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ABSTRACT. The purpose of this survey article is to present a recent progress in the study of turbulent cas-
cades in physical scales of 3D incompressible fluid flows, as well as to indicate some directions of the current
research.
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1. INTRODUCTION

Despite many advances in analysis, modeling, and experimental study of $3D$ incompressible fluid
flows, the problem of understanding turbulence is still largely open. Fundamentally, the phenomeno-
logical theory Kolmogorov introduced in $1940s$ ([Ko41-1, Ko41-2]) remains the most influential due to
its simplicity and overall good fit with experimental data ([GSM62, ZTMW94]). The challenges however
remain the same: to connect the phenomenology to the underlying laws of motion and to understand
mechanisms leading to formation, persistence, and disappearance of turbulent regions within a fluid
flow (see e.g. [Fr95, FMRT, DPOI]). Mathematically, these problems are linked to open questions in
the theory of the Navier-Stokes (NSE) and Euler (EE) equations; particularly relevant are the issues of
uniqueness and regularity as well as qualitative behavior of the solutions.

Naturally, this is a very active area of research in applied mathematics. On one hand, improved
hardware capabilities and advances in computational techniques made it possible to perform numerical
simulations of turbulent flow at very high resolutions (see, e.g. [DYS08, WK09, CBBLIO]), on the other,

new analytical tools allowed proofs of stronger regularity criteria and better understanding of scaling
properties of solutions to NSE and EE (e.g. [L-R02, ISS03, $ChKaLe07$, Ku08, GrGu10-2, DLSIO, CSII]),

and as a consequence, led to partial confirmations of important tenets of turbulence theories directly
from the equations of motion (see, e.g. [FMRTOI, CCFS08, EA09, RDDII]). Most of the analytical ap-
proaches use Harmonic Analysis techniques in Fourier scales. This framework proved very effective in
establishing new global regularity properties of NSE and EE and led to better understanding of homo-
geneous isotropic turbulence phenomenology in the context of periodic and whole space domains.

Another approach is to study the role local geometry and coherent structures play in turbulent behav-
ior as well as possible singularity formations ([Ch94, MKO94, AK98, LMOO, CFOI, $Gr01$ , MB02, CFL04,

Shvy09, GMII] $)$ , for example, it was established that H\"older coherence of the vorticity direction in re-
gions of high fluid intensity prevents singularity formation ( $[CoFe93$, daVeigaBe02, Gr09]). Up to now
however, there was no effective way to consider turbulent phenomenology in this context. The main ob-
stacle seemed to be the lack of effective (amenable to analysis) definition of a scale in a physical domain
setting.

In this article, we survey a recent approach that allows understanding turbulent phenomenology in
the context of physical scales-without assuming homogeneity and isotropy-by directly zooming in to
the regions of intense fluid activity.

2. ENSEMBLE AVERAGES; PHYSICAL SCALES

The ensemble averaging process to be described in this section in some detail was introduced in a
recent study of turbulent cascades in physical scales of $3D$ incompressible flows [DaGrll-l, DaGrll $-2$,

DaGrll$-3,$ DaGr11-5]. However, it is a mathematical entity of its own, and it is instructive to present it
as such.

A natural way of actualizing a concept of scale in a PDE model is to measure distributional deriva-
tives of a quantity with respect to the scale. Let $x_{0}$ be in $B(0, R_{0})(R_{0}$ being the integral scale, $B(0,2R_{0})$

contained in $\Omega$ where $\Omega$ is the global spatial domain) and $0<R\leq R_{0}$ . Considering a locally integrable
physical density of interest $f$ on a ball of radius 2$R,$ $B(x_{0},2R)$ , a local physical scale $R$ -associated to the
point $x_{0}-$ is realized via bounds on distributional derivatives of $f$ where a test function $\psi$ is a refined
-smooth, non-negative, equal to 1 on $B(x_{0}, R)$ and featuring optimal bounds on the derivatives over
the outer R-layer–cut-off function on $B(x_{0},2R)$ . More explicitly, $|(D^{\alpha}f, \psi)|\leq\int_{B(x_{0},2R)}|f||D^{\alpha}\psi|\leq$

$(c( \alpha)\frac{1}{R^{|a|}}|f|,\psi^{\delta(\alpha)})$ for some $c(\alpha)>0$ and $\delta(\alpha)$ in $(0,1)$ . This-via duality-leads to various estimates
on distributional derivatives of $f$ in $IP$, reminiscent of Bernstein inequalities in the Littlewood-Paley
decomposition of a tempered distribution.
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The precise requirements on the cut-offs are as follows. The spatiotemporal cut-off $\phi$ is of a product
form, $\phi=\phi_{x_{O},R,T}=\psi\eta$ , where $\eta=\eta_{T}(t)\in D(0,T)$ and $\psi=\psi_{x_{0},R}(x)\in D(B(x_{0},2R))$ satisfying
$0\leq\eta\leq 1,\eta=1$ on $(T/3,2T/3),$ $\frac{|\eta’|}{\eta^{\rho_{1}}}\leq {}_{\lrcorner}CT^{1}$ and $0\leq\psi\leq 1,$ $\psi=1$ on $B(x_{0}, R),$ $\frac{|\nabla\psi|}{\psi^{\rho}2}\leq\underline{C}_{1}R,$ $\frac{|\triangle\psi|_{1}-}{\psi^{\rho_{2}}}\leq$ -RC#,
for some $-<\rho_{1},\rho_{2}<1$ . Sometimes, the above conditions on $\eta$ are replaced by $\eta=\eta_{T}(t)\in C^{\infty}(0, T)$

