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Abstract

The purpose of this note is to give a review on our recent study on
the asymptotic non-degeneracy for the Gel‘fand problem in two space
dimensions, which suggests a deep link between the Hamiltonian of
vortices and the mean field of equilibrium vortices. We also give a
new simpler proof of the asymptotic formula for the solutions of the
linealized Gel‘fand problem, which is used to get the asymptotic non-
degeneracy results.

1 Introduction
In this article, we are concerned with the Gel ‘fand problem in two space
dimensions:

-A$u$ $=\lambda e^{u}$ in $\Omega$ , $u=0$ on $\partial\Omega$ . (1.1)

where $\Omega\subseteq R^{2}$ is a bounded domain with smooth boundary $\partial\Omega$ and $\lambda>0$ is
a parameter. Let $\{\lambda_{n}\}_{n\in N}$ be a sequence satisfying $\lambda_{n}\downarrow 0$ and $u_{n}=u_{n}(x)$

be a solution to (1.1) for $\lambda=\lambda_{n}$ . The fundamental facts concerning the
asymptotic behavior of $u_{n}$ are established by the pioneering work of Nagasaki
and Suzuki:

Fact 1.1 ([26]). Let $\Sigma_{n}=\lambda_{n}\int_{\Omega}e^{u_{n}}$ . Then $\{\Sigma_{n}\}$ accumulate to $\Sigma_{\infty}$ which is
either

(i) $0$ , (ii) $8\pi m(m\in N)$ , or (iii) $+\infty$ .

According to these cases, the (sub-)sequence of solutions $\{u_{n}\}$ behave as
follows:

(i) uniform convergence to $0$ ,
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(ii) m-point blow-up, that is, there is a blow-up set $\mathscr{S}=\{K_{1}, \ldots, K_{m}\}\subset\Omega$

of distinct m-points such that

$u_{n} arrow u_{\infty}(x)=8\pi\sum_{j=1}^{m}G(x, \kappa_{j})$ locally uniformly, (1.2)

where $G(x, y)$ is the Green function of-A under the Dirichlet condi-
tion, that is,

$-\triangle G(\cdot, y)=\delta_{y}$ in $\Omega$ , $G(\cdot, y)=0$ on $\partial\Omega$ .

(iii) entire blow-up, that is, $u_{n}(x)arrow+\infty$ for every $x\in\Omega$ .

Moreover, the blow-up points $\kappa_{j}(j=1, \cdots, m)$ in case (ii) satisfy the rela-
tions

$\nabla(K(x, \kappa_{j})+\sum_{1\leq k\leq m,k\neq j}G(x, \kappa_{k}))_{x=\kappa_{j}}=0$ , (1.3)

where $K(x, y)=G(x, y)- \frac{1}{2\pi}\log|x-y|^{-1}$ .

$K(x, y)$ is called the regular part of the Green function $G(x, y)$ . Here we
set $R(x)=K(x, x)$ and introduce the function

$H^{m}(x_{1}, \ldots, x_{m})=\frac{1}{2}\sum_{j=1}^{m}R(x_{j})+\frac{1}{2}\sum_{1\leq j,k\leq mj\neq k},G(x_{j}, x_{k})$,

which we call the Hamiltonian. Since $G(x, y)=G(y, x)$ and $K(x, y)=$
$K(y, x)$ , the relation (1.3) means that $\mathscr{S}\in\Omega^{m}$ is a critical point of the func-
tion $H^{m}$ of 2m-variables. Therefore we are able to say that the limit function
of $\{u_{n}\}$ blows up at a critical point of the Hamiltonian $H^{m}$ . Concerning this
link between $H^{m}$ and $\{u_{n}\}$ , recently we get the following result:

Theorem 1.2 ([15]). Suppose $\mathscr{S}$ in (ii) of Theorem 1.1 is a non-degenerate
critical point of $H^{m}$ . Then the associated $u_{n}$ for $n\gg 1$ is a non-degenerate
critical point of the functional

$F_{\lambda_{n}}(u)= \frac{1}{2}l_{\Omega}|\nabla u|^{2}dx-\lambda_{n}\int_{\Omega}e^{u}dx$ .

It is easy to see that the equation (1.1) is the Euler-Lagrange equation
of the functional $F_{\lambda}$ . Therefore we may say that Theorem 1.2 insists deeper
links between the functional $F_{\lambda}$ and the function $H^{m}$ than Theorem 1.1.
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This kind of result is sometimes called the asymptotic non-degenemcy and
the above theorem has been already established by Gladiali and Grossi [11]
for the case $m=1$ . Several studies also exist for other kind of equations
(e.g., [14], [32]), but they also consider the l-point blow-up cases.

See also [12] for further correspondence concerning the Morse indices
between $F_{\lambda}$ and $H^{m}$ for the case $m=1$ , whose extension to general $m$

cases seems next target for us.

2 A short note on $H^{m}$

The Hamiltonian function $H^{m}$ is rather popular in fluid mechanics. This
is the Kirchhoff-Routh path function of vortices in two-dimensional incom-
pressible non-viscous fluid, see [19, 25, 23] or [10, Chapter 15] for example.

