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1 Introduction

Understanding the dynamic consumers’ brand choice behaviors is an inter-

est to both retailers and manufacturers who plan their marketing strategies.

One of the major topic in this field includes the behavioral patterns seem-

ingly persisting across more than one purchase occasion. They are referred

to as variety-seeking and state dependence.

The term “variety-seeking” is defined as the behavior such that the pur-

chase of a brand will decrease the probability that the same brand will

be purchased again on the succeeding occasions. The “state dependence”,

sometimes called “inertia”, refers to the opposite behavior; the brand pur-

chase will increase the probability of purchasing the same brand again on
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the succeeding occasion (Bawa, 1990; Chintagunta, 1998).1

The existence of variety-seeking and state dependence plays an impor-

tant roles in marketer’s decision making as Chintagunta (1998) states: “From

a managerial stand point, it would be important to know whether a brand’s

consumers are inertial or variety prone (Chintagunta, 1998, 254).” For exam-
ple, the existence of a strong state dependence effect suggests that inducing

trial would be an effective marketing tactic; the promotional schemes such

as a free sampling would be more effective. The emphasis on brand retention

would be also important to marketers of this type of products (Chintagunta,

1998). On the other hand, the existence of variety-seeking behavior moti-

vates marketers to extend their product lines so that households’ brand

switching behaviors would benefit their own products (Seetharaman, 2004).

In summary, by correct understanding of the consumers’ brand choice

behaviors, the promotions can be effectively implemented to the right con-
sumers with the right schemes. In this study, we will propose a model to

capture the complex behaviors of consumers who vary their choices without

any apparent reasons.

2 Literature Review

According to the taxonomy work on literature of varied behaviors of McAl-

ister and Pessemier (1982), the variety-seeking behavior may not necessarily

be associated with a motivation for variety-seeking itself; this behavior is of-

ten observed, for instance, when a household has multiple users for the same
product. The “real” or “pure” variety-seeking behavior we consider in this

study is a varied behavior motivated by a desire for an unfamiliar product or

a stimulus associated with switching behavior. In this context, Givon (1984)

lWhen the purchase probability is affected by the last purchase (i.e., Markov process),

it is called “first-order” behavior. Accordingly, “zero-order” behavior refers to the pattern

in which the purchase probability is not affected by any previous choices.
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used a stochastic model to express a utility associated with the switching

behavior itself in addition to the utility derived from the consumption of the

specific brands.

In contrast to variety-seeking behavior, some researchers found the “in-

ertial behavior”, which is often referred to as “state dependence.” One of

the most influential paper in this stream is Guadagni and Little (1983), who

specified variables representing brand and size loyalties in the way that au-

thors assumed weighted sequential influences of past choices to the current

utility in the form of

$x_{ijt_{t}}$ $=$ $\alpha_{b}\cdot x_{ij,t_{t}-1}$

$+(1-\alpha_{b})$ { consumeri bought brand $j$ at $(t_{i}$ $-1)$ -th occasion},

where $\alpha_{b}$ is a parameter and {statement} denotes an indicator function tak-

ing the value unity if the statement is true.

Bawa (1990) proposed a “hybrid” behavior, which is characterized by

the behavior where consumers seem to exhibit inertial tendency for certain

period of time and then exhibit variety-seeking tendency once certain period

of time passes. The marginal utility in his model is specified to be the

function of “run”, denoted by $r_{ij}(t_{i})$ , which is the number of times the

brand had been continuously purchased up to $t_{i}$-th occasion. The index $i$

and $j$ denote consumer and product respectively.

3 The Specification of the Utility and the Model

In constructing the model, we choose to use the brand loyalty variable of

Guadagni and Little (1983), which we will refer to it as “$GL$ variable” hence-

forth, to express the state dependence part of the utility. Also, to capture

the effect of variety-seeking tendency, we choose to include run which was
defined in Bawa (1990). The purpose of including run is to “put brake” on
the $GL$ variable, which keeps increasing as long as the same brand is kept
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purchased. By including run, the consumer’s utility for the brand would

start to decline as a result of the repeated consumption of the same brand

if run negatively affects utility.

