
Compressed Sensing Prototype for Flexible Wireless
System

Doohwan Lee, Takayuki Yamada, Hiroyuki Shiba, Kazunori Akabane,
Yo Yamaguchi, Takana Kaho, and Kazuhiro Uehara

NTT Network Innovation Laboratories, NTT Corporation
E-mail: lee.doohwan@lab.ntt.co.jp

Abstract
Compressed sensing is recently developed technology which directly
compresses sparse data with the sub-Nyquist rate information. It can be
considered as finding a solution of an ill-posed inverse problem of the sparse
data. The introduction of recent trends and achievements of compressed sensing
including the stmctured compressed sensing and 1-bit compressed sensing will
be given for the comprehensive understanding in this paper. Flexible wireless
system is a unified wireless platform composed of flexible access points and a
flexible signal processing unit. The goal of a flexible access system is the
provision of a unified wireless platform which has the capability of receiving
various types of wireless signals regardless of their signal type. By transferring
whole wireless signal data through a wired access line, various types of wireless
signals are processed at flexible access points. We implemented a prototype of
flexible wireless system in which compressed sensing is used as a radio wave
compression method. This paper also introduces flexible wireless system
prototype implemented using compressed sensing technology.

1. Compressed Sensing
Since the seminal work of Donoho [1] and Candes [2], interest in compressed
sensing technology has been explosively growing. $A$ plethora of research
regarding compressed sensing has taken place from the theory to the
applications [3]. Numerous numbers of research works and projects are also
currently ongoing in various fields including astronomy, photonics, or signal
processing [4-6]. Although several introductive materials have been published [2,
7-8], readers still feel difficulties in understanding compressed sensing
technology. This is due to the fact that compressed sensing was bom by
combining various fields such as mathematics, information theory, signal
processing, and probability theory. To provide the comprehensible explanations
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to the readers, this paper firstly describes the basic and introduction to
compressed sensing.

Let $N\cross 1$ signal vector X be sparsely represented with an $N\cross N$ basis
matrix $\Psi$ and $N\cross 1$ sparse vector $s$ as $X=\Psi s$ It follows that $K\cross 1$

measurement vector $Y$ is obtained from $K\cross N$ matrix measurement matrix
$\Phi$ as $Y=\Phi X=\Phi\Psi s$ . By replacing $\Phi\Psi$ with $\Theta$ , the equivalent notation
$Y=\Theta sIs$ obtained. Typically, the inverse problem $s=\Theta^{-1}Y$ is ill-posed and not
solvable ($NP$-hard). However, compressed sensing theory proved that this
inverse problem can be solvable with overwhelming probability when $s$ is
sparse, and $\Theta$ satisfies restricted isometry properly (RIP, description will be
followed) by cast the ill-posed inverse problem to 11-norm minimization
problem.

$\min\Vert\tilde{s}\Vert_{1}$ subject to $Y=\Theta\tilde{s}$ and $\tilde{s}\in R^{n},$

where, $\Vert\tilde{s}\Vert_{1}=\sum_{i}|\tilde{s}_{i}|$ and $R^{n}$ is the set of $N\cross 1$ vector.

This 11-norm minimization problem is solvable by basis pursuit [9], the
iterative greedy algorithm [10], or other similar algorithms.

Above stated RIP provides the sufficient condition of measurement matrix $0$

and basis matrix $\Psi$ for solving the 11-norm minimization problem [11-12].
When compressed sensing matrix $\Theta(=\Phi\Psi)$ satisfies the following inequality
for all $S$-sparse vectors, matrix $\Phi$ is said to obey the RIP of order $S.$

$(1-\delta)\Vert s\Vert_{2}^{2}\leq\Vert\Theta s\Vert_{2}^{2}\leq(1+\delta)\Verts\Vert_{2}^{2},$

where, $\Vert s\Vert_{2}=\sum_{i}s_{i}^{2}$ and $\delta(0\leq\delta<1)$ is the smallest constant that satisfies

above equation. This 11-norm minimization problem is solvable by the linear
programming, which is one of the well established convex optimization methods,

with practical complexity $O(n^{3})[9,11].$

In the geometrical sense, the Euclidian distance between any two $S$-sparse
vectors in $R^{n}$ is approximately preserved after projection when $\Phi$ obeys the
RIP of order $S$ with $\delta.$

