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Residual vanishing of concentration arising in the
mean field equations

Ryo Takahashi (Osaka University)

Abstract

In this short report, we study the Sawada-Suzuki equation. In the
positive case, we prove the property called Residual vanishing which
means that a blow-up solution sequence (more precisely, its subse-
quence) converges to a finite sum of Dirac’s measures in the sense of
measure.

1 Introduction

In this report, we consider the Sawada-Suzuki equation ([6]):

{—Avn = fyo (7225 - &) Plda) in
Javn =0,

where (Ap,vn) is a solution sequence to (1.1), A, a non-negative number
sequence tending to some non-negative number Ao, I = [-1,1], Q = (Q, g)
a two dimensional orientable compact Riemannian manifold, and P(da) a
Borel probability measure on I. According to the result of [4], the following
alternative holds: ,

(i) (Compactness) limsup,_, o ||vn]loo < +00, namely, there exist v € £
and a subsequence {vy,} C {v,} such that v,, — v in £ as kK — oo, where

8={veH1(Q)| /sz(]}.

(ii) (Concentration) limsup,,_, ||vn|lc = +00, namely, the set S =
S+ US_ is a non-empty and finite set, and there exists 0 < sx € L}(Q) such
that ’

(1.1)

QUn
= —P(da)dx S vy =sydr+ Z m(z0)dz,(dz) (1.2)
1z Joeo 2084

in M() with m(zg) > 4x for all zy € Sy, where I, = (0,1], I_ =[-1,0),
0z is the Dirac measure supported at z, M(Q2) = C(Q2)* and

Vin i= A

S+ = {zo € Q| there exists {z,} C Q such that =, — zo and vp(zn) = £oo}.
(1.3)
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It is natural to ask whether s is zero or not in (1.2). If this is the case,
we call this property residual vanishing in this report. In the positive case,
we obtain

Proposition 1. If (ii) above holds and I = I, then s = s, =0.

Remark 1. We note that S = Sy in the case I = I, see [4] for details.
The proof of this fact is based on the boundedness from below of the Green
function associated to —A on Q, i.e.,

~A;G(z,y) = 0y — Ilvl in Q
[ Gz, y)dz =0, VyeQ,

see [1].
Remark 2. Residual vanishing also holds in the case I = I_.

Remark 3. It is open whether residual vanishing is true or not in the
general case. On the contrary, the problem is not solved even in the simple
case P(da) = 1(6-1 + 61) treated in [5].

It is not difficult to show residual vanishing in the case P(da) = 4, for
p € I by a direct application of the result (Theorem 3) of [2]. Just to be
safe, we show it here, assuming p = 1 for simplicity, i.e.,

evr 1
—Avp =M | — - — .
T (fg IQI>
Fix zg € S. If it fails then it holds that

liminf | e < 4o00.
n—oo Q

zn=vn-—log/e""
Q

— oy gt _ M

—Azy, = Ape™ — ﬁ in Q.
It follows from the assumption of contradiction that z, — +oo (for some
subsequence still denoted by the same notation). Since A, is uniformly
bounded and —A,/|Q2| can be regarded as a simple perturbed term, we can
safely apply the result of [2] to the equation of z, to find that z, — —oco in
B(zo,70) \ {zo} for 0 < 19 < 1, where B(z,r) denotes a disk centerd at
with radius 7 for £ € R? and r > 0, in particular, B, in the case z = 0. On
the other hand, z, is bounded below in B(zg, 7o) \ {0} since S = S # 0,
a contradiction.

We introduce

and obtain



Still, it seems to be difficult to directly apply the result of {2] to the
general positive case. To overcome this difficulty, we introduce the key
transformation, see (2.3) below, and then develop a blowup analysis.

This report consists of three sections. We prove Proposition 1 in Section
2, and several lemmas stated there are shown in Section 3.

2 Proof of Proposition 1

In this section, we write I and S by I, and S, respectively, in order to
stress that we treat the positive case.
To prove the proposition, we have only to show

P({a e Ly | liminf [ e = too) = P(L) (2.1)

To confirm this, we fix w CC Q\ S;. Then, it holds that

1
OS/S dr = lim un—llmA //( —Pda)
w + n—00 + . erav |Q| ( )
< (Ao + 1)C(w) lim P(do)

n—oo Jr. fQ ea”n

because A, — Ag and vy, is uniformly bounded in w. Hence, we obtain s = 0
inw by 0 < si,e L(N). Since w CC Q\ S, is arbitrary, the proposition
holds if (2.1) is true.