Formally speaking, N-vortices is a set $\{(x_{j}(t),$ $\Gamma_{j})\}_{j=1,\cdots,N}(\subset\Omega\cross(R\backslash \{0\}))$

that forms a vorticity field $\omega(x, t)=\sum_{j=1}^{N}\Gamma_{j}\delta_{x_{j}(t)}$ satisfying the Euler vor-
ticity equation

$\partial\omega$

$-+(v\cdot\nabla)\omega=0$ , (2.1)
$\partial t$

where $v= \nabla^{\perp}\int_{\Omega}G(x, y)\omega(y, t)dy$ is the velocity field of the fluid. Here
$\nabla^{\perp}=(\frac{\partial}{\partial x_{2}},$ $- \frac{\partial}{\partial x_{1}})$ and we assumed that $\Omega$ is simply connected for sim-
plicity. $\delta_{p}$ is the Dirac measure supported at the point $p(\in\Omega)$ and $\Gamma_{j}$ is the
intensity (circulation) of the vortex at $x_{j}(t)$ . From the Kelvin circulation law,
the intensity $\Gamma_{j}$ is considered to be conserved. From other several physical
considerations, the form $\sum_{j=1}^{N}\Gamma_{j}\delta_{x_{j}(t)}$ is considered to be preserved during
the time evolution.

It is true that the model “vortices“ made many success to understand
the motion of real fluid, but it should be noticed that the velocity field $v=$
$\sum_{j=1}^{N}\Gamma_{j}\nabla^{\perp}G(x, x_{j}(t))$ determined by the vorticity field $\sum_{j=1}^{N}\Gamma_{j}\delta_{x_{j}(t)}$ makes
the kinetic energy $\frac{1}{2}\int_{\Omega}|v|^{2}dx$ infinite. Moreover it is difficult to understand,
even in the sense of distributions, how it satisfies the vorticity equation (2.1).
Nevertheless the motion of vortices have been “known” from 19th century.
Indeed, they are considered to move according to the following equations:

$\Gamma_{i}\frac{dx_{i}}{dt}=\nabla_{i}^{\perp}H^{N,\Gamma}(x_{1}, \cdots, x_{N})(=(\frac{\partial H^{N,\Gamma}}{\partial x_{i,2}},$ $- \frac{\partial H^{N,\Gamma}}{\partial x_{i,1}}))$ , (2.2)
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where

$H^{N,\Gamma}(x_{1}, \cdots, x_{N})=\frac{1}{2}\sum_{j=1}^{N}\Gamma_{j}^{2}K(x_{j}, x_{j})+\frac{1}{2}\sum_{1\leq j,k\leq Nj\neq k},\Gamma_{j}\Gamma_{k}G(x_{j}, x_{k})$

and $x_{i}=(x_{i,1}, x_{i,2})$ . It is easy to see that the value of $H^{N,\Gamma}$ is preserved under
the time evolution of vortices. Therefore $H^{N,\Gamma}$ is called the Hamiltonian.

$H^{m}$ referred in Fact 1.1 corresponds to the special case $N=m$ and
$\Gamma=(\Gamma_{1}, \cdots, \Gamma_{m})=(1, \cdots, 1)$ , that is, m-vortices of one kind. Therefore
,5;’ in Fact 1.1, that is, the possible blow-up set of the solution sequence of
the Gel‘fand problem is a critical point of $H^{m}$ , that is, the Hamiltonian of
m-vortices of one kind.

3 On the contrary...
It should be remarked that we are able to get the Gel‘fand problem from
this special Hamiltonian $H^{m}$ . Indeed suppose all the intensities of vortices
is equivalent to some constant $\Gamma$ . Then the Hamiltonian of m-vortices $H^{m,\Gamma}$

reduces to $\Gamma^{2}H^{m}$ . In this situation, the Gibbs measure associated to this
Hamiltonian is given as follows:

$\mu^{m}=\frac{e^{-\tilde{\beta}\Gamma^{2}H^{m}(.x,\cdots,x_{m})}1}{\int_{\Omega^{m}}e^{-\overline{\beta}\Gamma^{2}H^{m}(x_{1},\cdot\cdot,x_{m})}dx_{1}\cdots dx_{m}}dx_{1}\cdots dx_{m}$,

where $\tilde{\beta}$ is a parameter called the inverse temperature. The canonical Gibbs
measure is considered in statistical mechanics to give the possibility of the
state for given energy $H^{m}$ under the fixed (inverse) temperature. If $\tilde{\beta}>_{\sim}0$ (as
usual), the low-energy states are likely to occur. On the contrary, if $\beta<0$

(negative temperature cases), the high energy states have more possibility to
occur, which is considered to give some reason why there are often observed
large-scale long-lived structures in two-dimensional turbulence. One of the
most famous example of such structures is the Jupiter $s$ great red spot. The
idea to relate such structures to negative temperature states of equilibrium
vortices is first proposed by Onsager [29], see [9] for the development of his
ideas.

Using the canonical Gibbs measure, we are able to get the probability
(density) of the first vortex observed at $x_{1}\in\Omega$ from

$\rho^{m}(x_{1})=\int_{\Omega^{m-1}}\mu^{m}dx_{2}\cdots dx_{m}$ ,
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which is equivalent to every vortices from the symmetry of $H^{m}$ . Now we
assume that total vorticity is equivalent to 1, that is, $\Gamma=\frac{1}{m}$ and suppose
$\tilde{\beta}=\tilde{\beta}_{\infty}\cdot m$ for some fixed $\tilde{\beta}_{\infty}\in(-8\pi, +\infty)$ . Then we get $\rho$ satisfying the
following equation at the limit of $\rho^{m}$ as $marrow\infty$ :

$\rho(x)=\frac{e^{-\tilde{\beta}_{\infty}G\rho(x)}}{\int_{\Omega}e^{-\overline{\beta}_{\infty}G\rho(x)}dx}$ , (3.1)

where $G$ is the Green operator given by $G \rho(x)=\int_{\Omega}G(x, y)\rho(y)dy([2$,
Thorem 2.1] $)$ . This $\rho$ is called the mean field of the equilibrium vortices
of one kind. It should be remarked that when the solution of (3.1) is unique,
$\rho^{m}$ weakly converges to $\rho$ , and not unique, to some superposition of $\rho$ . The
solution of (3.1) is know to unique if $\Omega$ is simply connected [31].