Figure 1 illustrates how 11-norm minimization method finds the sparse
solution. Ll-norm minimization method finds the solution from the infinite
solution plane by adjusting (optimizing) 11-ball $(\Vert\tilde{s}\Vert_{1})$ . As confirmed from the
figure, the solution obtained by adjusting 11-ball is inherently sparse (this
statement is tme only when RIP is satisfied. Detailed explains will be followed).

On the other hand, 12-norm minimization method (minimizing mean square
error) does not yield the sparse solution because the point where 12-ball $(\Vert\tilde{s}\Vert_{2})$

reach the solution plane is usually non sparse point. This explains why and how
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$Y=\Theta s$

(a) Ll-norm minimization (b) L2-norm minimization
Fig. 1 Graphical illustration ofll-norm minimization and 12-norm

minimization method.

$|||$ -posed Inverse Problem
Sparse assumption

Compressed sensing

Non-solvable Solvable but $NP$ hard Practically solvable

Fig. 2 Positioning ofcompressed sensing in the framework of inverse
problem.

11-norm minimization is used for compressed sensing.
Figure 2 summarizes the positioning of compressed sensing in the framework

of inverse problem. Ill-posed inverse problem is usually non-solvable. Although
it is solvable when the solution is sparse, it is still $NP$-hard and impractical.
However, when compressed sensing is taken into consideration, the ill-posed
inverse problem with sparse solution can be solvable with practical complexity
$O(n^{3})$ [9, 11].

Ll-norm minimization does not always guarantee finding the sparse solution.
One of the core contributions of research work on compressed sensing is the
proof that RIP guarantees finding sparse solution with overwhelming probability.

Figure 3 illustrates the concept of RIP when $R^{3}$ vector is projected onto $R^{2}$

(ill-posed inverse problem formed by 2 equations and 3 variables). When RIP is
satisfied, the Euclidean distance of two sparse vectors are properly maintained.
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(a) Ll-norm minimization (b) L2-norm minimization
Fig. 3 Graphical illustration ofRIP.

Therefore, information in the high dimension ( $R^{3}$ in the figure) is not lost in the
low dimension ( $R^{2}$ in the figure), which provides the possibility of
reconstruction of original high dimensional information from the low
dimensional information. On the other hand, when RIP is not satisfied, the
Euclidean distance of two sparse vectors are not maintained, and some
information is lost. Consequently, it is not possible to reconstmct the original
high dimensional information.

2. Structured Compressed Sensing
Difficulties in hardware implementation and expensive calculation cost of
complete random measurement matrices motivated the usage of the stmctured
matrices as the measurement matrices. Two such promising candidates are
Toeplitz matrix (T) and circulant matrix (C). Measurement by Toeplitz matrices
and circulant matrices are realized by the linear convolution and the circular
convolution, respectively. In terms of the causality of the physical signal,
Toeplitz matrices are suitable for practical hardware implementations [13-15]. In
case of the circular matrices, however, the additional effort is necessary due to
the noncausality caused by the circular convolution.

As discussed in the previous section, this paper exclusively consider the
digital compressed sensing and applies circulant matrices to save the calculation
cost because 1) the noncausality problem is relaxed in the digital compressed
sensing, and 2) matrix operations of the circular matrices are simpler than
Toeplitz matrices.

Measurement matrix in this paper is generated by the partial random circular
matrix as $\Phi=RC=$ RUDU

$*$

$R$ is a $N\cross M$ matrix $(N<M)$ consist of partial
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rows of the $M\cross M$ identity matrix. $C$ is $M\cross M$ random circulant matrix of
which first row consist of $M\cross 1$ random numbers and every left-to-right
descending diagonal is constant. $u$ and $U^{*}$ are the FFT and IFFT matrices of
which size are $M\cross M$ , respectively. $D$ is a $M\cross M$ diagonal matrix with
diagonal elements is generated by DFT of the first row of C Therefore,
calculation cost of partial random circulant measurement matrices are
$O(2MlogM+M)$ including FFT, IFFT, and diagonal matrix multiplication
operation, which is much lower than that of the complete random measurement
matrix, $O(NM)$ .