Now if consumer is state dependent, the effects of both $GL$ variable and

run will be non-negative. The variety-seeking behavior will be detected by

the opposite signs; the effects of both $GL$ variable and run will be non-
positive. On the other hand, the hybrid behavior will be detected by the
positive coefficient of $GL$ variable and negative coefficient of run. Since the

combination of positive coefficient of $GL$ variable and negative coefficient of

run could indicate both variety-seeking and hybrid behaviors, depending on
the values of coefficient, we must scrutinize the results carefully before we
judge.

Now we write the utility of consumer $i=1,$ $\ldots,$
$N$ for brand $j=1,$ $\ldots,$

$J$

at occasion $t_{i}=1,$
$\ldots,$

$T_{i}$ as

$U_{ijt_{i}}$ $=$ $x_{ijt_{i}}\beta_{\mathcal{S}}+\epsilon_{ijt_{i}}$ , (3. 1)

where $x_{ijt_{i}}$ is $1\cross R$ vector of the explanatory variables including a set of

dummy variables for brands except for one base brand, dummy variables for

coupon usage, the average coupon values redeemed, dummy variables for

feature and display, $GL$ variable and run. The $\beta_{s}$ is corresponding $R\cross 1$

vector of parameters for segment $s$ . The segment is a subset into which

consumers are placed, where consumers in the same segment are assumed

to have homogeneous characteristics regarding preferences for brands and

responsiveness to the marketing variables. In our framework, we also assume
that consumers in the same segment show the same purchasing patterns

expressed in $GL$ variable and run. The term $\epsilon_{ijt_{i}}$ is a random error term

that captures the effects of unobserved variables which follows i.i. $d$ . Gumbel

distribution.

In our study, we employ the latent class model which is one of the gen-

eral models to incorporate heterogeneity across consumers. In the latent
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class model, it is assumed that there exist a finite and fixed number of seg-

ments where each consumer belongs to only one of the segments, and it is

further assumed that consumers belong to the same segment over the period

of observation. The idea behind this type of model is that there exists an

underlying multi-dimensional distribution of parameters for intrinsic pref-

erences for brands and relative responsiveness to the marketing variables

which characterize consumers’ behaviors. In the latent class model, the un-

derlying distribution of parameter is assumed to be discrete. Because the

finite representation of consumers’ characteristics of the latent class model

coincides well with the concept of segments, such a model is widely applied

to the marketing field. The major work of this field is Kamakura and Russel

(1989). The other works using the latent class model include Bucklin et al.

(1998) and Gupta and Chintagunta (1994).

Now we will use the multinomial logit model framework for brand choice,

and the $\log$ likelihood of panel data in our model is given by

$l( \beta)=\sum_{s=1}^{s}\sum_{i=1t_{i}}^{N}\sum_{=1}^{T_{i}}\sum_{j=1}^{J}\{h_{i}(s)\cdot y_{ijt_{i}}\cdot\ln(\frac{\exp(x_{ijt_{i}}\sqrt{}S)}{\sum_{l=1}^{J}\exp(x_{i\iota t_{i}}\beta_{s})})\}$

where $y_{ijt_{i}}$ is the indicator variable taking value 1 if consumer $i$ buy brand
$j$ at occasion $t_{i}$ and $h_{l}\prime(s)$ is the expected value of membership probability

of consumer $i$ to segment $s=1,$ $\ldots,$
$S$ . For estimation, we used $EM$ algo-

rithm assuming the consumers’ membership probabilities for each segment

as missing values.

4 Estimation

Now let us assume there are $s=1,$ $\ldots,$
$S$ segments in the sample. Obviously

as the number of segments is unknown nor can be observed, it must be

estimated. First define the relative sizes of segment $s$ as $\pi_{s}$ such that

$0<\pi_{S}\leq 1$
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for all $s$ and

$\sum_{s=1}^{s}\pi_{S}=1$ . (4.1)

In the latent class model, each consumer has different membership proba-

bilities for these segments, because membership probabilities are estimated
from their choice histories which differ across consumers. Now let us define

the random variable $Y_{ijt_{i}}$ for $i=1,$ $\ldots,$
$N$ and $t_{i}=1,$

$\ldots,$
$T_{i}$ , which takes

value one if consumer $i$ chooses brand $j$ at $t_{i}$-th occasion. In other words,

for consumer $i$ , let $y_{ijt_{i}}$ be entries of $T_{i}\cross J$ matrix $Y_{i}$