These argument was established mathmatically rigorously by Caglioti-
Lions-Marchioro-Pulvirenti [2] and Kiessling [17] independently based on the
argument developped by Messer-Sphon [24], see also [23, 21]. We note that
the equations similar to (3.1) are derived by several authors under several
physically reasonable assumptions and arguments in several situations, e.g.,
the system of vortices of neutral and two kinds, that means there exist same
numbers of vortices with positive or negative intensities with the same abso-
lute value, was considered in [16, 30].

We also note that (3.1) means $u:=-\tilde{\beta}_{\infty}G\rho$ and $\beta$
$:=-\tilde{\beta}_{\infty}$ satisfy

$- \triangle u=\beta\frac{e^{u}}{\int_{\Omega}e^{u}dx}$ in $\Omega$ , $u=0$ on $\partial\Omega$ . (3.2)

Therefore each solution of (3.2) is linked to that of the Gel‘fand problem
(1.1) under the relation $\beta/\int_{\Omega}e^{u}dx=\lambda$ , that is, $\beta=\lambda\int_{\Omega}e^{u}dx(=\Sigma)$ . The
behaviors of the sequences of solutions of (3.2) with $\beta>0$ (that is, $\tilde{\beta}_{\infty}=-\beta$

is negative !) are now well studied by several authors [1, 20, 18, 5, 28]
etc, see also recent development around this problem for [6, 7, 8, 22] and
references therein. Especially based on the argument in [1] (see also [28]),
we are able to get a subsequence satisfying $\int_{\Omega}e^{u_{n}}dxarrow\infty$ if $\{(u_{n}, \beta_{n})\}$ is
a sequence of solutions of (3.2) satisfying that $\{u_{n}\}$ is unbounded in $L^{\infty}(\Omega)$

and $\{\beta_{n}\}$ is bounded. Therefore, the behaviors of unbounded sequence of
solutions of (3.2) with bounded $\{\beta_{n}\}$ reduce to those of (1.1) satisfying $\lambda_{n}=$

$\beta_{n}/\int_{\Omega}e^{u_{n}}dxarrow 0$ . Consequently we return to the situation of Fact 1.1 and
we are able to represent the conclusion of Fact 1.1 as follows:

The mean fields generated by equilibrium vortices of one kind
with negative temperature converge only to the stationary vor-
tices of one kind.
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I consider that Theorem 1.2 is a next answer to the question “To what
extent can the Hamiltonian of vortices illustrate the mean field of equilibrium
vortices ¿‘

4 Sketch of the proof of Theorem 1.2
Similarly to [11], we prove Theorem 1.2 arguing by contradiction. For this
purpose we assume the existence of a sequence $\{v_{n}\}$ of non-degenerate critical
point of $F_{\lambda_{n}}$ as $narrow\infty$ . Using the standard arguments, $v_{n}$ is a non-trivial
solution of the linealized problem of (1.1):

$-\triangle v=\lambda_{n}e^{u_{n}}v$ in $\Omega$ , $v=0$ on $\partial\Omega$ . (4.1)

Without loss of generality we may assume that $\Vert v_{n}\Vert_{L^{\infty}(\Omega)}\equiv 1$ .
Taking sufficiently small $\overline{R}>0$ , we may assume that for each $\kappa_{j}$ there

exists a sequence $\{x_{j,n}\}$ satisfying

$x_{j,n}arrow\kappa_{j}$ , $u_{n}(x_{j,n})=_{B} \max_{\overline{R}(x_{j,n})}u_{n}(x)arrow\infty$ .

Then we re-scale $u_{n}$ and $v_{n}$ around $x_{j,n}$ as follows:

$\overline{u}_{j,n}(\tilde{x})=u_{n}(\delta_{j,n}\overline{x}+x_{j,n})-u_{n}(x_{j,n})$ in $B_{\frac{\overline{R}}{\delta_{j,n}}}(0)$ ,

$\overline{v}_{j,n}(\overline{x})=v_{n}(\delta_{j,n}\overline{x}+x_{j,n})$ in $B_{\frac{\overline{R}}{\delta_{j,n}}}(0)$
, (4.2)

where the scaling parameter $\delta_{j,n}$ is chosen to satisfy $\lambda_{n}e^{u_{n}(x_{j,n})}\delta_{j,n}^{2}=1$ . From
the standard argument based on the estimate concerning the blow-up be-
havior of $u_{n}[18]$ (see Corollary 5.3 below) we know $\delta_{j,n}arrow 0$ . Moreover
the classification result of the solutions of (1.1) and (4.1) in the whole space
[3, 4], there exist $a_{j}\in R^{2},$ $b_{j}\in R$ for each $j$ and subsequences of $u_{n}$ and $v_{n}$

satisfying

$\overline{u}_{j,n}arrow\log\frac{1}{(1+\frac{|\overline{x}|^{2}}{8})^{2}}$
, $\overline{v}_{j,n}arrow\frac{a_{j}\cdot\overline{x}}{8+|x|^{2}}+b_{j}\frac{8-|\overline{x}|^{2}}{8+|\overline{x}|^{2}}$ ,

locally uniformly. We shall show $a_{j}=0$ and $b_{j}=0$ .