supplemented with $0\leq\eta\leq 1,$ $\eta=0$ on $(0, T/3),$ $\eta=1$ on $(2T/3, T),$ $\lrcorner|\eta’\eta^{\rho_{1}}\leq {}_{\lrcorner}CT^{1}$ (e.g., in the study
of the $3D$ enstrophy cascade). The case $x_{0}=0$ and $R=R_{0}$ corresponds to the integral domain cut-
off $\phi_{0},$ $\phi_{0}=\eta\psi_{0}$ . (There are additional technical conditions for $x_{0}$ near the boundary of $B(0, R_{0})$ , c.f.
[DaGrll-l]. $)$

A physical scale $R$ –associated to the integral domain $B(0, R_{0})-$ is realized via suitable ensemble-
averaging of the localized quantities with respect to’ $(K_{1}, K_{2})$ -covers at scale $R’$ .

Let $K_{1}$ and $K_{2}$ be two positive integers, and $0<R\leq R_{0}$ . A cover $\{B(x_{i}, R)\}_{i=1}^{n}$ of the integral domain
$B(0, R_{0})$ is a $(K_{1}, K_{2})$ -cover at scale $R$ if

$( \frac{R_{C}}{R})^{3}\leq n\leq K_{1}(\frac{R_{0}}{R})^{3}$ ,

and any point $x$ in $B(0, R_{0})$ is covered by at most $K_{2}$ balls $B(x_{i}, 2R)$ . The parameters $K_{1}$ and $K_{2}$ repre-
sent the maximal global and local multiplicities, respectively.

For a physical density of interest $f$, consider time-averaged, per unit mass-spatially localized to the
cover elements $B(x_{i}, R)$ -local quantities $\hat{f}_{x_{i},R,T}$,

$\hat{f}_{x_{i},R,T}=\frac{1}{T}\int_{0}^{T}\frac{1}{R^{3}}\int_{B(x_{i},2R)}f(x, t)\phi_{x_{i},R,T}^{\delta}(x, t)dxdt$

for some $0<\delta\leq 1$ , and denote by $\langle F\}_{R}$ the ensemble average given by

$\langle F\}_{R}=\frac{1}{n}\sum_{i=1}^{n}\hat{f}_{x_{i},R,T}$ .

The key feature of the ensemble averages $\{\langle F\}_{R}\}_{0<R\leq R_{0}}$ is that $\langle F\rangle_{R}$ being stable, i.e., nearly indepen-
dent on a particular choice of the cover-with the fixed parameters $K_{1}$ and $K_{2}$ -indicates there are no
significant sign-fluctuations of the density $f$ at scales comparable or greater than $R$. On the other hand,
if $f$ does exhibit significant sign-fluctuations at scales comparable or greater than $R$, suitable rearrange-
ments of the cover elements up to the maximal multiplicities will result in the range of $\{F\rangle_{R}$ containing
an interval of the form $(-M, M)$ for a large $M$ .

Consequently, for an a priori sign-varying density, the ensemble averaging process acts as a coarse
detector of the sign-fluctuations at scale R. (The larger the maximal multiplicities $K_{1}$ and $K_{2}$ , the finer
detection.)

As expected, for a non-negative density $f$, all the averages are comparable to each other throughout
the full range of scales $R,$ $0<R\leq R_{0}$ . In particular, they are all comparable to the simple average over
the integral domain; $\frac{1}{K}F_{0}\leq\langle F\rangle_{R}\leq K_{*}F_{0}$ for all $0<R\leq R_{0}$ , where $F_{0}= \frac{1}{T}\int_{R}^{1}=_{0}\int f(x,t)\phi_{0}^{\delta}(x,t)dxdt$ ,

and $K_{*}=K_{*}(K_{1}, K_{2})>1$ . More generally, the above bound holds for any non-negative distribution (in-
tegration being replaced by duality), in fact, this was a key technical ingredient in the proof of existence
of $3D$ inviscid cascade presented in [DaGr11-2].
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3. TURBULENT CASCADES IN PHYSICAL SCALES

One of the hallmarks of turbulence phenomenology pioneered by Kolmogorov and Onsager in the
$1940’s$ [Ko41-1, Ko41-2, Ko41-3, On45, 欧石 49] is existence of the inertial range, the range of scales in
which the dissipation effects are strongly dominated by the nonlinear (inertial) transfer of averaged
energy from larger to smaller scales. This process is also referred to as’energy cascade’. In addition, the
cascade is thought to be highly local-in-scale, i.e., the averaged energy flux at the given scale is supposed
to be significmtly correlated only with the fluxes at the nearby scales. A great mathematical challenge
has been to establish existence and $1\propto ality$ of turbulent cascades directly from the mathematical model,

namely the $3D$ NSE.

Prior to [DaGrll-l], the only rigorous mathematical work on existence of the energy cascade was
the work by Foias, Manley, Rosa and Temam [FMRTOI] in which the authors obtained existence of the
energy cascade in the Fourier space-i.e., in the wavenumbers-in the setting of infinite-time averages
of Leray solutions to the $3D$ NSE satisfying the global energy inequality. The averaging process utilized
in [FMRTOI] was global-in-scale and did not lead to a proof $ofl\propto ality$. On the other hand, mathematical
evidence of locality was first presented by L’vov and Falkovich [LF92], and later by Eyink [E05, EA09]

and Cheskidov, Constantin, Friedlander and Shvydkoy [CCFS08].