Due to the decreased degrees of the freedom, increased number of
measurements is necessary when partial random circulant matrices are used. It
has been proven that if $R$ is the randomly selected rows of the identity matrix
and $C$ is generated by Rademacher variables, $O(K^{1.5}\log^{1.5}M)$ measurements
satisfies RIP in many reconstmction algorithms [16]. Although this is larger than
the case of the benchmark result given by $O(K\log(MK))$ , our empirical
observations for the spectmm sensing showed that the partial random circulant
matrices work as efficient as the complete random matrices.

3. 1-bit Compressed Sensing
Increased communication cost caused by the quantization, particularly in
networked system, motivates us to use 1-bit compressed sensing.

Boufounous [17] firstly proposed 1-bit compressed sensing, which only
extracts $sign$ data from measured data, $Y=sign(\Theta s)$ , and reconstmcts the
original signal from the extracted $sign$ data. Although the amplitude information
is lost during the measurement stage, [17] showed the possibility of the
reconstmction. Reconstmction method proposed in [17] solved the sparse signal
inversion problem by enforcing the solution $(\tilde{s})$ lies on the unit sphere to
artificially resolve the amplitude ambiguity as bellows.

$\min\Vert\tilde{s}\Vert_{1}$ subject to $Y=sign(\Theta s),$ $\Vert s\Vert_{2}=1$ , and $\tilde{s}\in R^{M}$

In the geometric perspective, the surface of the unit sphere and Rows of $\Theta$

represent the collections of all $M\cross 1$ signal vectors bereft of amplitude
information and intersection planes of the unit sphere, respectively. Note that
plenty of intersection planes with different directions and their $sign$ information
can specify the specific area of the surface of the unit sphere. If $M\cross 1$ signal
vectors are $K$-sparse, their location on the surface of the unit sphere can be
exactly specified provided that the numbers of intersection planes are plenty
enough. Jacques [18] provides the theoretical analysis on the best achievable
performance of 1-bit compressed sensing by introducing the $B\epsilon SE$ which is
defined by
$d_{S}(X_{1},X_{2})-\epsilon\leq d_{H}(sign(\Phi X_{1})-sign(\Phi X_{2}))\leq d_{S}(X_{1},X_{2})+\epsilon,$
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Fig.4 Concept of a flexible wireless system.

where $d_{s}(0\leq d_{s}\leq 1)$ is the normalized angle between two $M\cross 1$ vectors and
$d_{H}(0\leq d_{H}\leq 1)$ is the normalized hamming distance between two $N\cross$ lsign
vectors, respectively. $\epsilon(0\leq\epsilon<1)$ is the smallest constant that satisfies above
equation.

Similarities of $B\epsilon SE$ and RIP provide the brilliant geometric intuition to
comprehend how reconstmction of 1-bit compressed sensing is guaranteed.
The Euclidean distances between two $M\cross 1$ vectors and two $N\cross 1$ measured
vectors correspond to the normalized angle between two $M\cross 1$ amplitude-
bereft vectors and the hamming distance between two $N\cross$ lsign vectors,
respectively. Therefore, $B\epsilon SE$ guarantees the preservation of the angle between
two amplitude-bereft vectors in $R^{M}$ likewise the $\delta$-stable embedding in the
conventional compressed sensing. [18] showed that $O(K\log(w)$ measurement
satisfies $B\epsilon SE$ when the complete Gaussian random measurement matrices are
used. Theoretical guarantee of $B\epsilon SE$ with stmctured random measurement
matrices has not yet been investigated in the literature.

4. Flexible Wireless System
Rapid developments and changes of wireless radio environments require a
unified platform which can flexibly deal with various wireless radio systems. To
satisfy this requirement, we have proposed a flexible wireless system (FWS)
[19].