$Y_{i}=(\begin{array}{lll}y_{i11} \cdots y_{iJ1}| |y_{i1T_{i}} \cdots y_{iJT_{i}}\end{array})$ (4.2)

and let us denote each row as $y_{it_{i}}$ . Assuming the $\epsilon_{ijt_{i}}$ follows i.i. $d$ . extreme
value with respect to $j$ , we can express the probability that consumer $i$ in

segment $s$ chooses brand $j$ at the $t_{i}$-th occasion in the standard logit form
as

$Pr\{(y_{i1t_{i}}, \ldots, y_{iJt_{i}})=(0, \ldots, 0,1,0, \ldots, 0)|S_{i}=s;\beta_{s}\}=\frac{\exp(x_{ijt_{i}}\beta_{S})}{\sum_{l=1}^{J}\exp(x_{ilt_{i}}\beta_{s})},$

$\tilde{j-1} \overline{J-j}$

(4.3)

where the random variable $S_{i}$ indicates which segments consumer $i$ belongs

to, assuming we could observe the segment membership of consumer $i$ . For

brerity, we abbreviate (4.3) as

$Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{S})=\frac{\exp(x_{ijt_{i}}\sqrt{}S)}{\sum_{l=1}^{J}\exp(x_{ilt_{i}}\beta_{s})}$ , (4.4)

henceforth.

The unconditional choice probability for brand $j$ of a randomly selected
consumer $i$ can be obtained by integrating out the equation (4.3) by the
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density in the population $\pi_{s}$ as2

$Pr(Y_{it_{i}}=j)=\int Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{s})\cdot\pi_{s}ds$ . (4.5)

Since the relative size of the segment $\pi_{s}$ is discrete, (4.5) is written as

$Pr(Y_{it_{i}}=j)=\sum_{s=1}^{S}\pi_{8}\cdot Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{s})$. (4.6)

This is a weighted average of logit formula evaluated at each mass point

(segment), as pointed out by Kamakura and Russell (1989).

Now suppose that consumer $i$ has the choice history defined as $H_{i}=$

$(H_{i1}, \ldots, H_{iT_{t}})$ , where $H_{it_{i}}$ indicates the brand purchased at $t_{i^{-}}th$ occasion.

Then the conditional choice probability that consumer $i$ has the choice his-

tory $H_{i}$ given that consumer $i$ belongs to segment $s$ is written as

$Pr(H_{i}|S_{i}=s;\beta_{S})=\prod_{t_{i}=1}^{T_{t}}\prod_{j=1}^{J}\{Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{S})\}^{y_{tjt_{i}}}$ (4.7)

In the same manner as (4.6), the unconditional probability of randomly

selected consumer $i$ having the choice history $H_{i}$ can be written as

$Pr(H_{i};\beta)=\sum_{s=1}^{s}\pi_{s}\cdot Pr(H_{i}|S_{i}=s;\beta_{s})$ (4.8)

where $\beta$ is $R\cross S$ parameter matrix

$\beta=(\beta_{1}, \cdots, \beta_{S})=(\begin{array}{llllll}\beta_{11} \cdots \beta_{1s} ’ \cdots \beta_{lS} | \beta_{r1} \cdots \beta_{rs} \cdots \cdots \beta_{rS} | \beta_{R1} \cdots \beta_{Rs} \cdots \cdots \beta_{RS}\end{array})$ (4.9)

Now if the segment memberships of consumers are completely known, the

vector of parameters $\beta_{s}$ can be estimated by the well known methods such

2The model of the form (4.5) is sometimes called mixed logit model and $\pi_{s}$ is called

mixing distribution. The latent class model can be regarded as the special case of mixed

logit model where mixing distribution is discrete $(^{r}bain, 2003)$ .
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as Newton-Raphson method. Here let us define for each $i$ the multinomial
indicator random variable $z_{i}(s)$ which takes one if consumer $i$ belongs to
segment $\mathcal{S}$ and $0$ otherwise, assuming we know the membership probability
of consumer $i$ belonging to segment $s$ given his$/her$ purchase history $H_{i},$

that is $Pr(S_{i}=s|H_{i};\beta_{s})$ . Then this membership indicator random variables
$z_{i}(s)$ ’s are entries of $N\cross S$ matrix $Z$ as

