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succeed in estimating three different types of rate functions. However, there are several mathematical
difficulties when applying their procedure to the real software failure data analysis. In this paper, we
consider the application of the Daubechies wavelet estimator in estimating the software failure rate from

real project data. We give practical solutions to these mathematical difficulties in details.
The paper is organized as follows. In Section 2, we describe the basic modeling framework of NHPP-

based SRMs. In Section 3, we introduce the Daubechies wavelet-based procedure employed in this paper.
Section 4 is devoted to the solutions of some methematical difficultes occurred in analyzing real project

data. We summarize the paper with comments in Section 5.

2 NHPP-based Software Reliability Modeling

Let $N(t)$ denote the number of software faults detected by testing time $t$ , and be a stochastic point

process in continuous time. We assume that one software failure is caused by one software fault and use
the word “failure” as the same meaning with “fault” below. The stochastic process $\{N(t), t\geq 0\}$ is said

to be a non-homogeneous Poisson process (NIPP) if the probability ma,$ss$ function at time $t$ is given by

$\{\Lambda(t)\}^{n}$

$Pr\{N(t)=n\} = \overline{n!}e^{-\Lambda(t)}$ , (1)

$\Lambda(t) = \int_{0}^{t}\lambda(x)dx$ , (2)

where $E[N(t)]=\Lambda(t)$ is called the mean value function of an NHPP, and means the expected cumulative
number of software failures experienced by time $t$ . In Eq. (2), $\lambda(t)$ is the rate function of NHPP, and
implies the software failure rate at time $t$ . Suppose that $n$ software faults are detected by the present
time. Let $t_{i}(i=1,2, \ldots, n)$ denote the time of the i-th software failure. Then, the likelihood function
of the NHPP with $n$ software failure time data is given by

$\mathcal{L}\mathcal{F}=\exp\{-\Lambda(t_{n})\}\prod_{i=1}^{n}\lambda(t_{i})$ . (3)

Taking the logarithm, we have the $\log$ likelihood $\mathcal{L}\mathcal{L}\mathcal{F}$ by

$\mathcal{L}\mathcal{L}\mathcal{F}=\prod_{i=1}^{n}\ln\lambda(t_{i})-\Lambda(t_{n})$ . (4)

For the parametric models, the commonly used estimation technique is the maximum likelihood ($ML$)

estimation. The $ML$ estimate of unknown model parameters, denoted as $\theta$ , is given by the solution

of $ar_{6}\max_{\theta}\mathcal{L}\mathcal{L}\mathcal{F}(\theta)$ . In the following section, we introduce the Daubechies wavelet-based estimation
procedure, which does not a.ssume the functional form of the rate function.

3 Nonparametric Estimation Using Wavelet Estimator

3.1 Daubechies Wavelet

Wavelets consist of two basis functions, the scaling function $\phi(t)$ and the wavelet function $\psi(t)$ , that

work together to provide wavelet approximations. These functions are orthonormal bases of Hilbert

space, so that any signals or data in this vector space can be represented by linear combinations of
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scaling function and wavelet function. Daubechies [3] defined a set of compactly supported wavelets,
which gained much popularity in wavelet analysis thereafter.

The Daubechies scaling function and wavelet function are of the following forms.

$\phi(t) = \sum_{i=0}^{n}h_{i}\phi(2t-i)$ , (5)

$\psi(t) = \sum_{i=0}^{n}(-1)^{i}h_{n-i}\phi(2t-i)$ , (6)

where $n$ is the support of $\phi(t)$ and $\psi(t)$ , and coefficients $h_{i},$ $(i=0,1, \ldots, n)$ for different supports are
given in [3]. From the above two equations we know, Daubechies scaling function and wavelet function are
not defined in a closed analytic fom. In fact the scaling function is calculated by solving a simultaneous
equation with the defined coefficients $h_{i}$ and initial value $\phi(0)=\phi(n)=0$ . For instance, the coefficients
of Daubechies wavelets with support $n=7$ are defined as

$h_{0}$ $=$ 0.3258034,
$h_{1}$ $=$ 1.0109457,
$h_{2}$ $=$ 0.8922014,
$h_{3}$ $=$ 0.0395750,
$h_{4}$ $=$ 0.2645072,
$h_{5}$ $=$ 0.0436163,
$h_{6}$ $=$ 0.0465036,
$h_{7}$ $=$ 0.0149870.

First, the starting values of Daubechies scaling function, $\phi(1),$ $\phi(2),$
$\ldots,$

$\phi(6)$ , can be calculated by solving
$\phi(t)=\sum_{i=0}^{7}h_{i}\phi(2t-i)(t=1,2, \ldots, 6)$ under the condition $\sum_{t=0}^{7}\phi(t)=1$ and $\phi(0)=\phi(7)=0$ . Second,
the values of the Daubechies scaling function at other points in time interval $[0,7]$ can be calculated by
Eq. (5) using the starting values and the coefficients $h_{i}$ . For example, we have

$\phi(0.5) = \sum_{i=0}^{7}h_{i}\phi(1-i)=h_{0}\phi(1)+h_{1}\phi(0)$. (7)

A feature of Daubechies scaling function is that it only takes value at such a time point $t$ when $t=$

$a\cdot 2^{b}(a, b\in Z)$ . This kind of number is called a dyadic number if and only if, it is integral multiple of
an integral power of 2 (see [11]).

