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Abstract
We Fourier-transform the classical $O(N)$ spin models in two dimensions to obtain a Gaussian

system perturbed by a functional determinant. We analyze the system by renormalization group

type arguments, and show that there exist no phase transitions if $N$ is sufficiently large, no matter

how large $\beta$ is.
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1. Introduction. The existence of the phase transition in two dimensional ( $2D$ ) Ising

model was established by Onsager [1] in the middle of the last century, and the existence of

the Kosterlitz-Thouless transition in $2DXY$-model was rigorously established by Fr\"ohlich

and Spencer [2] three decades ago.

As for non-abehan systems in lower dimensions, however, our knowledge is very poor.

Spontaneous mass generations in $2D$ non-Abelian sigma models (.Heisenberg model) and

quark confinement in $4D$ non-Abelian lattice gauge theories have been widely believed [3-5]

since the last century, but their proofs still remain to be seen. These models exhibit no

phase transitions in the hierarchical model approximations of Wilson-Dyson type or Migdal-

Kadanov type [6, 7].

One of the main difficulties in these models is that the field variables are non-abelian

objects and block spin transformations break the structures. In some cases, this can be

avoided by introducing an auxiliary field $\psi[9]$ . Using this idea, together with the help of

the cluster expansion [10], we showed [13, 14] in the $2D0(N)$ sigma model with large $N$

that
$\beta_{c}\geq constN\log N$ (1)

where $\beta_{c}(N)$ be the lower bound for the critical in.verse temperature of $2dO(N)$ spin $mo$del.

In this Letter, we show our new analysis [16] based on the duality arguments type, and

announce some partial results:

Theorem There exist no phase tmnsitions in the two-dimensional $O(N)$ classical spin model

if $N$ is sufficiently large.

We scale the inverse temperature $\beta$ by $N$ . The $\nu$ dimensional $O(N)$ spin (Heisenberg)

model at the inverse temperature $N\beta$ is defined by the Gibbs expectation values

$\langle f\rangle\equiv\frac{1}{Z_{\Lambda}(\beta)}\int f(\phi)\exp[-H_{\Lambda}(\phi)]\prod_{i}\delta(\phi_{i}^{2}-N\beta)d\phi_{i}$ (2)

Here $\Lambda$ is an arbitrarily large square with center at the origin. Moreover $\phi(x)$ $=$

$(\phi(x)^{(1)}, \cdots, \phi(x)^{(N)})$ is the vector valued spin at $x\in\Lambda,$
$Z_{\Lambda}.is$ the partition function defined

so that $<1>=1$ . The Hamiltonian $H_{\Lambda}$ is given by

$H_{\Lambda} \equiv-\frac{1}{2}\sum_{|x-y|=1}\phi(x)\phi(y)$ , (3)

First substitute the identity $\delta(\phi^{2}-N\beta)=\int\exp[-ia(\phi^{2}-N\beta)]da/2\pi$ into (2) with the
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condition that Ima, $<-\nu[9]$ , we set

${\rm Im} a_{i}=-(v+ \frac{m^{2}}{2}) , {\rm Re} a_{i}=\frac{1}{\sqrt{N}}\psi_{i}$ (4)

where $m>0$ is an arbitrary constant. Thus we have

$\ovalbox{\tt\small REJECT}=c^{|\Lambda|}\int$ . . . $\int\exp[-W_{0}(\phi, \psi)]\prod\frac{d\phi_{j}d\psi_{j}}{2\pi}$

$=c^{|\Lambda|} \int\cdots\int F(\psi)\prod\frac{d\psi_{j}}{2\pi}$ (5)

where

$W_{0}( \phi, \psi)=\frac{1}{2}\langle\phi, (m^{2}-\triangle+i\alpha\psi)\phi\rangle-\sum_{j}i\sqrt{N}\beta\psi_{j}$

$= \frac{1}{2}\langle\phi, (m^{2}-\triangle)\phi\rangle+\frac{i}{\sqrt{N}}\langle\phi^{2}-N\beta, \psi\rangle$ (6a)