$Z=(\begin{array}{l}z_{1}(\cdot)|z_{N}(\cdot)\end{array})=(\begin{array}{lll}z_{1}(1) \cdots z_{1}(S) z_{N}(1) \cdots z_{N}(S)\end{array})$

The row sums of the matrix $Z$ above are all 1.

Assuming we were able to observe $Z$ , the likelihood given the choice
histories of the all consumers under consideration is written $as^{3}$

$L( \pi, \beta|H, Z) = \prod_{i=1}^{N}\prod_{s=1}^{s}\{\pi_{s}\cdot Pr(H_{i}|S_{i}=s;\beta_{s})\}^{z_{i}(s)},$

where $H=(H_{1}, \ldots, H_{i}, \ldots, H_{N})$ is the choice history of all consumers in
the sample, $\pi=(\pi_{1}, \ldots, \pi_{S})$ is $1\cross S$ vector of relative sizes of segments.

Accordingly, the $\log$ likelihood could be written as

$l( \pi, \beta|H, Z) = \sum_{i=1}^{N}\sum_{s=1}^{s}z_{i}(s)\cdot\ln(\pi_{s}\cdotPr(H_{i}|S_{i}=s;\beta_{s}))$

$= \sum_{i=1}^{N}\sum_{s=1}^{S}z_{i}(s)\cdot\ln Pr(H_{i}|S_{i}=s;\beta_{s})+\sum_{i=1}^{N}\sum_{s=1}^{s}z_{i}(s)\cdot\ln\pi_{s}.$

(4.10)

Now if we were able to observe $Z$ , we can estimate parameters by the tradi-

tional method. However, in reality, we cannot obtain the information $z_{i}(s)$ .
In such a situation, the method called $EM$ algorithm may be implemented to
obtain the estimate of $z_{i}(s)$ along with the estimates of $\pi$ and $\beta$ as explained

in the following subsection.
3The term $\pi_{s}\cdot Pr(H_{i}|S_{i}=s;\beta_{s})$ is the joint probabihty that consumer $i$ belongs to

segment $s$ and has choice history $H_{i}$ . Note, however, that the relative size of segment $\pi_{s}$

is unknown and has to be estimated.
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4.1 $EM$ algorithm

If the segment membership of consumers $Z$ were completely known, the $\beta_{s}$

can be estimated by the algorithm described above. $EM$ algorithm takes

advantage of this fact and in the algorithm, the consumer’s membership to

the segment $z_{i}(s)$ is assumed at first to be missing values and this value

is imputed by its “expectation” (to be explained below). Then the condi-

tional likelihood is maximized based on the expected value of membership to

the segment. The consumers’ expected membership is then updated using

the updated likelihood. This cycle of “expectation” of membership to the

segment and “maximization” of likelihood is repeated until the likelihood

converges.

Now taking the expectation with respect to $z_{i}(s)$ for the $\log$ likelihood

(4.10), we have

$E[l(\pi,\beta|H, Z)]$ $=$ $\sum_{i=1}^{N}\sum_{s=1}^{s}h_{i}(s)\cdot\ln Pr(H_{i}|S_{i}=s;\beta_{s})+\sum_{i=1}^{N}\sum_{s=1}^{S}h_{i}(s)\cdot\ln\pi_{s},$

(4.11)

where

$h_{i}(s)=E[z_{i}(s)]= \sum_{l=1}^{s}z_{i}(l)\cdot Pr(S_{i}=l|H_{i};\beta\iota)=Pr(S_{i}=s|H_{i};\beta_{s})$

(4.12)

is the expected values of the indicator random variable $z_{i}(s)$ for $s=1,$ $\ldots,$
$S.$

Since parameter $\beta$ in (4.9) only appears in the first term and $\pi$ only appears

in the second term on the right hand side of (4.11), they can be estimated

by maximizing $E[l(\pi, \beta|H, Z)]$ altemately.