Figure 4 illustrates the concept of the FWS. Various wireless signals are
simultaneously received by flexible access points. Flexible access points have
the capability of receiving a wide variety of wireless signals from several

62



hundred megahertz to several gigahertz. The received radio wave data is
transferred to the flexible signal processing unit through the broadband wired
access line. The flexible signal processing unit performs multiple types of signal
analysis by software exploiting software defined radio and cognitive radio
technologies [20].

The FWS consists of three key technologies: 1) $RF$ technology for reception
and transmission over wide frequency bands, 2) data compression technology
between flexible access points and flexible signal processing unit, and 3) signal
processing technology for extracting the desired signal from overlapped and
interfered signals.

RJF and signal processing technologies were implemented by FWS prototype
[21]. The broadband low noise amplifier with wide dynamic range [22] and
signal separation method for overlapped signals were implemented. The
experiment results of the FWS prototype confirmed the system’s practicality.
The front-end ICs for receiver yielded the signal reception capability from 300
MHz to 3 GHz frequency bands signals. The signal processing unit also yielded
the capability of demodulatming the overlapped signal by software with reduced
CPU processing load. These $RF$ and signal processing technologies are further
expanded to [23] and [24], respectively.

We have recently developed the updated FWS prototype. Data compression
technology between flexible access points and flexible signal processing unit is
mainly concemed in the second generation FWS prototype. To overcome the
huge bandwidth necessity for transferring the radio wave data, recently
developed compressed sensing technology [1, 3] is applied as a data
compression method. Moreover, to achieve the enhanced performance, our
previous research works [19, 25-26] are also implemented. [19] proposed the
combined Nyquist and compressed sampling method to apply compressed
sensing technology for multiple signals with different priorities. [25] suggested
the weighted compressed measurement matrix generation method for utilizing
the prior information. [26] developed the processing burden reduction method
using averaged compressed sensing.

5. Implementation of Flexible Wireless System Prototype using Compressed
Sensing
5. 1 Architecture of Prototype
Figure 5 shows the architecture of the prototype. Flexible access point consists
of $RF$ front-end, $ADC,$ $DAC$ , compressed sensing unit, and $IP$ packetizing
(unpacketizing) unit. The wired access line is implemented by 10 $Gbit/s$ optical
fiber. Flexible signal processing unit consists of baseband signal processing unit,
compressed sensing reconstmction unit, and $IP$ packetizing (unpacketizing) unit.
For the uplink signal processing, the received $RF$ wireless signals at a flexible
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Fig.5 Architecture of the Prototype.

Flexible access point

Flexible signal processing unit
Fig.7 Appearance of the Prototype.

access point are downconverted into $IF$ band after broadband low noise $RF$

operation. These downconverted signals are compressed using compressed
sensing technology after the analog-to-digital conversion. Then, the compressed
signals are transferred to the flexible signal processing unit through the 10 Gbitis
optical fiber after the $IP$ packetizin$g$ . Subsequently, the transferred compressed
signals are reconstructed by compressed sensing reconstmction algorithm such
as Ll-mininization method after the $IP$ unpacketizing. Finally, the baseband
signal processing is conducted using the reconstmcted signals by software.
The downlink signal processing is conducted by opposite order except the
compressed sensing and its reconstmction process. All signal processing is
conducted by software except $RF$ operation, $ADC$, and $DAC$ . The appearance of
the prototype (receiver part only) is shown in Fig. 6.
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Fig. 8 User interface of flexible signal processing unit.

5. 2 Experiments
This section introduces some experimental results. All operations are controlled
by software at the flexible signal processing unit. Figure 8 shows the user
interface of flexible signal processing unit. It is implemented using Visual $C++$

and mn on Window $OS$ . All ofparameter settings are done by control window at
flexible signal processing unit. Control parameters necessary for $RF$ and
compressed sensing operations such as sampling rate, initial seed for random
measurement matrix generation, period of average, and frame length are
transferred from the flexible signal processing unit to the flexible access points.
If necessary, updated control parameters are transferred as well.