Note that Daubechies wavelet is not defined in a closed analytic form but in a set of discrete values,
therefore it is classified as discrete wavelet with the same as Haar wavelet. However, since if sufficient
values of the Daubechies wavelet are calculated, a smooth scaling function can be obtained, and the
Daubechies wavelet is effective in representing continuous function.

3.2 Positive Basis Functions and Daubechies Wavelet Estimator

Walter and Shen [17] developed a positive wavelet estimator for estimating density functions. The
Daubechies wavelet estimator for the rate function of an NHPP is based on this positive basis function.
Let $\phi(t)$ be the scaling function having compact support. For $0<r<1$ , a positive basis function is given
by

$P_{r}(t) = \sum_{j\in Z}r^{|j|}\phi(t-j)$
, (8)
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where the constant value $r$ is selected such that this positive basis developed is always greater than or
equal to zero [17]. Kuhl and Bhairgond [8] constructed a wavelet estimator using this positive basis,

which is given by the following form:

$\hat{\lambda}_{m,k}(t) = \sum_{n=-k}^{k}\{\sum_{i=1}^{N}P_{r}(2^{m}t_{i}-n)\}(\frac{1-r}{1+r})^{2}\cross 2^{m}P_{r}(2^{m}t-n)$ , (9)

where $t_{i}$ are the arrival times of an NHPP whose rate function is to be approximated, and $N$ is the

number of arrivaJs in the interval under consideration. The range for $n$ is selected in such a way that the

positive basis function $P_{r}(t)$ can translate through the entire range of arrival times, and the resolution
$m$ is selected based on the level of detail of the approximation desired. This wavelet estimator is used to
approximate the rate function of an NHPP.

4 Set Up In Daubechies Wavelet Estimator
Kuhl and Bhairegond [8] presented a simulation-based performance evaluation for the above Daubechies

wavelet estimator. However, there are several limitations of their procedure in the case of treating real

software failure time data. We discuss these limitations in this section and give some $su_{\infty}\sigma\sigma$aetions in

applying the Daubechies wavelet estimator to the real software failure time data.

4.1 Compact Support and Normalization

Daubechies [3] defines the coefficients $h_{\dot{\eta}}(i=0,1, \ldots, n)$ for wavelets with different supports $n=$

$2,3,$ $\ldots,$
$10$ . This means that the possible values of Daubechies wavelet estimator are in the time interval

$[0, n]$ . However, the real software failure time are not always observed in this interval. Therefore it is

necessary to rescale the data into interval $[0, n]$ . It should be noted that $[$data $x(n/t_{N})]$ does not work
in this case. It is clear from Eq. (9) that $t_{i}$ in $\hat{\lambda}_{m,k}(t)$ must be a dyadic number, otherwise, $P_{f}(2^{m}t_{i}-n)$

can not be defined. We consider such failure time data whose values are recorded in integer. This can be

easily achieved by changing the unit of the data set to a smaller one. Since an integer is a dyadic number

and an integer divided by $2^{b}(b\in Z)$ is still a dyadic number, we suggest the following normalization rule:

$[$data $\cross 2^{-b}|2^{b}\leq t_{N}].$

In this way, software failure time data with arbitrary ending time can be analyzed with the Daubechies
wavelet estimator.

4.2 Parameter Determination

As mentioned in Section 3.2, the range for $n$ should be selected in such a way that the positive basis

function $P_{r}(t)$ can translate through the entire range of arrival times. Note that the positive function
$P_{r}(t)$ quickly decays to zero in both the positive and negative directions (see Figure 1), so we take the

truncation for it from-7 to 8. The boundary is determined as-7 and 8 because the value of $P_{r}(t)$ outside
the limit becomes negative. Walter and Shen [17] proved that there exists $0<r<1$ such that $P_{r}(t)$

satisfies $P_{r}(t)\leq 0(t\in R)$ , but this holds only when $j$ in Eq. (8) takes all values in $Z$ . This is difficult in
computation so that we have to select an appropriate range for $j$ . Since we consider the scaling function
with support 7 in this paper, and the nature of $P_{f}(t)$ depends upon the nature of the scaling function,
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Figure 1: Positive basis function associated with Daubechies scaling function.

we set $j\in[-7,7]$ . We checked the value of $P_{r}(t)$ with different $r$ (from 0.1 to 0.9), and found that $P_{r}(t)$

with $j\in[-7,7]$ could always be positive from $-7$ to 8. As a result, $k$ in Eq. (9) should be selected as

$[Inte_{6}er$ Part of $2^{m}t_{N}+7]$

which ensures $2^{m}t_{i}-n$ is in the interval [-7, 8].

5 Conclusion
In this paper we have applied the Daubechies wavelet estimator to estimate the software failure rate

function. We have given practical solutions to the mathematical difficulties in applying the procedure to
the real software failure data. The practitioners are not requested to carry out troublesome procedures
on model selection and to take care of computational efficiency such as the judgment of selecting initial
value of parameters. In order to establish the credibility and the usefulness of the Daubechies wavelet
estimation procedure in software failure data analysis, we will present a real data analysis to evaluate the
goodness-of-fit performance of the Daubechies wavelet estimator in the future.
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