$F( \psi)=\det(1+i\alpha G\psi)^{-N/2}\exp[i\sqrt{N}\beta\sum_{j}\psi_{j}]$
(6b)

$\alpha\equiv 2/\sqrt{N},$ $c$ ’s are constants being different on lines, $\triangle_{\iota j}=-2v\delta_{ij}+\delta_{|i-j|,1}$ is the lattice

Laplacian and $G=(m^{2}-\triangle)^{-1}$ . Note that $F(\psi)$ is integrable with respect to $\psi$ if and only

if $N\geq 3.$

In the same way, the two-point function is given by

$\langle\phi_{0}\phi_{x}\rangle=\frac{1}{Z}\int\cdots\int(m^{2}-\triangle+i\alpha\psi)_{0x}^{-1}F(\psi)\prod\frac{d\psi_{j}}{2\pi}$ (7)

Set $v=2$ below. Then we can choose $m$ so that $G(O)=\beta(m^{2}\sim\exp[-4\pi\beta])$ and

$F(\psi)=\det_{3}^{-N/2}(1+i\alpha G\psi)\exp[-\langle\psi, G^{02}\psi\rangle]$ , (8)

$\det_{3}(1+A)\equiv\det[(1+A)e^{-A+A^{2}/2}]$ (9)

where $G^{02}(x, y)=G(x, y)^{2}$ so that $rb(G\psi)^{2}=\langle\psi,$ $G^{02}\psi\rangle$ . Then we expect that the sub-

tracted determinant $\det_{3}(1+i\alpha\cdots)\sim 1$ and that exponential decay follows from (7) since

$\tilde{Z}=\int F(\psi)\prod d\psi_{i}/2\pi\sim\int|F(\psi)|\prod d\psi_{i}/2\pi.$

We justify this argument by renormalization group methods. The cancelation between

the first term of the expanstion of the determinant and the phase factor $\exp[i\sqrt{N}\beta\psi]$ , and

the change of effective mass $m^{2}$ are carried out recursively.
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2. Proof of the Theorem. We use the block spin transformation [4] to justify the previous

idea. Intuitively speaking, we set

$\phi(x)=\phi_{<}([\frac{x}{L}])+\tilde{\phi}(x)$ (10)

$\psi(x)=\frac{1}{L^{2}}\psi_{<}([\frac{x}{L}])+\tilde{\psi}(x)$ (11)

where $\phi(x),$ $\phi_{<}$ and di have the momentum $|p_{\iota}|\leq\pi,$ $|p_{i}|\leq\pi/L$ and $\pi(1-1/L)\leq|p_{i}|\leq\pi$

$(i=1,2)$ respectively. The same is true for $\psi(x)$ . The point $[x/L]\in Z^{2}$ means the lattice

point nearest to $x/L\in R^{2}$ , then $\phi_{<}(x)$ and $\psi_{<}(x)$ again have the momentum $|p_{i}|\leq\pi$ and

living on the scaled lattice points.

Starting with $\phi_{0}=\phi$ and $\psi_{0}=\psi$ , we recursively define

$\exp[-W_{n+1}(\phi_{n+1}, \psi_{n+1})]=\int\exp[-W_{n}(\phi_{n+1}+\tilde{\phi}_{n}, L^{-2}\psi_{n+1}+\tilde{\psi}_{n})]\prod d\tilde{\phi}_{n}d\tilde{\psi}_{n}$ (12)

Our theorem follows from the main term of the n’th action $W_{n}$ :

$\ovalbox{\tt\small REJECT}(\phi_{n}, \psi_{n})=\frac{1}{2}\langle\phi_{n},.(-\Delta+m_{n}^{2})\phi_{n}\rangle+\frac{\gamma_{n}}{2}\sum(\nabla_{\mu}\phi_{n}^{2}(x))^{2}$