The proof is divided into 3 steps:
Step 1: We show the following asymptotic behavior for (a subsequence of)
$v_{n}$ :

$\frac{v_{n}}{\lambda^{\frac{1}{n^{2}}}}arrow 2\pi\sum_{j=1}^{m}C_{j}a_{j}\cdot\nabla_{y}G(x, \kappa_{j})$ (4.3)
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locally uniformly in St $\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j})$ , where $C_{j}>0$ is some constant.
Step 2: Using the fact that $\mathscr{S}$ is a non-degenerate critical point of $H^{m}$ , we
show $a_{j}=0$ for every $j$ .
Step 3: We show $b_{j}=0$ for every $j$ and consequently we show the uniform
convergence $v_{n}arrow 0$ in $\Omega$ , which contradicts 1 $v_{n}$ II $L^{\infty}(\Omega)\equiv 1$ .

We explain Step 1 in detail in the next section. Here we remark further
on Step 2, which is based on the simple observation that

$-\triangle u_{x_{i}}=\lambda e^{u}u_{x_{i}}$ , (4.4)

holds for every solution $u$ of (1.1), that is, $u_{x_{i}}= \frac{\partial u}{\partial x_{i}}$ is always a solution of
(4.1) except for the boundary condition. Then using the Green identity, we
get

$\frac{1}{\lambda^{\frac{1}{n^{2}}}}l_{\partial B_{R}(\kappa_{j})}(\frac{\partial}{\partial_{l\text{ノ}}}(u_{n})_{x_{i}}v_{n}-(u_{n})_{x_{i}}\frac{\partial}{\partial\iota \text{ノ}}v_{n})d\sigma=0$ . (4.5)

for every $\kappa_{j}$ and sufficiently small $R(>2\overline{R})>0$ . From the know asymptotic
behaviors (1.2) (4.3) of $u_{n}$ and $v_{n}$ , we are able to see that the limit of the
above identity (4.5) is a linear combination of the integration

$I_{ij}:= \int_{\partial B_{R}(z_{1})}\{\frac{\partial}{\partial\nu_{x}}G_{x_{i}}(x, z_{2})G_{y_{j}}(x, z_{3})-G_{x_{i}}(x, z_{2})\frac{\partial}{\partial_{l}\text{ノ_{}x}}G_{y_{j}}(x, z_{3})\}d\sigma_{x}$.

We are able to calculate this as

$I_{ij}=I_{ij}(z_{1}, z_{2}, z_{3})=\{\begin{array}{ll}0 (z_{1}\neq z_{2}, z_{1}\neq z_{3}))\frac{1}{2}R_{x_{i}x_{j}}(z_{1}) (z_{1}=z_{2}=z_{3}),G_{x_{i}y_{j}}(z_{1}, z_{3}) (z_{1}=z_{2}, z_{1}\neq z_{3}),G_{x_{i}x_{j}}(z_{1}, z_{2}) (z_{1}\neq z_{2}, z_{1}=z_{3}),\end{array}$ (4.6)

which is a localized versions of the known integral identity for the Green
function:

$- \int_{\partial\Omega}G_{x_{i}}(x, y)\frac{\partial}{\partial\nu_{x}}G_{y_{j}}(x, y)d\sigma_{x}=\frac{1}{2}R_{x_{i}x_{j}}(y)$,

see [11] for example.
Collecting the limit of (4.5) for all $j=1,$ $\cdots,$ $m$ , we get

$0=16\pi^{2}HessH^{m}|_{(x_{1},\cdots,x_{m})=(\kappa_{1},\cdots,\kappa_{m})}{}^{t}(C_{1}a_{1},$ $\cdots,$ $C_{m}a_{m})$ .

This gives $a_{j}=0$ from the assumption that $HessH^{m}$ is invertible at $\mathscr{S}$ .
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5Another proof of the asymptotic formula
In this section, we give another simpler proof for the asymptotic formula
(4.3), which is different from the original one in [15]. First we recall several
facts necessary for the proof of (4.3) from Section 4 of [15].

Fact 5.1 ([18], see [15, Theorem 4.1]). For every fixed $0<R\ll 1$ , there
exists a constant $C$ independent of $j$ and $n\gg 1$ such that

$|u_{n}(x)- \log\frac{e^{u_{n}(x_{j,n})}}{(1+\underline{\lambda}_{\Delta 8}e^{u_{n}(x_{j,n})}|x-x_{j,n}|^{2})^{2}}|\leq C$ $\forall x\in B_{R}(x_{j,n})$ .

Corollary 5.2 ([15, Corollary 4.2]). For fixed $R_{f}$ there exists a constant $C$

satisfying

$| \overline{u}_{j,n}(\overline{x})-\log\frac{1}{(1+\frac{1}{8}|\overline{x}|^{2})^{2}}|\leq C$
$\forall\overline{x}\in B_{\frac{R}{\delta_{j,n}}}(0)$

for every $j$ .

Corollary 5.3 ([15, Corollary4.3]). For each $j$ there exists a constant $C_{j}>0$

and a subsequence of $\delta_{j,n}$ satisfying

$\delta_{j,n}=C_{j}\lambda^{\frac{1}{n^{2}}}+o(\lambda^{\frac{1}{n2}})$ as $narrow\infty$ .