Now, we suppose that (2.1) is false. Then, there exists a number o, such
that

0 < ay:=sup{a €l | liminf/ e*" < +oo} and P((0,a.]) > 0.
NnN—>00 Q
(2.2)
Fix zg € &4 and take 79 > 0 satisfying B(zo,79) NS+ = {xo}. It is possible
to take such an ry because S is a finite set. We may assume zo = 0 by a
translation. Then, there exist z,, € B,, and a, € R such that

Zn =0 vp(x,) = maxv, = 400,
379

ean'Un (zn) —

 P(da). (2.3)

For this oy, we obtain the following lemmas shown in next section.

Lemma 1. There exists C1 > 0, independent of n, such that

(a—an)vn(z)
| P s o
I, fQ evn

for all x € Bay,.
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Lemma 2. We have
an — ap € |as, 1],

passing to a subsequence.

Here, we develop a blow-up argument. Set

wr(z) = anvn(zn) — L,
Wy (1) = wn(onT + xn) + 2logon,
on = e~ Wn(@n)/2 (5 0 by Lemma 2),

where L > 1 will be determined later on. The function W, = Wy (z) is a
solution to

—Athy = 0 V()€™ — 02232 [, oP(da) in B0,
Wn < Wn(0) =0 in B,y (2.4)
I Vi < m(0),

ro/on

where
ae(a—an Jun(onz+zn)

Vo(z) =€l /\n/ P(da).
( Iy fQ extn

Lemma 3. There ezist w € C2(R?) and 0 < V € C?(R?) N L*(R?)
such that

W —w, V,—V  inR2
and 3 i
—AW = oV (z)e? in R?
@ <w(0)=0 inR2 (2.5)
Jgz Ve? < m(0).

Lemma 3 is also shown in next section.
For a solution w to (2.5), we set

ot (o7s) ¥ D |z — yl
== [ V(y)e®® log =—1dy, 2.6
3a) =52 [ Ve 108 Ty (26)

complying [3]. Noting that
Ve? e L' N L®(R?), (2.7)

we find that the function ¢ set by (2.6) is well-defined in R?, and can show
the following lemma because the proof of Lemma 1.1 of [3] is applicable to
our case, see also Remark below.
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Lemma 4. There erists Co > 0, independent of L, such that

w(z) 2 —Blog(l + [z]) — Co (2.8)
for x € R?, where
] o
B=5r | Ve" (2.9)

Remark 4. In Lemma 1.1 of [3], the integrability condition Jr2 ePdr <
+0o is assumed to show the estimates from above and below for solutions
and the estimate from below for B. However, it is not required if one only
needs the estimate from below (2.8).

Proof of Proposition I1: Fix R > 1. It follows from Lemmas 3-4 that

x_wn

Un(x) > vp(zn) — aﬁ log (1 +

n On

for all z € B(zy,0nR), where g, is a quantity converging to 0 as n — oo.
This £, may be changed in the following but keeps the property that ¢, — 0.

We obtain
~afB/an
/ eQvn > eavn(zn)—acz/an—lf (1 + ) dz
B(zn,0n) B(zn,onR)

— o(@—an)vn(en) . gL-0Cs/an—1 / (1+ |z))~*F/onde  (2.10)

Bpr

CE—.’Bn

On

for all @ € 1. Thus, (2.3) and (2.10) yield

‘(a—an)vn(xn)
1= / & P(da)
Iy

fﬂ en
fB( o )eavn a
Sént = : P(da)
n fe1] fQ evn el—aCz/an-1 fBR(l + I(L‘|)_a'3/a”dl'
Sént 1 (2.11)

= el—C2/an—1 fBR(1+ |x|)“5/andx‘

Since B/an < (ao/an) - (m(0)/27) by (2.9) and Lemma 3, inequality (2.11)
implies
1

l<én+ 29 m(0)
eL—CZ/Qn—]. fBR(]' + le) an 2% dx

b

or
el+C2/ao — L

1 S m(0) )
Jo,(L+|z])~ 72 dz

which is a contradiction if L is sufficiently large. The proof is complete. [
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3 Proof of Lemmas 1-3

As having announced in the previous sections, we show Lemmas 1-3 in this
section. We again consider the positive case (ie., S = S and [ = 1) in
what follows.

