDSOp()e”* VD).
Q

Remark 10 (cf. [16]). If p(y,s) is independent of vy, i.e. p(y) = h then Div p(y) = 0 and the
formula above reduces to

/ DF ()M PD(y) = —iv / F(y)DS()[ReSP D).
Q'ry

Qxy
§4.4. Sketch of Proof

We write

J+1 1/2
(4.18) N(A) = ]‘[( Y ) .
]—

=1 \2mit;

We also write ya j = p(ya, Tj) for j=0,1,...,J+1. Clearly yAp = 0 = ya s+1. Since definition
of oscillatory integral on finite dimensional space R’ implies that

. J
(4.19) Z (F('YA)}’A, €50) I] dx; =0,
R/ j= l j=1
we have
(4.20) N(A) Z Ox;(F(ya))ya, ,e’”s(“)l'ldx
R/ j=1

) J
— N /R Fomw ; 3,0, ,—)ews(wl:[dxj

—ivN(A) / F(n)ZyA 0% S(ya)e™ ) Hldx
J-

Theorem 4.8 follows from the formula above, because we can prove the following three

propositions:

Proposition 4.9.

@421 lim N&) / F(ya) ZyA,,ax,S(me”S(’A) Hldx = / F(y)DS»p(1e™* I D(y).
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Proposition 4.10.
' J _ J .
@22)  lim N [ 3 0x;(F(ya)ya e []dx; = / DF(y)[p(y)1e”*VD(y).
|A]—0 R/ j=1 j=1 Q
Proposition 4.11.
J _ J .
423)  lim N(A) / F(7a) Y Ok, (va, )e™0) [Tdx; = / F(y)Div p(y)e™ P D(y).
|A]—0 R’/ j=1 j=1 Q
Proof of these propositions is a long story. We omit it here. It will be published elsewhere.

§4.5. An Application to Semiclassical Asymptotic Formula

We always assume b —a < up. Let F(y) be an m-smooth functional. Then semiclassical
asymptotic formula was proved by Kumano-go [16]:

(4.24) / F(1)e™MDly]

_ (—_iy—)l/zb(b a,%,y) " 20 (F(y*) + v 'r(v.b,a,x,y)).
27((b _a) 1 Uy Ay 7

where y* is the classical path connecting (b, x) and (a, y) in time-space.

If F(y*) = 0, then the main term of the asymptotic formula vanishes. What happens in that
case? Integration by parts formula enables us to get informations even in this case.

Suppose F(y) is an m-smooth functional and F(y*) = 0. Then

1
F(y)= /0 DF (yg)ly — y*1d6,

where yy = 6y + (1 — 8)y* and DF () is the Fréchet differential of F(y) at 4. In other words,

@.25) Fy) = / / T oy(5) - py* (s)) dsd.
0 a 67(5)
We set
L 6F ()
4.26 = —de.
4.26) 1) /0 L

Since DS(y*) = 0, we have for for all & € Hy
(4.27)  DS(y)[h] = DS()[h] — DS(y*)[h] = (¥ — ¥*, B)rty — W POY — 07", 00 120 1y-

Here (,) [2(a,b) and (, )3, are inner products in Hilbert spaces L?*(a, b) and Ho, respectively. W(y)
is multiplication operator L(a, b) 3 h(s) — W (v, s)h(s) € L*(a, b), where

1
W (y,s) = /0 92V (s, 74(s))db.
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We can show I — W(y)pp* is an invertible operator in L*(a,b). We set
(4.28) p) = p" U= WH)pp*) L),

By definition of p(y) we have

Proposition 4.12. The following equality holds:
(4.29) DS(y)[p(y)] = F(y).

We can prove

Propeosition 4.13. If F(y) is an m-smooth functional, then p(y) is an m-admissible vector
field.

Proposition 4.14. The following equality holds:
(4.30) / F(y)e™PDly] = / DSOP()Ie™S VD).
Q [9]

By applying integration by parts formula, we have

Theorem 4.15. Suppose F(y) is an m-smooth functional with some m > 0 and F(y*) = 0.
Set {(y,t) be as above. Set

(4.31) p(y) =p" (I —=W()pp*) "1 {(w).

Then p(y) is an m-admissible vector field on H,. Moreover,
432) [ oD =~ [ Divpe D)
Qy Quy
Theorem 4.16. Under the same assumption the following asymptotic formula holds:
(4.33) / F(9)e™*Dly]
Qry

. 1/2
(= —1/2, vV [ _rin—113: - 2
(27r(b—a)) D(b,a,x,y)” /e (—G») ™' Divp(y*)+v r(v,b,a,x,y)).

where the remainder term r(v,b,a,x,y) has the property such that for a,p there exists a positive

constant Cop

4.34) |020Pr(v,b,a,x,y)| < Cap(1+ x|+ |y)™.



Let G,+(t,s) be the Green function of differential equation of Jacobi field:

~( ;’ +0RV(E,y @) )u) = £@),
u(a) =0 = u(b).

Calculation shows:

Theorem 4.17.

SF(y")

(4.35) Divp(y")= = //6(t)( v (2, )6())d sdt

1 8Gy»(1,5) 6F(y*) 1 / / SCFY)
2/a / oo one) At ) s omn

We omit details of the proof. It will be published elsewhere.
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