From the Green’s representation formula, we divide $v_{n}$ into several parts
as $follows^{3}$ :

$v_{n}(x)= \int_{\Omega}G(x, y)\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$= \sum_{j=1}^{m}\int_{B_{\overline{R}}(x_{j,n})}G(x, y)\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$+ \int_{\Omega\backslash \bigcup_{j=1}^{m}B_{\overline{R}}(x_{j,n})}G(x, y)\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy=:\sum_{j=1}^{m}\psi_{j,n}+\psi_{0,n}$ .

Recall that $u_{n}$ is bounded outside from $\kappa_{1},$
$\ldots,$

$\kappa_{m}$ and we derive

$\Vert\psi_{0,n}\Vert_{L^{\infty}(\Omega\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j}))}=O(\lambda_{n})=o(\lambda^{\frac{1}{n2}})$ .

First we show the following pre-formula to (4.3):
3We note that in [15] we use a cut-off function to localize the integration around $x_{j,n}$ ,

which seems rather complicated from now. Therefore here we simplify the presentation
and, just to be sure, prove several lemmas equivalent to those exist in [15].
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Proposition 5.4 $($cf. [15, Proposition $4.4]^{4})$ . For each $j$ ,

$\psi_{j,n}(x)=G(x, x_{j,n})\gamma_{j,n}+2\pi a_{j}\cdot\nabla_{y}G(x, x_{j,n})\delta_{j,n}+o(\delta_{j,n})$

uniformly for all $x\in\overline{\Omega}\backslash B_{2\overline{R}}(\kappa_{j})_{f}$ where

$\gamma_{j,n}=\int_{B_{3\overline{R}}(x_{j,n})}\lambda_{n}e^{u_{n}(y),}\iota\prime_{n}(y)dy$.

Proof. For simplicity, we shall omit $j$ in several characters, e.g., $\psi_{n}$ as $\psi_{j,n},\overline{u}_{n}$

as $\overline{u}_{j,n},\cdots$ . Without loss of generality, furthermore, we may assume $\kappa_{j}=0$ .
For every $x\in\overline{\Omega}\backslash B_{2\overline{R}}(0)$ and $y\in B_{\overline{R}}(x_{n})$ , Taylor $s$ theorem guarantees

$G(x, y)=G(x, x_{n})+\nabla_{y}G(x, x_{n})(y-x_{n})+s(x, \eta, y-x_{n})$

with
$s(x, \eta, y-x_{n})=\frac{1}{2}\sum_{1\leq k,l\leq 2}G_{y_{k}y\iota}(x, \eta)(y_{k}-x_{n,k})(y_{l}-x_{n,l})$

and $\eta=\eta(n, y)\in B_{\overline{R}}(x_{n})$ . Therefore it hold that

$\psi_{n}(x)=\int_{B_{\overline{R}}(x_{n})}G(x, y)\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$=G(x, x_{n}) \int_{B_{\overline{R}}(x_{n})}\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$+ \nabla_{y}G(x, x_{n})\cdot\int_{B_{\overline{R}}(x_{n})}(y-x_{n})\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$+ \int_{B_{\overline{R}}(x_{n})}s(x, \eta, y-x_{n})\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy$

$=:I_{1}+I_{2}+I_{3}$ .

Obviously it holds that

$\int_{B_{\overline{R}}(x_{n})}\lambda_{n}e^{u_{n}(y)}v_{n}(y)dy=\int_{B_{3\overline{R}}(x_{n})}-\int_{B_{3\overline{R}}(x_{n})\backslash B_{\overline{R}}(0)}$

$=\gamma_{n}+O(\lambda_{n})=\gamma_{n}+o(\delta_{n})$

and consequently
$I_{1}=G(x, x_{n})\gamma_{n}+o(\delta_{n})$ .

4This is essentialy the same one to [15, Proposition 4.4] and we prove here similarly
(and slightly simply) based on the argument in the proof of [12, Proposition 6.4]. We note
that we have completely different proof for this lemma [27] based on the idea in the proof
of [11, Lemma 6 (p. 1345)].
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uniformly for $x\in\overline{\Omega}\backslash B_{2\overline{R}}(0)$ .
On the other hand, we get

$I_{2}= \nabla_{y}G(x, x_{n})\int_{B_{\frac{\overline{R}}{\delta n}}(0)}\delta_{n}\overline{y}e^{\tilde{u}_{n}(y}\gamma\overline{v}_{n}d\overline{y}$
,

by (4.2). From Corollary 5.2, we can apply the dominated convergence the-
orem:

$\int_{B_{\overline{R}}(0)^{\overline{y}_{j}e^{\tilde{u}_{n}(y}}}\gamma_{\overline{v}_{n}(y}\gamma_{d\overline{y}}$

$\tau_{n}^{-}$

$arrow\int_{R^{2}}\overline{y}_{j}\{a\cdot\nabla(-\frac{1}{4}e^{U})+bdiv(\frac{1}{2}\overline{y}e^{U})\}d\overline{y}=2\pi a_{j}$,

which implies
$I_{2}=2\pi a\cdot\nabla_{y}G(x, x_{n})\delta_{n}+o(\delta_{n})$ .