Let us first look at the second term on the right hand side of (4.11).

Since we have the condition $\sum_{s=1}^{s}\pi_{s}=1$ from (4.1), the second term can

be maximized by the method of Lagrange multipliers given $\beta_{s}$ . Set

$L= \sum_{i=1}^{N}\sum_{s=1}^{s}h_{i}(s)\cdot\ln\pi_{s}-\lambda\{\sum_{s=1}^{S}\pi_{s}-1\}.$
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Then we have $(S+1)$ set of equations by partially differentiating $L$ with

respect to $\pi_{S}$ ’s and $\lambda$ and setting the resulting formulas as zero as

$\{\begin{array}{l}\frac{\partial L}{\partial\pi_{1}}=\frac{\Sigma_{i=1}^{N}h_{i}(1)}{\pi_{1}}-\lambda=0,:\frac{\partial L}{\partial\pi s}=\frac{\Sigma_{i=1}^{N}h_{i}(S)}{\pi s}-\lambda=0,\frac{\partial L}{\partial\lambda}=-\sum_{s=1}^{s}\pi_{s}+1=0.\end{array}$ (4.13)

From the first $S$ equations in (4.13), we have

$\lambda=\frac{\sum_{i=1}^{N}h_{i}(s)}{\pi_{s}}$ , (4.14)

or

$\pi_{s}=\frac{1}{\lambda}\sum_{i=1}^{N}h_{i}(s)$ (4.15)

for $s=1,$ $\ldots,$
$S$ . Substitute these equations into the last equation in (4.13)

to obtain

$\frac{1}{\lambda}\sum_{i=1}^{N}h_{i}(1)+\cdots+\frac{1}{\lambda}\sum_{i=1}^{N}h_{i}(S) = 1$

or

$\sum_{i=1}^{N}(h_{i}(1)+\cdots+h_{i}(S))$ $=$ $\lambda$

or

$N$ $=$ $\lambda,$

since $h_{i}(1)+\cdots+h_{i}(S)=1$ . Therefore we have from (4.15)

$\pi_{s}=\frac{\sum_{i=1}^{N}h_{i}(s)}{N}$ (4.16)

for $s=1,$ $\ldots,$
$S$ . The solution (4.16) means that the relative size of segment

$s$ is the average of segment membership for $\mathcal{S}$ across all consumers in the

sample.
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Now from (4.12), $h_{i}(s)=Pr(S_{i}=s|H_{i};\beta_{s})$ can be calculated using the

definition of conditional probability $as^{4}$

$h_{i}(s)= \frac{Pr(S_{i}=s,H_{i};\beta_{S})}{Pr(H_{i};\beta)}=\frac{\pi_{s}\cdot Pr(H_{i}|S_{i}--s;\beta_{s})}{\sum_{s=1}^{S}\pi_{s}\cdot Pr(H_{i}|S_{i}=s;\beta_{s})}$. (4.17)

By substituting (4.17) for (4.16), we obtain $\pi_{s}.$

As for the first term of the right hand side of (4.11) for segment $s,$

the parameters can be estimated independently for each segment since the

vectors of parameters $\beta_{s}$ are independent across segments. Then the first

term on the right hand side of (4.11) for segment $s$ is written with the

notation similar to (4.7) as

$l_{s}(\beta_{s}|H)$ $=$ $\sum_{i=1}^{N}h_{i}(s)\cdot\ln Pr(H_{i}|S_{i}=s;\beta_{s})$

$= \sum_{i=1t_{i}}^{N}\sum_{=1}^{T_{i}}\sum_{j=1}^{J}\{h_{i}(s)\cdot y_{ijt_{i}}\cdot\ln Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{s})\}.$

(4.18)

To implement $EM$ algorithm, repeat the following steps.