In the case of ’decaying turbulence’ (zero driving force, non-increasing global energy), [DaGrll-l]

presented a proof of both existence and locality of the energy cascade in the physical scales of the flow,

under an assumption plausible in the regions of intense fluid activity. In the language of turbulence,

the condition translates to the requirement that Taylor micro-scale be dominated by the integral scale
of the flow. The result is obtained in the realm of distributional solutions to the $3D$ NSE satisfying the
local energy inequality. The main idea of the proof was to first ’discretize’ the flow by localizing it
to spatial balls at the given scale, and then ’reconstruct’ it via a suitably defined ensemble-averaging
process–described in the previous section–capable of detecting significant sign-fluctuations of the
physical density of interest (the case in point being the energy flux); the key device in the reconstmction
process being the local energy inequality. This fumished the first proof of existence of the energy cascade
in physical space, as well as the only mathematical setting in which both existence and locality of the
cascade were derived simultaneously from the $3D$ NSE.

Let $x_{0}$ be in $B(0,R_{0})$ ( $R_{0}$ being the integral scale, $B(0,2R_{0})\subset\Omega$ where $\Omega$ is the global spatial domain)

and $0<R\leq R_{0}$ , and let $u$ be a weak solution to the $3D$ NSE on $\Omega\cross(0,2T)$ satisfying the local energy
inequality,

(31) $\nu\int\int|\nabla u|^{2}\phi\leq\int\int\frac{1}{2}|u|^{2}(\partial_{t}\phi+\nu\triangle\emptyset)+\int\int(\frac{1}{2}|u|^{2}+p)u\cdot\nabla\phi$ ,

for any nonnegative test function $\phi$ (e.g, a suitable weak solution). Physically, the term $\nu\iint|\nabla u|^{2}\phi$

represents the local spatiotemporal energy dissipation rate due to viscosity, while a (non-negative) defect
in the local energy inequality due to possible singularities/lack of smoothness can be interpreted as the
local spatiotemporal anomalous dissipation. For a refined cut-off function $\phi=\phi_{x_{0},R,T}$ on $B(x_{0},2R)\cross$

$(0,2T)$ denote by $\Phi_{x0R}$ a local inward flux around $x_{0}$ at scale $R$,

(3.2) $\Phi_{x0R}(t)=-\int((u\cdot\nabla)u+\nabla p)\cdot u\phi dx=\int(\frac{1}{2}|u|^{2}+p)u\cdot\nabla\phi dx$,
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by $\hat{\Phi}_{x_{0},R,T}$ a local time-averaged flux, by $\hat{e}_{x_{0},R,T}$ a local time-averaged energy and by $\hat{\epsilon}_{x_{0},R,T}$ a local
time-averaged total (viscosity plus anomalous) energy dissipation rate, all per unit mass,

$\hat{\Phi}_{x0R,T}=\frac{1}{TR^{3}}\int\Phi_{x_{0},R}(t)$, $\hat{e}_{x_{0},R,T}=\frac{1}{TR^{3}}\int\int\frac{1}{2}|u|^{2}\phi^{2\delta-1}$ ,
(3.3)

$\hat{\epsilon}_{x_{0},R,T}=\frac{1}{TR^{3}}\int\int\frac{1}{2}|u|^{2}(\partial_{t}\phi+\iota/\triangle\emptyset)+\hat{\Phi}_{x_{0},R,T}$ .

Also denote by $e$ and $\epsilon$ the time-averaged energy and total energy dissipation rate per unit mass asso-
ciated to the integral domain on $(0,2T),$ $e_{0}=\hat{e}_{0,R_{0},T}$ and $\epsilon_{0}=\hat{\epsilon}_{0,R_{0},T}$. Then, the main result describing
the universality of the averaged flux per unit mass $\{\Phi\rangle_{R}$ throughout the inertial range, and implying
existence of the energy cascade in decaying turbulence (in the viscous case) can be stated as follows
[DaGrll-l, DaGrll $-3$].

Theorem 3.1. Let $\gamma\in(0,1)$ and $c,$ $K$ suitable constants depending only on the cover parameters $K_{1}$ and $K_{2}$ .
Define a modified Taylor length scale $\tau_{0}$ by $\tau_{0}=[(\frac{R_{0}^{2}}{T}+\iota/)\frac{e_{0}}{\epsilon_{0}}]^{1/2}$, and assume that $\tau_{0}^{2}<fcR_{0}^{2}$ . Then,

(3.4) $\frac{1}{K}(1-\gamma)\epsilon\leq\langle\Phi\rangle_{R}\leq K(1+\gamma)\epsilon$

for all $R$ inside the inertial range determined by $[( \frac{\tau_{0}^{2}}{\frac{\gamma}{c}(R_{0}^{2}+\nu T)-\tau_{0}^{2}}l\nearrow T)^{1/2},$ $R_{0}]$ .