Finally we use

$x \not\in B_{2\overline{R}}(0),\eta\in B_{\overline{R}}(xn)\sup_{1\leq k,l\leq 2}$

$|G_{y_{k}y\iota}(x, \eta)|\leq C<\infty$

for some constant $C$ independent of $n\gg 1$ to estimate

$|I_{3}| \leq C\lambda_{n}\int_{B_{\overline{R}}(x_{n})}|y-x_{n}|^{2}e^{u_{n}(y)}dy$

$\leq C\overline{R}^{\rho}\lambda_{n}\int_{B_{\overline{R}}(x_{n})}|y-x_{n}|^{2-\rho}e^{u_{n}(y)}dy$

$\leq C\overline{R}^{\rho}\delta_{n}^{2-\rho}\int_{B_{\tau_{\overline{n}}^{R}}(0)}|\overline{y}|^{2-\rho}e^{\overline{u}_{n}(\tilde{y})}dy$

for some $\rho\in(0,1)$ . Using Corollary 5.2 again, we get the following limit
since $\rho\in(0,1)$ :

$\int_{B_{T_{\overline{n}}^{R}}(0)}|\overline{y}|^{2-\rho}e^{\tilde{u}_{n}(\gamma y}d\overline{y}arrow\int_{R^{2}}|\overline{y}|^{2-\rho}e^{U(\tilde{y})}d\overline{y}<\infty$
.

Consequently we get $I_{3}=O(\delta_{n}^{2-\rho})=o(\delta_{n})$ and the conclusion. $\square$

Proposition 5.4 and Corollary 5.3 imply the following pre-asymptotic for-
mula:

$v_{n}(x)= \sum_{j=1}^{m}\gamma_{j,n}G(x, x_{j,n})+2\pi\lambda^{\frac{1}{n2}}\sum_{j=1}^{m}C_{j}a_{j}\cdot\nabla_{y}G(x, x_{j,n})+o(\lambda^{\frac{1}{n2}})$ (5.1)
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uniformly in $x \in\overline{\Omega}\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j})$ . We also get the similar formula for $\nabla v_{n}$

from the Green representation formula for $\nabla v_{n}$ and consequently the above
formula holds in $C^{1}( \overline{\Omega}\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j}))$ .

Similarly, we are able to get the following asymptotic formula for $u_{n}$ ,
which is a finer version of (1.2):

$u_{n}(x)= \sum_{j=1}^{m}\sigma_{j,n}G(x, x_{j,n})+o(\lambda^{\frac{1}{n2}})$ (5.2)

in $C^{1}( \overline{\Omega}\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j}))$ , where

$\sigma_{j,n}=\int_{B_{3\overline{R}}(x_{j,n})}\lambda_{n}e^{u_{n}(y)}dy$ . (5.3)

We know $\sigma_{j,n}arrow 8\pi$ from Fact 1.1, see also Remark 5.6 below.
To get the finer asymptotic formula (4.3) we need to get

$\gamma_{j,n}=o(\lambda^{\frac{1}{n2}})$ (5.4)

for some subsequence. In the previous paper [15], we prove (5.4) by contradic-
tion argument supposing $\lim\sup_{narrow\infty}\lambda^{\frac{1}{n^{2}}}/|\gamma_{j,n}|<\infty$ . In this note, we prove
(5.4) by a completely different direct argument using bi-linearly generalized
version of the Pohozaev identity:

Proposition 5.5. For every $p\in R^{2},$ $R>0$ , and $f,$ $g\in C^{2}(\overline{B_{R}(p)})$ , the
following identity holds:

$\int_{B_{R}(p)}\{[(x-p)\cdot\nabla f]\triangle g+\triangle f[(x-p)\cdot\nabla g]\}$

$=R \int_{\partial B_{R}(p)}(2\frac{\partial f}{\partial\nu}\frac{\partial g}{\partial_{l\text{ノ}}}-\nabla f\cdot\nabla g)$ . (5.5)

Proof.

$\int_{B_{R}(p)}\{[(x-p)\cdot\nabla f]\triangle g+\triangle f[(x-p)\cdot\nabla g]\}$

$= \int_{\partial B_{R}(p)}\{[(x-p)\cdot\nabla f]\frac{\partial g}{\partial\nu}+\frac{\partial f}{\partial\iota \text{ノ}}[(x-p)\cdot\nabla g]\}$

$- \oint_{B_{R}(p)}\{\nabla[(x-p)\cdot\nabla f]\cdot\nabla g+\nabla f\cdot\nabla[(x-p)\cdot\nabla g]\}$

$=R \int_{\partial B_{R}(p)}2\frac{\partial f}{\partial\nu}\frac{\partial g}{\partial_{l\text{ノ}}}-\int_{B_{R}(p)}[2\nabla f\cdot\nabla g+(x-p)\cdot\nabla(\nabla f\cdot\nabla g)]$
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$=R \int_{\partial B_{R}(p)}2\frac{\partial f}{\partial\nu}\frac{\partial g}{\partial\nu}-\int_{\partial B_{R}(p)}[(x-p)\cdot\nu]\nabla f\cdot\nabla g$

$=R \int_{\partial B_{R}(p)}(2\frac{\partial f}{\partial\nu}\frac{\partial g}{\partial\nu}-\nabla f\cdot\nabla g)$ .