Some important parameter settings for experiments are given in Table 1. The
whole bandwidth 10 MHz is sampled at 20 Msps at flexible access point.
Sampled data is compressed by the averaged compressed sensing and transferred
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a$)$ Law data (b) Compressed data

(c) Spectmm of reconstmcted signal
Fig. 9 Snapshots oftransmitted data rate and reconstmcted signal.

to flexible signal processing unit. The data rate of RFID is varied from 2.4
$Kbit/s$ to 38.4 $Kbit/s$ . Due to the spectral leakage, its channel bandwidth
occupies up to 300 KHz. The frequency domain sparsity is 3% (300 KHz among
10 MHz). Signal duration ofRFIDs varies from 5 to 80 msec, and their period is
lsec. Therefore, time domain sparsity is 0.5 to 8%. Average period is set from 1
to 10 msec. Of course, tradeoff between processing burden and time resolution
exist depends on the length of average period. The channel between RFID tags
and the distributed flexible access point was non-fading AWGN channel.

Figure 9 shows snapshots of operation of prototype. Figure 9(a) shows the
law data when compressed sensing is not applied. For the transfer the 10 MHz
radio wave without compression, 640 $Mbit/s$ transfer rate is necessary. Figure
9(b) shows the data transfer rate when compressed sensing is applied. Almost
compression rate of 0.001 is achieved in this example. Figure 9(c) shows the
reconstmcted signal with compressed data. It is confirmed that three RFID
signals are clearly detected. Note that RFID signals are actually not
overlapped in the time domain in this example. The reason what three RFID
signals seems to exist together in Figure 9(c) is due to the update time of display,
which is not related with compression or detection performance.

Figure 10 and 11 show experimental results to evaluate the performance of
partial circulant measurement matrices, 1-bit compressed sensing, and block
BIHT algorithm with various parameter settings. All curves of the detection
success rate $(P_{d})$ are obtained with 0.01 of the detection false alarm rate $(P_{f})$ .
GPSR and binary iterative hard thresholding (BIHT) [18] are used as
reconstmction algorithms for the conventional and 1-bit compressed sensing,
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$N/M$

Fig.10 Detection success probability ofthe conventional and 1-bit $CS$ in
terms of frame compression rate.

Compression rate
Fig.11 Detection success probability ofthe conventional and 1-bit $CS$ in

terms ofwhole compression rate.

respectively.
Figure 10 shows two comparisons: 1) complete random vs. partial random

circulant measurement matrices and 2) conventional vs. 1-bit compressed
sensing in terms of $P_{d}$ . With respect to the first comparison, $P_{d}$ of the partial
random circulant matrices yield almost similar results with that of the complete
random measurement matrices. Since the RIP is the sufficient condition, some
empirical observations showed more favorable results than theoretical analysis.
Spectmm sensing is also one of such cases. With respect to the second
comparison, $K/N$ for $P_{d}$ over 0.99 are 0.14 and 0.4 in the conventional and 1-
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bit compressed sensing, respectively. 1-bit compressed sensing needs larger
number ofmeasurements because it uses only $sign$ information.

Figure 11 shows the same results of Fig. 1 in terms of the total compression
rate including quantization effect. Note that curves of 1-bit compressed sensing
are shifted to left and compression rate at 0.025 yields $P_{d}$ over 0.99. This
proves that 1-bit compressed sensing can save communication cost for spectmm
sensing in networked system.

5. Conclusion
This paper provided the basic and intuitive introduction to compressed sensing.
Compressed sensing is a new technology which utilizes the inherent sparsity of
the signal. It is a mathematically well proved and established technology, which
may have the unlimited possibilities to be applied in various applications. To
tackle calculation and communication cost problems caused by the completely
random measurement matrices and quantization, this paper also introduces the
stmctured compressed sensing and 1-bit compressed sensing. Calculation cost of
partial random circulant measurement matrices is reduced to $O(2MlogM+M)$

using the property of the circulant matrices. Finally, this paper provides some
experimental results. Experimental results showed that the partial random
circulant matrices work as efficient as completely random measurement despite
the reduced degrees of freedom, and its performance can be greatly advanced by
applying 1-bit compressed sensing.
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