Denoting the averaged flux at scale $R$ by $\langle\tilde{\Phi}\rangle_{R},$ $\langle\tilde{\Phi}\rangle_{R}=R^{3}\langle\Phi\rangle_{R}$ , the following manifestation of locality
of the averaged flux throughout the inertial range is immediate, $\frac{1}{K^{2}}\frac{1-\gamma}{1+\gamma}(\frac{R}{r})^{3}\leq\frac{\langle\tilde{\Phi}\}_{R}}{\langle\tilde{\Phi}\}_{r}}\leq K^{2}\frac{1+\gamma}{1-\gamma}(\frac{R}{r})^{3}$.
In particular, both the infrared and the ultraviolet locality propagates exponentially along the dyadic scale,

as predicted by the phenomenology, $\frac{1}{K^{2}}\frac{1-\gamma}{1+\gamma}2^{-3k}\leq\frac{\{\tilde{\Phi}\}_{R}}{\langle\tilde{\Phi}\}_{2^{k}R}}\leq K^{2}\frac{1+\gamma}{1-\gamma}2^{-3k}$.

Onsager in 1949 wrote that ’
$\ldots$in three dimensions a mechanism for complete dissipation of all kinetic

energy, even without aid of the viscosity, is available” [On49]. More precisely, Onsager conjectured that
the minimal spatial regularity of (weak) solutions to the $3D$ Euler equations (the inviscid model) needed
to conserve the energy is $( \frac{1}{3})^{+}$ , and that in the case the energy is not conserved, the’anomalous dissipa-
tion’-the dissipation due to the lack of regularity-triggers the energy cascade which then continues
indefinitely all the way to the zero scale. The main mathematical works confirming Onsager’s $( \frac{1}{3})^{+}-$

criticality conjecture are the works by Eyink [E94], Constantin, E. and Titi [CET94], Duchon and Robert
[DROO], and Cheskidov, Constantin, Friedlander and Shvydkoy [CCFS08]. On the other hand, there
had been no rigorous mathematical works showing that the anomalous dissipation is indeed capable of
triggering the cascade.

Adopting the method introduced in [DaGrll-l] to $3D$ inviscid flows, [DaGr11-2] presented- under an
assumption that the anomalous dissipation in the region of interest is strong enough with respect to the
energy-a proof of both existence and locality of the energy cascade in the $3D$ Euler flows extending $ad$

infinitum confirming the dynamical part of the Onsager’s conjecture. As a matter of fact-in the case of a
spatially isolated $singularity-provided$ the strict energy inequality holds on some neighborhood of the
singular curve, the cascade condition will be satisfied on any small enough (in the spatial coordinates)
neighborhood of the curve.

Let $u$ be a (hypothetical) weak $L^{3}$ in the space-time solution to the $3D$ Euler satisfying the local energy
inequality,

(3.5) $\int\int\frac{1}{2}|u|^{2}\partial_{t}\phi+\int\int(\frac{1}{2}|u|^{2}+p)u\cdot\nabla\phi\geq 0$ .
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Keeping the notation in line with the viscous case-and focusing on $B(x_{0}, R)$ -denote by $\hat{\epsilon}_{x_{0},R,T}$ the
local time-averaged anomalous dissipation per unit mass associated to $B(x0, R)$ , and define $(\Phi\}_{R},$ $e$,

and $\epsilon$ as in the viscous case, setting $\nu=0$ . In the same spirit, define the anomalous inviscid Taylor scale

$\tau_{0}$ by $\tau_{0}=(\frac{R_{0}^{2}}{T}\frac{e_{0}}{\epsilon 0})^{1/2}$ . Then, the main result of [DaGr11-2] implying existence of the inviscid energy
cascade in decaying turbulence states the following.

Theorem 3.2. Let $\gamma\in(0,1)$ and $c,$ $K$ as in Theorem 3. 1. Assume that $\tau_{0}^{2}<1\mathcal{C}R_{0}^{2}$ Then,

(3.6) $\frac{1}{K}(1-\gamma)\epsilon_{0}\leq\langle\Phi\}_{R}\leq K(1+\gamma)\epsilon_{0}$

for all $R$ inside the inertial range determined by $(0, R_{0}]$ .

Note that in the inviscid case, once the energy cascade commences, it continues indefinitely towards
the zero-scale as predicted by Onsager. Consequently, the ultraviolet locality in the inviscid case is more
pronounced.

A short follow-up note [DaGr11-3] presented the first scale-to-scale evidence of’dissipation anomaly’
in physical scales of $3D$ turbulent incompressible flows. Dissipation $anomaly-non$-vanishing of the av-
eraged energy dissipation rate in the infinite Reynolds number limit-plays a key role in both empirical
and phenomenological turbulence; in fact, it is often referred to as’zeroth law of turbulence’.

Let $\{u^{\nu}\}$ be a family of weak solutions to the $3D$ NSE satisfying the local energy inequality converging
strongly in $L^{3}(\mathbb{R}^{3}\cross(0,2T))^{3}$ to a (hypothetical) weak $L^{3}$ solution to the $3D$ Euler $u$ . Recall that Duchon
and Robert [DROO] noticed that in this case the inviscid limit $u$ also satisfies the local energy inequality
(3.5). Henceforth, a superscript $\nu$ will be used to denote the energy, the flux and the (total) energy
dissipation rate corresponding to a solution $u^{\nu}$, while the quantities related to $u$ will be denoted as in
the inviscid section. The main result of [DaGr11-3] reads as follows.

