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Abstract

We outline some mathematical results concerning mean field equations derived
within Onsager’s statistical hydrodynamics theory. Such equations contain a prob-
ability measure describing the circulations of the vortex points. Our analysis shows
that in the deterministic vs. stochastic approach we obtain similar blow-up prop-
erties of bubbling solutions, whereas the corresponding optimal Trudinger-Moser
constants, corresponding to the critical temperatures, may be substantially differ-
ent.

1 Some mean field equations from Onsager’s
vortex theory

In recent years, several mean field equations have been derived in order to describe
two-dimensional turbulence, following Onsager’s celebrated statistical mechanics ap-
proach [21], see also 10, 28]. By well-known work of Caglioti, Lions, Marchioro and
Pulvirenti [2, 3] and Kiessling [14] it is well-known and rigorously established that
under the assumption that all vortex points have identical vorticity and orienta-
tion, the mean field limit, in the case of a compact two-dimensional surface without
boundary {2, is described by the semilinear elliptic equation with exponential non-

linearity:
e’ 1
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Here, v is the stream function, A > 0 is a constant related to the statistical tempera-
ture and dz denotes the surface element on 2. The normalization [, v dz = 0 is cho-
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sen in order to rule out an additive constant. It is worth noticing that equation (1)
is also relevant in other contexts, including differential geometry (Nirenberg’s prob-
lem), chemotaxis, Chern-Simons gauge theory. Consequently, equation (1) and its
variations have been extensively studied, particularly in relation to the blow-up
properties of concentrating sequences of solutions, topological degree properties,
existence, uniqueness, symmetry of solutions, just to mention a few aspects. See,
e.g., (15, 28]. Equation (1) is the Euler-Lagrange equation of the functional

1
Ty(v) = 5 IVll3 ~ Alog /Q e’ do (2)

Sz{vGHI(Q): /ﬂvdm:O}.

In view of the classical Trudinger-Moser inequality, as established in [11]:

defined on the space

sup {/ ™ veg, IVyll2 < 1} < +o0,
Q

where the constant 47 is sharp, we derive that

i1€1£2',\(v) > —00 <= A < 8. (3)

In the context of the statistical mechanics of vortices the optimal constant A = 87
is related to the critical temperature. An alternative proof of (3) was derived in [2].

Here, we are interested in some generalizations of (1) which were recently de-
rived in the above mentioned statistical mechanics context, with the aim of consid-
ering vortex points with arbitrary circulation and orientation. Assuming that the
distribution of circulations is determined by a general Borel probability measure
P € M(I), where I = [—1,1], by extending the methods introduced in Joyce and
Montgomery [13], Pointin and Lundgren [22], the following “continuous” equation
was derived in [26]:

—A'U='—z\/05< ° 1)7D(doz) on
I

Joevdz 19|
/vd:c =0.
Q

The variational functional for (4) is given by

Ta(v) = %uwng - )\/Ilog (/Q e dz) P(da), (5)

with v € £. The first mathematical results concerning the general equation (4) are
rather recent, see [18]. However, some special cases of P have been considered. In
particular, the “hyperbolic sine case”

P =tdg=—1+ (1 — t)dp=1, t €0,1], (6)
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which corresponds to the physics models considered in [13, 22|, was considered in
(12, 19, 20, 9]. When P has the atomic form

N
P = Zai60i1 (7)
i=1

where a; € I fori=1,2,...,N, a; > 0, Zf;l a; = 1, equation (4) is equivalent to
a Liouville system of the form

- Auz = A (‘/’iezflzl Wyt — K'i) ’ 1< 1 < N*) in 2

/uidm=0,
Y]

where V; is a continuous function and k; is a suitable constant ensuring that the right
hand side in the equation above has zero mean. Systems of this form have been ex-
tensively analyzed by Chanillo and Kiessling [4], Chipot, Shafrir, Wolansky [7]. The
related optimal Trudinger-Moser inequalities, in their equivalent dual logarithmic
Hardy-Littlewood-Sobolev form, were obtained by Shafrir and Wolansky [27].

On the other hand, an equation similar to (4) was derived by Neri [17], under
the assumption that the circulations of the vortex points are independent identically
distributed random variables with probability distribution P:

a(e® — L [ e®dz) P(da
el =y erdn) Pae)

~Av =
v [[ixq €% P(da)dz (8)

/vdw=0.
Q

The variational functional for (8) is given by

Ka(v) = %nwug — Alog ( /I /Q e dx’P(da)) , (9)

with v € €. Although similar, the “deterministic” equation (4) and the “stochastic”
equation (8) are distinct unless P = d4=1, in which case they both reduce to the
standard mean field equation (1). It is therefore natural to seek similarities and
differences between (4)—(8). Our studies recently carried out in the articles [18, 23,
24, 25] show that:

(i) Equation (4) and equation (8) share analogous blow-up properties;

(ii) Functional J) and functional K have substantially different Trudinger-Moser
optimal constants.