$EM$ algorithm

Step 0.1 Set $t=0$ . Set the initial values $\hat{\beta}_{s}^{(0)}$ for $s=1,$ $\ldots,$
$S$ and set

$\pi_{s}^{(0)}=1/S$ for $s=1,$ $\ldots,$
$S.$

Step 0.2 Set $s=1$ . For $i=1,$ $\ldots,$
$N$ , calculate $h_{i}^{(t)}(s)$ by calculating

$Pr(Y_{it_{i}}=j|S_{i}=s;\beta_{S})$ using (4.3) first then (4.7) and (4.8) successively with
$\hat{\beta}_{s}^{(t)}$ and $\pi_{s}^{(t)}$ and substitute these interim results for (4.17). Set $s=s+1$

and repeat Step 0.2 until $s=S.$

4Note that $h_{i}(s)$ in (4.17) can be interpreted as the posterior distribution of consumer
$i$ ’s membership probability for segment $s$ with prior distribution $\pi_{s}$ and hkelihood $H_{i}$

given segment membership $S_{i}=s$ as we mentioned earlier.
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Step 0.3 Calculate $E[l^{(t)}(\pi^{(t)},\hat{\beta}^{(t)}|H, Z)]$ using (4.11).

Step 1 Set $s=1$ . Renew $\pi_{s}^{(t+1)}$ from (4.16) using $h_{i}^{(t)}(s)$ .

Step 2 Estimate $\hat{\beta}_{s}^{(t+1)}$ by maximizing (4.18) with (4.3) and $h_{i}^{(t)}(s)$ obtained

previously. The actual maximization is done by the scoring or Newton-

Raphson method.

Step 3 Renew $Pr(Y_{it_{t}}=j|S_{i}=s;\beta_{S})^{(t+1)}$ by substituting $\sqrt(t+1)\wedge S$ obtained

in Step 2.

Step 4 Calculate $h_{i}^{(t+1)}(s)$ from (4.17) with the renewed $\hat{\beta}_{s}^{(t+1)}$ and $\pi_{S}^{(t+1)}$

for $i=1,$ $\ldots,$
$N$ . Set $s=s+1$ and goto Step 1. If $s=S$, goto Step 5.

Step 5 Calculate $E[l^{(t+1)}$ $(\pi^{(t+1)},\hat{\beta}^{(t+1)}|H, Z)]$ using (4.11). If

$E[l^{(t+1)}$ $(\pi^{(t+1)},\hat{\beta}_{s}^{(t+1)}|H, Z)]$ and $E[l^{(t)}(\pi^{(t)}, \sqrt(t)\wedge \mathcal{S}|H, Z)]$ are close enough,

for example, less than small prescribed constant $\epsilon$ , stop the iteration as the

expected $\log$ likelihood is maximized. Else set $s=1$ and $t=t+1$ , and

return to Step 1.

5 Empirical Results

We use ERIM database, the panel data of U. $S$ . households in Sioux Falls,
$SD$ and Springfield, $MO$ which was collected from lst week of 1986 to 34th

week of 1988. ERIM database is the data collected by the now-defunct

ERIM division of A.C. Nielsen on panels of households in Sioux Falls and

Springfield for academic research.5
We choose ketchup category for our empirical analysis for the following

5We acknowledge the James M. Kilts Center, University of Chicago Booth School of
Business for letting us use the data.
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reasons: First, since we are interested in consumers’ brand choice behav-

iors with the possible presence of state dependence and$/or$ variety-seeking

behaviors, product categories in which a consumer exhibits strong genuine

preference to specific brand are not suitable because a consumer would buy

the specific brand anyway. Secondly, the products that are purchased with

relatively high frequency are preferable, since we calibrate the effects of past

brand choices on current purchasing occasion. In other words, the products

that are purchased on irregular intervals would not suit as consumers may

forget the brands they purchased on the previous occasion. After screening

data, we have 137 households with 1,504 purchase records.

The summary statistics of the five SKUs analyzed in this study is listed

in Table 5.1. “Coupon Usage” indicates the number of times coupon was

used, and “Display” and “Feature” indicate the number of times they were

promoted conditional on SKU being purchased. “Mean Value of Coupons”

indicates the average value of coupons when they were used.