Theorem 3.3. Suppose thai the inviscu cascade condition, $\tau_{0}<\sqrt{\gamma/c}R_{0}$ , holds for the inviscu limit $u$ . Then,

for every $R^{*},$ $0<R^{*}<R_{0}$, there exists $\nu^{*},$ $\nu^{*}>0$, such that for any $\nu,$ $0<\nu\leq\nu^{*}$ ,

(3.7) $\frac{1}{K_{\gamma}}\epsilon_{0}\leq\langle\Phi^{\nu}\rangle_{R}\leq K_{\gamma}\epsilon_{0}$

throughout the inertial range determined by $[R^{*}, R_{0}]$ , where $K_{\gamma}= \frac{K}{1-\gamma}$ .

It is plain to verify that for all $\nu,$ $0<\nu<\nu^{*}$ , the energy cascade $\frac{1}{K}(1-\gamma)\epsilon_{0}^{\nu}\leq\langle\Phi^{\nu}\rangle_{R}\leq K(1+\gamma)\epsilon_{0}^{\nu}$

holds mside the ever-expanding inertial ranges $[( \frac{(\tau_{0}^{\nu})^{2}}{1,\mathcal{C}(R_{0}^{2}+\nu T)-(\tau_{0}^{\nu})^{2}}\nu T)^{1/2},$ $R_{0}]$ . This provides an

intrinsic version of Theorem 2.3-without an explicit reference to the vanishing viscosity limit (of course,
$\epsilon_{0}^{\nu}arrow\epsilon_{0})$ .

The latest work in the series [DaGr11-5] merged the ideas and techniques from the previous work on
localization of the geometric depletion of the nonlinearity in the $3D$ NSE [$GrZh06$, Gr09, GrGulO-l] with
the ideas and techniques exposed in [DaGrll-l, DaGrll $-2,$ DaGr11-3].

A role of the coherent vortex structures in turbulent flows was recognized as early as the $1500’s$ in
Leonardo da Vinci’s ”deluge” drawings. On the other hand, Kolmogorov’s K41 phenomenology does
not discem geometric structuoes,$\cdot$ the K41 eddies are essentially amorphous. As stated by Frisch in his
book Turbulence, The Legacy of A.N. Kolmogorov [Fr95], “Half a century after Kolmogorov’s work on
the statistical theory of fully developed turbulence, we still wonder how his work can be reconciled with
Leonardo’s half a millennium old drawings of eddy motion in the study for the elimination of rapids in
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the river Amo.” A discrete statistical theory of $3D$ vortex filaments was presented by Chorin in [Ch94],
while the first continuous statistical theory of $3D$ vortex filaments was given by P.-L. Lions and Majda
in [LMOO].

The enstrophy of the flow is defined as the $L^{2}$ -norm of the vorticity, it is a natural candidate for en-
coding the information on the geometry of the flow in the theory of turbulent cascades. The main result
in [DaGr11-5] states that $\frac{1}{2}$ -H\"older coherence of the vorticity direction-a purely geometric condition-
paired with a condition on a modified Kraichnan scale, and under a certain modulation assumption on
evolution of the vorticity over the region of interest, leads to existence and scale-locality of $3D$ enstro-
phy cascade in physical scales of the flow. This provided a mathematical evidence that in contrast to $3D$

energy cascade, $3D$ enstrophy cascade is locally anisotropic, yielding a form of a reconciliation between
Leonardo’s and Kolmogorov’s views on turbulence on the enstrophy level.

The vorticity-velocity formulation of the $3D$ Navier-Stokes equations (NSE) reads
(3.8) $\partial_{t}\omega+(u\cdot\nabla)\omega=(\omega\cdot\nabla)u-\triangle\omega$

where $u$ is the velocity and $\omega=$ curl $u$ is the vorticity of the fluid (the viscosity is set to 1).

Localization of evolution of the enstrophy to cylinder $B(x_{0},2R)\cross(0,T)$ leads to the following version
of local enstrophy flux,

(3.9) $\int\frac{1}{2}|\omega|^{2}(u\cdot\nabla\phi)dx=-\int(u\cdot\nabla)\omega\cdot\phi\omega dx$ .

Since $\nabla\phi=(\nabla\psi)\eta$, and $\psi$ can be constructed such that $\nabla\psi$ points inward, (3.9) represents local inward
enstrophyflux, at scale $R$ -more precisely, through the layer $S(x_{0}, R, 2R)$ -around the point $x_{0}$ .

Consider a $(K_{1}, K_{2})$ -cover $\{B(x_{i}, R)\}_{i=1}^{n}$ at scale $R$, for some $0<R\leq R_{0}$ . Local inward enstrophy
fluxes, at scale $R$, associated to the cover elements $B(x_{i}, R)$ , are then given by $\int\frac{1}{2}|\omega|^{2}(u\cdot\nabla\phi_{i})dx$, for
$1\leq i\leq n$ . Assuming smoothness on $(0, T)$ ,

$\int_{0}^{t}\int\frac{1}{2}|\omega|^{2}(u\cdot\nabla\phi_{i})dxds=\int\frac{1}{2}|\omega(x, t)|^{2}\psi_{i}(x)dx+\int_{0}^{t}\int|\nabla\omega|^{2}\phi_{i}dxds$