Proof of Lemma 1: Since S = S, there exists C3 > 0, independent of n,
such that v, > —C3 in . We use (2.3) and Jensen’s inequality to calculate

(a—an)vn(x)
[
Iy

Jaern
—(an—a)vn(z) (a—an)vn(zn)
< / ae — + / ae — P(da)
I ., fQ e Iy fQ e
Olnp(ﬂ}-,n)eancs eCs

< +1<—+1
12| 12

for all z € By, and n, where

- (0,an) fan>0
R ') if ay, < 0.

The lemma is completely shown. O

Proof of Lemma 2: Put ag = lim,_, ay,.
Assume that ag > 1. Then, there exists 4 > 0 such that

e(1+6)vn(xn) < ean’U'n(m‘n),

that is, by Jensen’s inequality,

(a=1-68/2)vn(zn)
¢3vn(@n) < / ae P(da) < e*%”"(”’")lﬂl_l
Iy

Jaer

for n > 1, which is a contradiction because v,(zy,) — +00.
Next, assume that ap < 0. In the case that P((0, o)) > 0, there exists
0 < € < 1 such that P([e, a. — €]) > 0, and therefore

(a—an)vn(zn)
1= / ac P(de)
Iy

Jaer

(a—e/2)vn(zn)
> / o P(do)
[, —€] fQ e~

> ¢(e)ez? @) P([e, ay —€]) = +o0
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as n — oo, a contradiction. In the case that P({a.}) = P((0,04]) > 0, it
holds that liminf,_, [, e*“» < +o0, and hence

(a—an)vn(zn)
1= / s P(da)
Iy

Jaer
-1
Za*e(a*—an)vn(mn) (/ eawn) P({a*}) — 400
Q

as n — 00, a contradiction.
We have shown that ap € (0,1]. It is left to show that oy > an. To
prove this, we finally assume that o9 € (0, a.). Consider

Pn = QnUnp — log/ ednln,
Q

Passing to a subsequence, we have
(Pn(xn) — +00. (31)
The function ¢, = @, (x) satisfies

_ n _ Qnin i
{ —Ap, = K, (z)e¥ CI|Q| f1+ aP(de) in Bay, (3.2)

Jaetm =1,
where

K A anv e b
(2) = an (/Qe )/1 e Pde)

Lemma 1 and the boundedness lim inf,,_,oo fQ e®n¥n < 400 show that there
exists C4 > 0, independent of n, such that

0< Kn < C4 T in Bz,,-o. (33)
Consequently, (3.1)-(3.3) assure that
¢n = —oo locally uniformly in By, (0} (3.4)

by virtue of the result of [2]. However, (3.4) is false since & = S, and
liminf, ;o [ €% < +o0. O

Proof of Lemma 3: It follows from Lemma 2 that
0<V, <Pty in B, .
for n > 1. We also have

0<eP <1 in By /on
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for all n, and
2 onAn

o
"l Ji,

as n — co. Combining these properties with W, (0) = 0, we can safely apply
the result of [2] to find that, for every R > 0, there exists C5(R) > 0 such
that

aP(da) -0

Wy, > —C5(R) in Bp (3.5)
for n > 1. Thus, the elliptic regularity and a diagonal arugument show that
there exists w € C1T*(R?), a € (0,1), such that

W, — W in CET*(R2). (3.6)

loc

Noting the definitions of V., and w,, we see that there exists Ve C'*t2(R2),
a € (0,1), such that ) )
Vo, =V in CLT*(R2). (3.7)

loc

We again use the elliptic regularity, together with (3.6)-(3.7), and conclude
the relation (2.5) and @,V € C%(R?).
It is clear that V € L°°(R?) by Lemma 1, and therefore, we must show
that [z, Ve® < m(0) and that V > 0 in R2.
Forevery R>0and 0<r <1,
Ve? < liminf Ve < liminf Vne"-’"

BH n—00 BR n—o0 Br/a'n

=liminf/ Vin Sm(O)—f—/ vy
n=% JB(zn,r) Bar

by the Fatou lemma, the definitions of wy,, Wy, o, and Vp, and (1.2). Letting
R 1 400 and r | 0, we obtain [, Ve® < m(0).

Finally, we use the definitions of wp, Wy, oy and Vj, (3.5), W, < 0 and
(1.2) to obtain Cs(R) > 0, independent of n > 1, such that

- ae"‘;—:ﬂ(wn(x)-i—anvn(a:n))
Va(z) = e / o P(da)
Iy fQ e~

ae(a—an)vn (zn)
I, fQ eavn

for all z € Br and n > 1, and for every R > 0, which means V > 0 in R?
because A, — Ao > 0 by S =S, # 0. O

> eL=Ce(R) ), P(da) = eL~Cs(B) ),
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