$\square$

Applying $p=x_{j,n},$ $R=3\overline{R},$ $f=u_{n}$ , and $g=v_{n}$ to the lefthand side of
(5.5), we get

$\int_{B_{3\overline{R}}(x_{j,n})}\{[(x-x_{j,n})\cdot\nabla u_{n}]\triangle v_{n}+\triangle u_{n}[(x-x_{j,n})\cdot\nabla v_{n}]\}$

$= \int_{B_{3\overline{R}}(x_{j,n})}\{[(x-x_{j,n})\cdot\nabla u_{n}](-\lambda_{n}e^{u_{n}}v_{n})-\lambda_{n}e^{u_{n}}[(x-x_{j,n})\cdot\nabla v_{n}]\}$

$=- \int_{B_{3\overline{R}}(x_{j,n})}(x-x_{j,n})\cdot\nabla(\lambda_{n}e^{u_{n}}v_{n})$

$=- \int_{\partial B_{3\overline{R}}(x_{j,n})}[(x-x_{j,n})\cdot\nu]\lambda_{n}e^{u_{n}}v_{n}+2\int_{B_{3\overline{R}}(x_{j,n})}\lambda_{n}e^{u_{n}}c)_{n}$

$=2\gamma_{j,n}+O(\lambda_{n})=2\gamma_{j,n}+o(\lambda^{\frac{1}{n2}})$ .

Therefore we get the following representation formula of $\gamma_{j,n}$ from (5.5):

$\gamma_{j,n}=\frac{3\overline{R}}{2}\int_{\partial B_{3\overline{R}}(x_{j,n})}(2\frac{\partial u_{n}}{\partial\nu}\frac{\partial v_{n}}{\partial\nu}-\nabla u_{n}\cdot\nabla v_{n})+o(\lambda^{\frac{1}{n^{2}}})$ . (5.6)

We use this formula (5.6) to get (5.4). We note that the asymptotic formulas
(5.1)(5.2) hold on $\partial B_{3\overline{R}}(x_{j,n})$ for $n\gg 1$ and therefore we are able to insert
them into (5.6). To this purpose, we extract singular parts around $x_{j,n}$ from
the asymptotic formulas (5.1) and (5.2).

$\nabla u_{n}(x)=-\frac{\sigma_{j,n}}{2\pi}\cdot\frac{\nu}{3\overline{R}}+\nabla h_{j,n}^{1}(x)+o(\lambda^{\frac{1}{n2}})$ (5.7)

$\nabla v_{n}(x)=-\frac{\gamma_{j,n}}{2\pi}\cdot\frac{\nu}{3\overline{R}}+C_{j}\frac{a_{j}-2(a_{j}\cdot\nu)\nu}{(3\overline{R})^{2}}\lambda^{\frac{1}{n^{2}}}$ (5.8)

$+\nabla h_{j,n}^{2}(x)+\lambda^{\frac{1}{n^{2}}}\nabla h_{j,n}^{3}(x)+o(\lambda^{\frac{1}{n^{2}}})$
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on $\partial B_{3\overline{R}}(x_{j,n})$ , where

$h_{j,n}^{1}(x)= \sigma_{j,n}K(x, x_{j,n})+\sum_{1\leq i\leq m,i\neq j}\sigma_{i,n}G(x, x_{j,n})$

$h_{j,n}^{2}(x)= \gamma_{j,n}K(x, x_{j,n})+\sum_{1\leq i\leq m,i\neq j}\gamma_{i,n}G(x, x_{j,n})$
,

$h_{j,n}^{3}(x)=2 \pi C_{j}a_{j}\cdot\nabla_{y}K(x, x_{j,n})+2\pi\sum_{1\leq i\leq m,i\neq j}C_{i}a_{i}\nabla_{y}G(x, x_{j,n})$
.

Inserting these into the representation formula (5.6) of $\gamma_{j,n}$ , we get the con-
clusion. Indeed, we have

$\frac{3\overline{R}}{2}\int_{\partial B_{3\overline{R}}(x_{j,n})}2\frac{\partial u_{n}}{\partial\nu}\frac{\partial v_{n}}{\partial\nu}$

$= \frac{\sigma_{j,n}\gamma_{j,n}}{2\pi}+\frac{\sigma_{j},{}_{n}C_{j}\lambda^{\frac{1}{n2}}}{2\pi(3\overline{R})^{2}}\int_{\partial B_{3\overline{R}}(x_{j,n})}a_{j}\cdot\nu-\frac{\sigma_{j,n}}{2\pi}\int_{\partial B_{3\overline{R}}(x_{j,n})}\frac{\partial(f_{t_{j,n}^{2}}+\lambda^{\frac{1}{n2}}h_{j,n}^{3})}{\partial\nu}$

$- \frac{\gamma_{j,n}}{2\pi}\int_{\partial B_{3R^{-}}(x_{j,n})}\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}-\frac{C_{j}\lambda^{\frac{1}{n2}}}{3\overline{R}}\int_{\partial B_{3\overline{R}}(x_{j,n})}(a_{j}\cdot\nu)\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}$

$+ \frac{3\overline{R}}{2}\oint_{\partial B_{3\overline{R}}(x_{j,n})}2\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}\frac{\partial(h_{j,n}^{2}+\lambda^{\frac{1}{n2}}h_{j,n}^{3})}{\partial\nu}+o(\lambda^{\frac{1}{n2}})$

$= \frac{\sigma_{j,n}\gamma_{j,n}}{2\pi}-\frac{C_{j}\lambda^{\frac{1}{n^{2}}}}{3\overline{R}}\int_{\partial B_{3\overline{R}}(x_{j,n})}(a_{j}\cdot\nu)\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}$

$+ \frac{3\overline{R}}{2}\int_{\partial B_{3\overline{R}}(x_{j,n})}2\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}\frac{\partial(h_{j,n}^{2}+\lambda^{\frac{1}{n2}}h_{j,n}^{3})}{\partial\nu}+o(\lambda^{\frac{1}{n^{2}}})$

from the divergence formula and the fact that $h_{j,n}^{i}(i=1,2,3)$ is harmonic
in $B_{3\overline{R}}(x_{j,n})$ .