Table 5.1: Summary statistics of SKUs under study.
SKU Share Mean Price per oz. Mean Value of Coupons Coupon Usage $D\iota$splay Feature

Heinz 32 oz. 31.70% 3.37 1.24 37.94% 11.52% 43.82%

Heinz PLS 28 oz. 15.80% 4.38 2.41 33.09% 16.73% 34.55%

Hunt’s PLS & GLS 32 oz. 14.30% 3.22 1.30 32.57% 11.93% 36.70%

Del Monte 32 oz. 6.40% 2.87 1 (K) 7.20% 11.20% 36.(K)%

Contro132 oz. 5.00% 2.65 1.64 3.77% 5.66% 24.53%

To calibrate the effectiveness our model, we tested the two other mod-

els; the model which only uses marketing variables as explanatory variable

(Model 1); the model which incorporates $GL$ variable along with the mar-

keting variables (Mode12). The third model is our proposal model which

incorporates $GL$ variable and run in addition to marketing variables (Model

3 $)$ . We have determined the number of segments based on AIC. The number

of segments is chosen to be four because no significant increase in AIC is

observed for Model 3 when the number of segments is increased from four
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to five as shown in Table 5.2. Comparing three different models with six

segments, our proposal model has the lowest AIC value.

Table 5.2: AIC of the three models with different numbers of segments.
Model 1 Mode12 Mode13

2 segments 1310.60 1058.19 1041.80
3 segments 948.52 861.27 835.64

4 segments 842.64 805.61 796.74

5 segments 819.09 796.54 794.21

6 segments 809.53 803.84 813.02803.84 813.02

The estimated parameters of Mode13 are presented in Table 5.3. The

coefficients of the brands indicate intrinsic preferences for the brands relative

to Contro132 ounce which is used as the base brand. All the coefficients

are consistent with our intuitions, i.e., all coefficients of price are negative,

those of coupons are positive, and those of display and feature are positive

in all segments. As for $GL$ variable and run, they show interesting patterns

which would have not been discovered if run was not included in the model.

Only Segment 2 has an insignificant (absolute $t$-value less than 2) coefficient

for run. The negative coefficients of run across three segments imply that

the marginal utility of the same brand decreases as a result of repeated

purchases of the same brand over time.

Now to see the behavioral patterns regulated by the combination of $GL$

variable and run, we calculated the logit probabilities for each SKU and

segment, assuming the situation where consumers repeatedly purchase the

same brands five times in row. In the calculation, we used the average prices

of SKUs and assuming no promotions took in place during the period. The

results are shown in Table 5.4. For example, the number at $t=3$ is the

purchasing probability- of the SKU being-purchased given two-consecutive

purchases of that SKU. In Table 5.4, we have the information of state depen-

dence or variety-seeking tendency of each segment for each SKU. Segment
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Table 5.3: The parameters for the Mode13.
segment 1 segment 2 segment 3 segment 4

Heinz 32 oz. -0.076 4.279 1.885 1.437

(0.0148) (0.0183) (0.0122) (0.0155)

Heinz PLS 28 oz. 1.311 2.661 1.727 2.399

(0.0072) (0.0070) (0.0065) (0.0073)

Hunt’s PLS & GLS 32 oz. 0.027 0.296 2.713 -2.530

(0.0068) (0.0050) (0.0097) (0.0055)

Del Monte 32 oz. 1.176 -2.141 1.071 -1.154

(0.0071) (0.0014) (0.0043) (0.0057)

Price -0.848 -0.735 -0.666 -2.509
(0.0701) (0.0769) (0.0682) (0.0713)

Coupon 2.792 5.015 3.287 5.471

(0.0211) (0.0207) (0.0183) (0.0202)

Display 3.419 3.903 3.855 4.750
(0.0070) (0.0067) (0.0067) (0.0072)

Feature 5.622 2.504 2.938 5.894

(0.0126) (0.0121) (0.0119) (0.0127)
$GL$ 4.303 0.743 1.737 5.607

(0.0136) (0.0115) (0.0102) (0.0126)

Run 0. $505$ $*_{-}o.127$ -0.222 -0.123

$\frac{(0.0891)(0.0663)(0.0519)(0.0529)}{SizeofSegments0.2610.2340.2890.217}$

$\underline{\underline{Total{\rm Log} Likelihood-365.81}}$

$*90\%$ level significance with t-value-1.917.