(3.10) $- \int_{0}^{t}\int\frac{1}{2}|\omega|^{2}((\phi_{i})_{s}+\triangle\phi_{i})dxds-\int_{0}^{t}\int(\omega\cdot\nabla)u\cdot\phi_{i}\omega dxds$ ,

for any $t$ in $(2T/3, T)$ and 1 $\leq i\leq n$ . An explicit representation formula for the localized vortex-
stretching term $(\omega\cdot\nabla)u\cdot\phi_{i}\omega$ obtained in [Gr09] reads

$( \omega\cdot\nabla)u\cdot\phi_{i}\omega(x)=-cP.V.\int_{B_{(}x_{0},2r)}(\omega(x)\cross\omega(y))$ . G. $(x, y)\phi^{\frac{1}{i^{2}}}(y)\phi^{\frac{1}{i^{2}}}(x)dy+$ LOT

(3.11) $=$ VST $+$ LOT

where $\epsilon_{jkl}$ is the Levi-Civita symbol, $(G_{\omega}(x,y))_{k}= \frac{\partial^{2}1}{\partial x_{i}\partial y_{k}|x-y|}\omega_{i}(x)$, and LOT denotes the lower
order terms.
The key feature of the highest order term $VST$ is that it faithfully reproduces the geometric structure of
the’free’ vortex-stretching term $(\omega\cdot\nabla)u\cdot\omega$ .

Denoting the time-averaged local fluxes per unit mass associated to the cover element $B(x_{i}, R)$ by
$\hat{\Phi}_{x_{i},R\prime}$

(3.12) $\hat{\Phi}_{x_{i},R}=\frac{1}{t}\int_{0}^{t}\frac{1}{R^{3}}\int\frac{1}{2}|\omega|^{2}(u\cdot\nabla\phi_{i})dx$,
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the main quantity of interest is the ensemble average of $\{\hat{\Phi}_{x_{i},R}\}_{i=1}^{n}$,

(3.13) $\langle\Phi\}_{R}=\frac{1}{n}\sum_{i=1}^{n}\hat{\Phi}_{xR}:,\cdot$

The modulation assumption on the evolution of local enstrophy on $(0,T)$ -consistent with the choice
of the temporal cut-off $\eta$ -reads

$\int|\omega(x,T)|^{2}\psi_{0}(x)dx\geq\frac{1}{2}\sup_{t\in(0,T)}\int|\omega(x,t)|^{2}\psi_{0}(x)dx$ .

The purpose of (A3) is to have a suitable control on evolution of the enstrophy over the integral
domain; uncontrolled fluctuations of the enstrophy would prevent the cascade.

The assumptions guaranteeing the universality of the averaged enstrophy flux per unit mass $\langle\Phi\rangle_{R}$

across the range of scales-existence of the enstrophy cascade-are as follows [DaGr11-5].

(Al) Coherence Assumption Denote the vorticity direction field by $\xi$, and let $M>0$ (large). Assume
that there exists a positive constant $C_{1}$ such that

$|\sin\varphi(\xi(x,t),\xi(y,t))|\leq C_{1}|x-y|^{\frac{1}{2}}$

for any $(x,y,t)$ in $(B(0,2R_{0})\cross B(0,2R_{0}+R^{\frac{2}{0^{3}}})\cross(0,T))n\{|\nabla u|>M\},$ $\frac{1}{2}$ -H\"older coherence in the regions
of intense fluid activity (large gradients). The previous local regularity results $[GrZh06, Gr09]$ imply that
-under (Al)-the a priori weak solution $u$ is in fact smooth inside $B(0,2R_{0})\cross(0,T)$ and can-moreover
-be smoothly continued (locally-in-space) past $t=T,\cdot$ in particular, we can write (3.10) with $t=T$.
(A2) Modified Kraichnan Scale Denote by $E_{0}$ time-averaged enstrophy per unit mass associated with
the integral domain $B(0,2R_{0})\cross(0,T)$ ,

$E_{0}= \frac{1}{T}\int\frac{1}{R}\int\frac{1}{2}|\omega|^{2}\phi_{0}^{2\rho-1}dxdt$,

by $P_{0}$ a modified time-averaged palinstrophy per unit mass,

$P_{0}= \frac{1}{T}\int\frac{1}{R_{0}^{3}}\int|\nabla\omega|^{2}\phi_{0}dxdt+\frac{1}{T}\frac{1}{R}\int\frac{1}{2}|\omega(x,T)|^{2}\psi_{0}(x)dx$

(the modification is due to the shape of the temporal cut-off $\eta$), and by $\sigma_{0}$ a corresponding modified

Kraichnan scale, $\sigma_{0}=(\frac{E_{0}}{P_{0}})^{\frac{1}{2}}$ . Then, the assumption (A2) is simply a requirement that the modified

Kraichnan scale associated with the integral domain $B(0,2R_{0})\cross(0,T)$ be dominated by the integral
scale, $\sigma_{0}<\beta R_{0}$ , for a suitable constant $\beta<1$ .
(A3) Localization of the Integral Domain and Modulation The general set up considered is one
of the Leray solutions satisfying (Al). As already mentioned, (Al) implies smoothness; however, the
control on regularity-type norms is only local. On the other hand, the energy inequality on the global

spatiotemporal domain $\mathbb{R}^{3}\cross(0,T)$ implies $\int_{0}^{T}\int_{R^{3}}|\omega|^{2}dxdt<\infty$ ; localization of the integral domain

will be determined by the condition

$\int_{0}^{T}\int_{B(0,2R_{0}+R_{0})}\S|\omega|^{2}dxdt\leq\frac{1}{C}$ ,

for a suitable constant $C>1$ .
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Theorem 3.4. Let $u$ be a Leray solution on $\mathbb{R}^{3}\cross(0,T)$ with the initial vorticity $\omega_{0}$ in the space offinite Radon
measures. Suppose that $u$ satisfies $(Al)-(A3)$ on the spatiotemporal integral domain $B(0,2R_{0}+R^{\frac{2}{0^{3}}})\cross(0, T)$ .
Then,

$\frac{1}{4K_{*}}P_{0}\leq\{\Phi\}_{R}\leq 4K_{*}P_{0}$

for all $R, \frac{1}{\beta}\sigma_{0}\leq R\leq R_{0}(K_{*}=K_{*}(K_{1}, K_{2})>1)$ .