Similarly, we have

$\frac{3\overline{R}}{2}\int_{\partial B_{3\overline{R}}(x_{j,n})}\nabla u_{n}\cdot\nabla v_{n}$

$= \frac{\sigma_{j,n}\gamma_{j,n}}{4\pi}+\frac{C_{j}\lambda^{\frac{1}{n2}}}{6\overline{R}}\int_{\partial B_{3\overline{R}}(x_{j,n})}a_{j}\cdot\nabla h_{j,n}^{1}-\frac{C_{j}\lambda^{\frac{1}{n^{2}}}}{3\overline{R}}\int_{\partial B_{3\overline{R}}(x_{j,n})}(a_{j}\cdot\nu)\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}$

$+ \frac{3\overline{R}}{2}\int_{\partial B_{3\overline{R}}(x_{j,n})}\nabla h_{j,n}^{1}\cdot\nabla(h_{j,n}^{2}+\lambda^{\frac{1}{n^{2}}}h_{j,n}^{3})+o(\lambda^{\frac{1}{n2}})$ .

13



We note that

$\int_{\partial B_{3\overline{R}}(x_{j,n})}2\frac{\partial h_{j,n}^{1}(x)}{\partial\nu}\frac{\partial(h_{j,n}^{2}+\lambda^{\frac{1}{n2}}h_{j,n}^{3})}{\partial\nu}-\int_{\partial B_{3\overline{R}}(x_{j,n})}\nabla h_{j,n}^{1}\cdot\nabla(h_{j,n}^{2}+\lambda^{\frac{1}{n2}}h_{j,n}^{3})=0$

from the bi-linear Pohozaev identity (5.5) because $h_{j,n}^{i}(i=1,2,3)$ is har-
monic. We also note that

$\frac{C_{j}\lambda^{\frac{1}{n^{2}}}}{6\overline{R}}\int_{\partial B_{3\overline{R}}(x_{j,n})}a_{j}\cdot\nabla h_{j,n}^{1}=\frac{C_{j}\lambda^{\frac{1}{n2}}}{6\overline{R}}|\partial B_{3\overline{R}}(x_{j,n})|a_{j}\cdot\nabla h_{j,n}^{1}(x_{j,n})$

$=\pi\lambda^{\frac{1}{n2}}a_{j}\cdot\nabla h_{j,n}^{1}(x_{j,n})=o(\lambda^{\frac{1}{n2}})$

from the mean value theorem for harmonic functions and the fact that

$\nabla h_{j,n}^{1}(x_{j,n})arrow 8\pi\nabla(K(x, \kappa_{j})+\sum_{1\leq i\leq m,i\neq j}G(x, \kappa_{i}))_{x=\kappa}=0j$

from (1.3).
Consequently we get

$\gamma_{j,n}=\frac{\sigma_{j,n}\gamma_{j,n}}{4\pi}+o(\lambda^{\frac{1}{n2}})$ ,

which means
$\gamma_{j,n}=\frac{1}{1-\frac{\sigma_{j,n}}{4\pi}}o(\lambda^{\frac{1}{2}})=o(\lambda^{\frac{1}{n2}})$ (5.9)

since $\sigma_{j,n}arrow 8\pi$ .
Using (5.9), we get the conclusion from the pre-formula (5.1) holds on

$C^{1}( \overline{\Omega}\backslash \bigcup_{j=1}^{m}B_{2\overline{R}}(\kappa_{j}))$ .

Remark 5.6. Similar argument is also applicable to get the behavior of $\sigma_{j,n}$ .
Indeed, applying $p=x_{j,n},$

$R=3\overline{R}$ , and $f=g=u_{n}$ to the lefthand side of
(5.5), we get

$\int_{B_{3R}(x_{j,n})}2[(x-x_{j,n})\cdot\nabla u_{n}]\Delta u_{n}=-2\int_{B_{3\overline{R}}(x_{j,n})}(x-x_{j,n})\cdot\nabla(\lambda_{n}e^{u_{n}})$

$=-2 \int_{\partial B_{3\overline{R}}(x_{j,n})}[(x-x_{j,n})\cdot\nu]\lambda_{n}e^{u_{n}}+4\int_{B_{3\overline{R}}(x_{j,n})}\lambda_{n}e^{u_{n}}$

$=4\sigma_{j,n}+O(\lambda_{n})=4\sigma_{j,n}+o(\lambda^{\frac{1}{n2}})$ .
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Therefore we get the following representation formula of $\sigma_{j,n}$ from (5.5):

$\sigma_{j,n}=\frac{3\overline{R}}{4}l_{\partial B_{3\overline{R}}(x_{j,n})}(2|\frac{\partial u_{n}}{\partial\nu}|^{2}-|\nabla u_{n}|^{2})+o(\lambda^{\frac{1}{n^{2}}})$ . (5.10)

Inserting (5.7) into this representation formula of $\sigma_{j,n}$ , we get

$\sigma_{j,n}=\frac{\sigma_{j,n}^{2}}{8\pi}+o(\lambda^{\frac{1}{n2}})$ ,

which means
$\sigma_{j,n}=8\pi+o(\lambda^{\frac{1}{n2}})$ (5.11)

if only we show $\lim\inf_{narrow\infty}\sigma_{j,n}>0$ previously. We note that from the sharp
estimate established in [5] it seems to hold that $\sigma_{j,n}=8\pi+O(\lambda_{n})$ . Therefore
the above estimate (5.11) is weaker than that in [5], but it is sufficient for
the analysis in other relating problems [13].
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