We summarize such results in the remaining part of this note. More precisely, in
Section 2 we describe blow-up properties for a general equation containing (4) and
equation (8) as special cases, thus emphasizing analogous behaviours of bubbling
solutions. In Section 3 we provide the optimal Trudinger-Moser constants for both
models. In particular, we show that such a best constant for the “stochastic” func-
tional (9) coincides with the standard constant A = 87 in (3), whereas it is greater
than 87 for the “deterministic” functional (5), see Theorem 3.1 below.



2 Blow-up properties

As already mentioned above, a blow-up analysis for equation (4) is provided in
[18], extending techniques from [1, 19]. One difficulty in carrying out such an
extension is due to the general form of the Borel measure P, which in particular
does not allow to assume satisfactory convergences of quantities indexed in o € I by
simply extracting subsequences. For this reason, a new point of view of considering
concentrating measures on the product space I x €} was taken. It is not difficult
to see that the main blow-up results from [18] can be extended to equation (8).
Thus, in [24] we were motivated to prove blow-up properties for a class of equations
including (4) and (8) as special cases.

More precisely, in [24] we study concentrating sequences of solutions to the
following equation:

—Av=2A / V(a, o, v)e® P(da) — 2 V(o z,v)e® P(do)ds,  in O
I

192 JJ1xa
/ vdx =0,
Q
(10)

where V(a, z,v) is a functional satisfying the condition aV (o, z,v) > 0, as well as
suitable bounds which will be specified below. Clearly, when

(84
Via,z,v) = Vi(e,v) = e dz’ (11)
Q

equation (10) reduces to (4). On the other hand, when
(84
Jixq e P(da)’
equation (10) reduces to (8). We make the following assumptions on the functional
V.
(V1) (signa) V(a,z,v) >0 for all (a,z,v) € I x N x &;
(V2) supg ||V (e, z,v(x))| peo(1xq2) < C1 for some constant C; > 0;
(V3) [[f1alV(a,z,v)|e® P(da)dz < C, for some constant Cy > 0.

We consider solution sequences {v,}, A — Ag to

(12)

Ve, z,v) = Va(a,v) =

- Av, = /\n/ <V(a, z,vp)e*™ — —1——/ V(a, z,v,)e*™ dm) P(da)
I 19| Ja

/vn=0.
0

Following the approach of Brezis and Merle [1], see also Nagasaki and Suzuki [16],
we first show that the blow-up set for concentrating solutions is finite and that a
“minimum mass” is necessary for blow-up to occur. Namely, we define the blow-up
sets:

(13)

St ={peQ:3pin— p:vp(Prn) — +oo)}
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and denote S = S; US_. We define the measures v , € M(Q) by setting
Vin =M [ |V(a,z,v0)e*" P(da)
I+
where I, = [0,1] and I_ = [—1,0). Since in view of (V3) we have [, vi s < C2An,
we may assume that ui.,n—*wi for some measure vy € M(Q).

Theorem 2.1 ([24], Brezis-Merle alternative). Assume (V1)-(V2)-(V3). Let vy be
a solution sequence to (13) with A, — Xo. Then, the following alternative holds.

i) Compactness: limsup,,_,, [|Vnlloo < +00. There ezist a solution v € € to (10)
with A = A9 and a subsequence {vy,,} such that v, — v in .

) Concentration: limsup,,_, |[vnllLe = +00. The sets S+ are finite and S =
S_US; #0. For some sy >0, s+ € L'(Q) we have

vy = sydr + Z N4 p0p
PES+

with nyp > 4m for all p € S. Moreover, there exist v € Hlic(ﬂ \S), k €
L>(I x Q) and ¢ € R such that v, — v in H1 2\ S) and

—Av=,\0/k(a$ )e®P(da) + ¥ niplp— Y n_pbp—co in 0,

PESH PES—
/ v=0.
Q

Under stronger assumptions on V, which are satisfied in the physically relevant
cases (11)-(12), the blow-up results may be refined. Following [18], we consider
measures defined on the product space I x 2. We assume that V' does not depend
on z, namely V = V(a,v) and
(V0) ViV(a,v) =0.

We also strengthen assumptions (V2)—(V3) above as follows:

(14)

(V2') supg ||a™1V (e, v)l||Leo(ry < Cf for some constant C] > 0;
(V3) [[f1xq a1V (a,v)|e*” P(da)dz < C; for some constant C; > 0.
For every fixed a € I we define p?(dz) € M(Q2) by setting

)‘nV(a, Un)
o

po(dz) = e’ dzx.

We consider the sequence of measures p, = un(dadz) € M(I x Q) defined by

/\nV(a, Up)
o

pin(dadz) = p"(dz)P(de) = e dgP(da).

In view of (V3’), for large values of n we have:

(I % Q) = / /I _Hald)P(da) < Ch0+ D).
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Hence, upon extracting a subsequence, we may assume that

i — u for some Borel measure pu € M(I x ).