The locality of the averaged enstrophy flux is analogous to the locality of the averaged energy flux
(cf. [DaGr11-5]).

4. CURRENT RESEARCH

4.1. Propagation of universality; applications. There are several properties of the ensemble averaging
process described in section 2 that appear plausible. Perhaps the most elemental one is that if the aver-
ages at a certain scale are ’stable’, i.e., nearly independent of a particular choice of a $(K_{1}, K_{2})$ -cover $(K_{1}$

and $K_{2}$ fixed), then essentially the same universality property should propagate to larger scales. The
preliminary calculations indicate that in order to obtain a precise quantitative propagation result, the
universality assumption should hold on an intervaL rather than at a single scale (this is to be expected
due to the presence of smooth cut-offs with prescribed rates of change). Two types of results seem within
reach. Let $f$ be a locally integrable function (a density), and $K_{1}$ and $K_{2}$ two positive integers.
TYPE I. Assume that there exists $R_{*}>0$ such that for any $R$ in $[R^{*}, 2R_{*})$ and any $(27K_{1},16K_{2})$ -cover at
scale $R$, the averages $\langle F\}_{R}$ are all comparable to some value $F_{*},\cdot$ more precisely, $\frac{1}{C_{1}}F_{*}\leq\{F\rangle_{R}\leq C_{1}F_{*}$ .

Then, for all $R\geq 2R_{*}$ and all $(K_{1},K_{2})$-covers at scale $R$, the averages $\langle F\rangle_{R}$ satisfy $\frac{1}{C_{2}}F_{*}\leq\langle F\rangle_{R}\leq C_{2}F_{*}$ .

TYPE II. Assume that there exists $R_{*}>0$ such that for any $R$ in $( \frac{1}{2}R^{*}, \frac{5}{2}R_{*})$ and any $(K_{1}, K_{2})$ -cover at
scale $R,F_{*}\underline{1}\leq\{F\rangle_{R}\leq C_{1}F_{*}$ . Then, for all $R\geq g$R. and all $(K_{1}, K_{2})$-covers at scale $R$, the averages

$C_{1}$

$\{F\rangle_{R}$ satisfy $\frac{1}{C_{3}}(\frac{R}{R}*)^{c_{4}}F_{*}\leq\langle F\}_{R}\leq C_{3}(\frac{R}{R^{*}})^{c_{4}}F_{*}$ .

Shortly, in a Type I result, the universality is assumed with respect to more refined covers, while in
a Type II result, the non-exactness of the propagation caused by the smooth cut-offs is reflected in a
correction to the universal value $F_{*}$ by the ratio of the scales $R$ and $R^{*}$ .

An (immediate) application in view is to obtain an improved version of Theorem 3.4; more precisely,
to essentially remove the assumption on the localization of the integral domain (the first part of (A3)).
This was the only truly technical assumption-(Al) was simply a mathematical quantification of coher-
ence, (A2) a condition on Kraichnan scale of the type appearing in $2D$ theory (cf. [FJMR02, DaGr11-4]),
and the other part of (A3) a modulation condition preventing wild fluctuations of the vorticity magni-
tude that would be incompatible with universality of the cascade.

4.2. Scaling laws and dissipation number in physical scales. Kolmogorov K41 theory is a statisti-
cal theory of homogeneous isotropic turbulence. Homogeneity and isotropy imply that the representa-
tion of the key turbulence phenomena in the Fourier space is a faithful representation of the corre-
sponding phenomena in the physical space. They are also essential in formulating various universal
scaling laws including Kolmogorov power law for the energy spectrum. In particular, the concept of
the energy spectrum is canonical. The theory of turbulent cascades in physical scales presented in
[DaGrll-l, DaGrll $-2$, DaCrll $-3$ ] does not assume any homogeneity; the homogeneity is replaced by
a suitable ensemble averaging process. As a result, defining a sensible analogue of the K41 spectrum re-
quires some care. Preliminary investigations suggest that the following construction may prove fruitful.
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Define the local energy associated with a shell $S(x_{0},R)=\{x : R<|x-x_{0}|<2R\}$ around a point
$x_{0}$ belonging to the integral domain $B(0, R_{0})$ (with suitable modifications in the case the shell intersects

the boundary of the domain) by $e_{S(xo,R)}= \frac{1}{T}\overline{R}_{0}^{\int_{0S(}^{T}\int_{x0,R)}}\nabla 1|u|^{2}\phi_{S(x_{0},R)}^{\delta}dxdt$ , for some $\delta$ in $(0,1),\cdot$ the re-

fined cut-offs $\phi$ can be chosen such that $\phi_{B(x_{0},R)}+\sum_{j=1}^{m_{R}}\phi_{S(x_{0},2^{j}R)}=\phi_{0}$, where $m_{R}=[ \log_{2}(\frac{R}{R}\mathfrak{g})]$ , and