All the other coefficients were significant at the 0.05 level.

The numbers in parentheses are standard errors.
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1 and 4 exhibit state dependence tendencies while segment 2 and 3 exhibit

variety-seeking tendencies.

Table 5.4: Logit Probability of Purchase: Mode13
Heinz 32 oz. Segment 1 Segment 2 Segment 3 Segment 4

$t=0$ 88% 87.6% 206% 335%
$t=1$ 56.1% 91.7% 42.4% 93.6%
$t=2$ $74$ 9% $91$ 1% 404% 95.3%

$t=3$ 86.7% 90.5% 37.7% 96.2%

$t=4$ 93.1% 897% 34.7% 96.8%

$t=5$ 964% 88.8% 313% 97.1%

$\frac{He\grave{1}nzPLS28oz.SegmentlSegment2Segment3Segment4}{t=015.0\% 83\% 90\% 7.1\%}$

$t=1$ 70.1% 12.4% 219% 687%

$t=2$ 84.5% 11.7% 20.5% 75.3%

$t=3$ 92.3% 109% 188% 79.4%

$t=4$ 96.1% 100% 16.8% 81.9%
$t=5$ 980% 92% 14.8% 83.5%

$\frac{Hunt^{)}sPLS\ GLS32oz.SegmentlSegment2Segment3Segment4}{t=011.2\% 18\% 52.5\% 0.9\%}$

$t=1$ 62.4% 28% 75.8% 21.6%
$t=2$ 79.5% 27% 742% 276%

$t=3$ 89.4% 25% 720% 32.6%
$t=4$ 946% 23% 693% 363%

$t=5$ 97.2% 20% 660% 38.8%

$\frac{DelMonte32oz.SegmentlSegment2Segment3Segment4}{t=047.4\% 02\% 12.8\% 90\%}$

$t=1$ 92.2% $0$ 3% 29.4% 740%

$t=2$ 96.5% $0$ 3% 27.7% 79.8%
$t=3$ 98.4% $0$ 3% 25.5% 83.3%

$t=4$ 99.2% 03% 23.1% 85.5%

$t=5$ 99.6% 02% 20.5% 86.7%

$\frac{Contro132oz.SegmentlSegment2Segment3Segment4}{t=017.6\% 21\% 5.1\% 49.5\%}$

$t=1$ 739% 32% 13.2% 96.6%
$t=2$ 869% 30% 123% 97.5%
$t=3$ 935% 28% 111% 98.0%

$t=4$ 96.8% 25% 99% 983%

$t=5$ 98.3%23%8.6%98.5%

The information in Table 5.4 can be used as a starting point for brand

managers to plan their marketing strategies and promotional activities. For

example, since consumers in segment 1 exhibit strong state dependence, Del
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Monte may need to ensure it has enough amounts of promotions to retain

consumers in this segment since Del Monte is preferred by segment 1 most.

As consumers have low coefficients for coupon and display but have high

coefficient for feature, Del Monte would want to increase feature to retain

consumers from Segment 1.

6 Discussion

Overall, our model achieves the best AIC compared to the previously pro-

posed models with a fair number of significant variables, indicating that the

households are heterogeneous in their behavioral patterns over time. It gives

important connotations for marketers, because the model without state de-

pendence and variety seeking effects would be misleading in constructing

the strategy and planning promotions as pointed out by previous research

such as Keane (1997).

Unfortunately, the hybrid behavior was not detected in our analysis.

This may be because most of consecutive purchases of the same SKU are
three at most; about 90% of purchases in the data are shorter than three

runs. Also, the products like ketchup, where the bottle is consumed through

a relatively long period of time, a satiation effect may start during the

consumption period and that may lead households to switch brand, i.e.,

the hybrid behavior is hidden as a result of the large package sizes of the
ketchup. By using the products which are consumed in a relatively short

period of time the hybrid behavior may has been detected.

For future researches, the model presented in this study can be tested

using different data sets for the validity of the model. The new variable to

explain state dependence and variety-seeking behaviors can be constructed
ae well. From a microeconomic perspective, the budget constraint can be

incorporated in the model because households may switch brands depending

on their budget at each shopping trip.
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