In the next result we describe some properties of p.

Theorem 2.2 ([24], quadratic relation for the mass measure). Suppose that V
satisfies (V0)-(V1)-(V2’)-(V3’). Let vy be a solution sequence to (13) with A, —
Ao. The following properties hold.

(i) The singular part of pu has a “separation of variables” form:

pu(dadz) = Z (p(da)dp(dz) + r(a, z)P(da)dz.
pES

Here, (, € M(I) and r € L'(I x Q).
(ii) For every p € S the following relation is satisfied

s [ e = | [ acp(da)r.

(i1t) For everyp € S it holds
[ 1alg(da) = nsp [ lalr(a,z)P(da) = s1(o),
It I+

where ny. , and s+ (x) are as in Theorem 2.1. Moreover, for every p € Sy \ Sx
/ lal¢(da) = 0,
Iz

We note that {, € M(I) plays the role of the “mass measure” at the blow-up
point p € Q. In the deterministic case (4), we are able to show that (, is absolutely
continuous with respect to P(da), and more precisely that (y(da) = mpy(a) P(da)
for some m, € L*°(I). We do not know whether such a property holds for the
stochastic case (8). However, this is of course the case when P(da) is discrete,
and in particular when P(da) has the hyperbolic sine form (6). Further analogies
between (4) and (8) in the special case (6) have been emphasized in [25]. We refer
to [25] for the details.

3 Optimal Trudinger-Moser inequalities

In this section we emphasize that the best constants in the corresponding Trudinger-
Moser inequalities for the functionals (5) and (9) differ substantially. Indeed, in [23]
we establish the following result.
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Theorem 3.1 ([23], Best constant for Jy). The functional J) is bounded below on
E if A < X\, where X is defined by

X =inf 8P (K<) 3 lKi C Iy NsuppP
[fKi aP(da)]
where K is a Borel set and I, = [0,1] and I_ = [-1,0).

The constant X is sharp in the sense that it may not be replaced by any larger
constant. We note that X > 87. In other words, the best constant for (5) is improved
with respect to the best constant for the standard Trudinger-Moser functional (2),
as stated in (3). We expect that the strict inequality is a technical limitation of the

approximation argument employed in the proof.
In constrast to the above result for the functional (5), no improved Trudinger-

Moser inequality holds for the functional (9). Indeed, it is not difficult to prove the
following.

Theorem 3.2 ([17, 24], Best constant for Ky). Let suppP N {-1,1} # 0. Then,
the functional Ky, is bounded from below on £ if and only if X < 8=.

The proof of Theorem 3.1 is more involved, see [23]. We first identify a duality
principle for J). More precisely, we rigorously prove a Toland type non-convex
duality principle for the following Lagrangian from [26, 28]:

1
£(@pa,v) = / / pallog o — 1) P(dod)+3 / Vo?
Ix 0

//IXQ apqv P(da).

Here (®pq,v) € @'y x €, where

I‘A={p€LlogL(9): p >0, /p=/\},
Q
@\ ={®pa: pa €Ty for P —ae acl}.

We define the following free-energy functional of logarithmic Hardy-Littlewood-
Sobolev type

¥(@po) = [[ patogra-1) =3 [[ o6 [ puGspsPlda)Pan)

for ®p, € ®I'y. The following duality principle implies that minimization of 7} is
equivalent to minimization of W¥:

Theorem 3.3 ([23], Duality principle). For any A > 0 the following relation holds:

f Lo T ‘
@Il{\lxgﬁ 11§f‘7,\+)\(log/\ 1) ela%ij\{l (15)



Theorem 3.3 may be viewed as a Toland non-convex duality principle for Jy
and U. Identity (15) is stated without proof in [28]. The proof of Theorem 3.3 is
achieved in [23] by a direct minimization argument which requires some care, since
on one hand the space L}(I, P; Llog L(f2)) is not reflexive, and on the other hand
the logarithmic nonlinearity is not differentiable at 0.

With the duality principle at hand, the study of J) is reduced to the study of
functionals of the form

Vp(@n) = [ | patog puP(da) (16)
+ [[ 40 [[ polo)0sd(e osw)PEa)P(an)

where A(a, 8) € C(I?) is symmetric and satisfies the sign condition
oBA(a,8) >0  on I?,
and ®p, € BI'y,, where
@&y, = {®pa: pa €Ty, for P —a.e. ae€l}.

In the special case where P is the atomic measure (7), the free energy (16) takes
the form

N N
Wor,. o0 = Yas [ logoit 2 o [ pila)losd(@,u)ostu).
i=1

3,7=1

with a;; = Ao, oj)asaj, 4,5 =1,2,..., N. Discrete functionals of the form above
have been extensively investigated by Shafrir and Wolansky [27], who derived an op-
timal condition for boundedness below. We thus complete the proof of Theorem 3.1
by a careful approximation argument. We refer to (23] for the details.
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