$\phi_{B(x_{0},R)}$ is a refined cut-off corresponding to $B(x_{0}, R)$ . Then–around any point $x_{0}$ –the following

dyadic decomposition of the total (integral scale-) energy $e_{0}$ transpires, $e_{0}=e_{B(x_{0},R)}+ \sum_{j=1}^{m_{R}}e_{S(x_{0},2^{j}R)}$

where $e_{B(x_{0},R)}= \frac{1}{T}\overline{R}_{0}^{\int_{0B(x}^{T}\int_{0,2R)}}71|u|^{2}\phi_{B(x0R)}^{\delta}dxdt$ . Next, introduce $(K_{1},K_{2})$-averaged dyadic decomposition

of $e_{0}$ seeded at scale $R_{d}$ as follows. Let $\{B(x_{i},R_{d})\}_{i=1}^{n_{d}}$ be a $(K_{1}, K_{2})$ -cover at scale $R_{d}$ . (At this point, $R_{d}$

is simply a’small scale’.) Then, for each $x_{i}$ there exists a local dyadic decomposition of $e_{0}$ as described
above. For simplicity, denote

$B_{i}=B(x_{i},R_{d})$ , $\phi_{i}=\phi_{B(x_{i},R_{d})}$ , $e_{i}=e_{B(x_{i},R_{d})}$ ,

$S_{i,j}=S(x_{i}, 2^{j}R_{d})$ , $\phi_{ij}=\phi_{S_{*j}}$. $e_{ij}=es_{lj}$ and $m_{d}=[ \log_{2}(\frac{R_{0}}{R_{d}})]$ .

Note that, for individual $j$ , the shells $\{S_{i,j}\}_{i=1}^{n_{d}}$ do not necessarily cover the integral domain. Defining

by $\mathcal{E}_{0}=\frac{1}{n_{d}}\sum_{i=1}^{n_{d}}e_{i}$ the average energy associated with scales below $R_{d}$, and by $\mathcal{E}_{j}=\frac{1}{n_{d}}\sum_{i=1}^{n_{d}}e_{ij}$ the average

energy associated with the scale $2^{j}R_{d}$, the following identity holds,

(4.1) $e_{0}= \mathcal{E}_{0}+\sum_{j=1}^{m_{d}}\mathcal{E}_{j}$ ; this is the sought after decomposition of $e_{0}$ .

Assume that $\mathcal{E}_{j}$ follow Kolmogorov-type power law $\mathcal{E}_{j}\sim\epsilon^{2/3}(2^{j}R_{d})^{2/3}(\epsilon$ is the total energy dissi-
pation rate corresponding to the integral domain). The local energy inequality written on each shell $S_{ij}$

together with the estimates on derivatives of $\phi_{ij}$ yields

$\epsilon_{ij}-c(\frac{1}{T}+\frac{\nu}{(\mathfrak{A}R_{d})^{2}})e_{ij}\leq\Phi_{ij}\leq\epsilon_{ij}+c(\frac{1}{T}+\frac{\nu}{(XR_{d})^{2}})e_{ij}$ ,

where $\epsilon_{ij}$ and $\Phi_{ij}$ are the total energy dissipation rate and the inward energy flux associated with
$S(x_{i}, 2^{j}R_{d})$ , respectively; averaging in $i$ and summing up in $j$ , we obtain

$\epsilon-c\sum_{j=1}^{m_{d}}(\frac{1}{T}+\frac{\nu}{(\mathfrak{A}R_{d})^{2}})\mathcal{E}_{j}\leq\Phi_{0}\leq\epsilon+c\sum_{j=1}^{m_{d}}(\frac{1}{T}+\frac{\nu}{(\mathfrak{U}R_{d})^{2}})\mathcal{E}_{j}$,

where $\Phi_{0}$ is the space-time average of the flux into $B(0,R_{0})$ . The sufficient condition for the energy
cascade presented in [DaGrll-l] implies $\Phi_{0}\sim\epsilon$, this together with the above Kolmogorov-type power
law implies

$\frac{\epsilon_{0}^{1/3}}{\nu}\sim\sum_{j=1}^{m_{d}}\frac{1}{(\mathfrak{A}R_{d})^{4/3}}\sim(\frac{1}{R_{d}^{4/3}}-\frac{1}{R_{0}^{4/3}})\sim\frac{1}{R_{d}^{4/3}}$,

or equivalently,

(4.2) $R_{d} \sim(\frac{\nu^{3}}{\epsilon})^{1/4}$ ,

which is precisely the defimition of Kolmogorov dissipation scale in the empirical theory of homoge-
neous isotropic turbulence.
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The main goal here is to investigate the conditions under which such scaling power laws are possible.
In particular, unraveling the power law $\mathcal{E}_{j}\sim\epsilon^{2/3}(2^{j}R_{d})^{2/3}-$ in the absence of anomalous dissipation-
reveals that it is essentially a requirement on saturation of a suitable inequality involving Morrey-type
quantities of $u$ and $\nabla u$; hence, Morrey-type analysis of weak solution to the $3D$ NSE will be a main
mathematical device (cf. [Ku08, OL03, CPOI]).
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