$i$

$+\langle\psi_{n}, H_{n}^{-1}\psi_{n}\rangle+_{\overline{\sqrt{N}}}\langle(\phi_{n}^{2}-N\beta_{n}), \psi_{n}\rangle$
(13)

where

$m_{n}^{2}=L^{2n}m_{0}^{2}, \gamma_{n}=\frac{n}{N}$

$\beta_{n}=\beta-O(n) , H_{n}^{-1}=O(1)>0$

Therefore the integration over $\psi_{n}$ yields the potential

$V_{n}( \phi_{n})=\frac{1}{2}\langle\phi_{n}, (-\Delta+m_{n}^{2})\phi_{n}\rangle+\frac{\gamma_{n}}{2}\sum(\nabla_{\mu}\phi_{n}^{2}(x))^{2}\frac{1}{N}\sum_{x}(\phi_{n}^{2}(x)-N\beta_{n})^{2}$ (14)

where $\beta_{n}arrow 0$ for large $n$ . The term after $\gamma_{n}$ is of the form of

$\sum(\phi_{n}(x+e_{\mu})^{2}-\phi_{n}(x)^{2})^{2}$

This means that $\phi_{n}(x)\in R^{N}$ and $\phi_{n}(x+e_{\mu})\in R^{N}$ have the same radius and has no effects

on the non-existence of phase transition no matter how large $\gamma_{n}$ is. Thus the system is the

$O(N)$ symmetric Heisenberg model of inverse temperature $N\beta_{n}=O(N)$ which is in massive

phase, see eq. (1).

54



3. Block Spin Transformation and Stability Bounds. To obtain the flow $\{W_{n}\}$ , we
use the mathematically controllable block spin transformation introduced by Kupiainen and

Gawedzki [12] some decades ago, and integrate $\exp[-W_{0}]$ recursively from high momentum

parts. This is done by decomposing $\phi_{n}$ and $\psi_{n}$ into the next order block spins $\phi_{n+1}$ and
$\psi_{n+1}$ and zero-average fluctuations $Q\xi_{n}$ and $Q\tilde{\psi}_{n}$ as

$\phi_{n}=A_{n+1}\phi_{n+1}+Q\xi_{n}$

$\psi_{n}=\tilde{A}_{n+1}\psi_{n+1}+Q\tilde{\psi}_{n}$

and by integrating over $\xi_{n}$ and $\tilde{\psi}_{n}$ after the substitution. Here $A_{n+1}$ and $\tilde{A}_{n+1}$ are chosen so

that

$(\phi_{n}, G_{n}^{-1}\phi_{n}\rangle=\langle\phi_{n+1}, G_{n+1}^{-1}\phi_{n+1}\rangle+\langle\xi_{n}, Q^{+}G_{n}^{-1}Q\xi_{n}\rangle$

$\langle\psi_{n}, H_{n}^{-1}\psi_{n}\rangle=\langle\psi_{n+1},\tilde{H}_{n+1}^{-1}\psi_{n+1}\rangle+\langle\tilde{\psi}_{n}, Q^{+}H_{n}^{-1}Q\tilde{\psi}_{n}\rangle$

We briefly discuss about matrices $A_{n},$ $A_{n}$ and $Q$ . Let $G_{0}=(-\triangle+m_{0}^{2})^{-1}$ and define $G_{n}$

and $C:R^{\Lambda_{n}}arrow R^{\Lambda_{n+1}}$ by

$G_{n+1}(x, y)=(CG_{n}C^{+})(x, y) , (Cf)(x)= \frac{1}{L^{2}}\sum_{z\in\triangle0}f(Lx+z)$ (15)

where $L$ is a positive integer (e.g. 2,3, etc.) and $\triangle_{0}$ is the box of size $L\cross L$ centered at the

origin. The operator $C$ takes averages of spins over boxes with centers $Lx\in LZ^{2}$ and scales

down the coordinates by $L^{-1}.$ $\Lambda_{n}=Z^{2}\cap L^{-1}\Lambda_{n-1}$ is the lattice space shrinked by $L$ . Let
$A^{+}$ mean the adjoint of $A$ with respect to the real inner product. The following choice of

$A_{n}$ and $Q$ satisfies our requirement:

$A_{n}=G_{n-}{}_{1}C^{+}G_{n}^{-1}$ (16)

$Q(x, y)=\{\begin{array}{l}1 if x=y\not\in L\Lambda_{n}-1 if x\in L\Lambda_{n} and y\in\triangle_{x}0 if otherwise\end{array}$ (17)

The matrix $Q:R^{\Lambda_{n}\backslash L\Lambda_{n+1}}arrow R^{\Lambda_{n}}$ is block-wise diagonal and constructs zero-average fluctu-

ation field $Q\xi$ . We then see

$CA_{n}=1, C(Q \xi)(x)=\frac{1}{L^{2}}\sum_{\zeta\in\Delta_{0}}(Q\xi)(Lx+\zeta)=0$ (18)
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The covariance of the fluctuation field $\{\xi_{n}(x);x\in\Lambda_{n}\backslash L\Lambda_{n+1}\}$ is given by

$\Gamma_{n}=[Q^{+}G_{n}^{-1}Q]^{-1}$ (19)

and we see that $\Gamma_{n}(x, y)$ decays exponentially fast uniformly in $\beta$ . Put

$\mathcal{A}_{n}=A_{1}A_{2}\cdots A_{n}=G_{0}(C^{+})^{n}G_{n}^{-1}, G_{0}=\mathcal{G}_{0}$ (20)

and define
$\mathcal{G}_{n}=A_{m}G_{n}A_{n}^{+}, \mathcal{T}_{n}=\mathcal{A}_{m}Q\Gamma_{n}Q^{+}\mathcal{A}_{n}^{+}$ (21)

so that
$\mathcal{G}_{n}=\mathcal{G}_{n+1}+\mathcal{T}_{n}$ (22)

By putting $\phi_{0}=A_{1}\phi_{1}+Q\xi_{0}$ and integrating over $\xi_{0}$ , we obtain the determinants

$\det^{-N/2}(1+i\alpha \mathcal{T}_{0}\psi)$

and the Gaussian term of $\psi$ :

$\exp[-\langle\psi, (\frac{2}{N}(\varphi_{1}\varphi_{1})\circ(Q\frac{1}{P}Q^{+})\psi\rangle]\sim\exp[-\langle\psi, (\frac{2}{N}(\varphi_{1}\varphi_{1})\circ \mathcal{T}_{0})\psi\rangle]$ (23)

where
$P(\psi)=\Gamma_{0}^{-1}+i\alpha Q^{+}\psi Q$ , (24)

and $A$ $oB$ stands for the Hadamard product of $A$ and $B$ , i.e. $(A\circ B)_{xy}=A_{xy}B_{xy}$ , and

$A^{02}=A\circ A$ . Remark Tr $(A\psi)(B\psi)=\langle\psi,$ $(A^{t}\circ B)\psi\rangle$ for any matrices $A$ and $B$ . We

approximate $\varphi_{1}(x)\varphi_{1}(y)=N\mathcal{G}_{1}(x, y)+:\varphi_{1}(x)\varphi_{1}(y)$ : by $N\mathcal{G}_{1}(x, y)$ assuming that the Wick

product term is small. There exist configurations which violate this approximation:

$D_{w}(\varphi_{1})=$ minimal paved set such that

$| \varphi_{1}(x)\varphi_{1}(y)-N\mathcal{G}_{1}(x, y)|<N^{1+\epsilon_{1}}\exp[\frac{c}{10}|x-y|], \forall x\in D_{w},\forall y\in D_{w}^{c}$

where paved set is a collection of squares $\{\square \}$ each of which consists of squares $\triangle\subset\Lambda$ of

size $L\cross L$ . We call $D_{w}(\varphi_{1})$ domain wall regions. If all spins are in the same direction and

their lengths are in $(N\beta_{1})^{1/2}(1\pm N^{\epsilon}/2\beta_{1})$ , then $D_{w}=\emptyset$ by the minimality. Similarly we

define the large field region $D(\psi_{1})$ of $\psi_{1}$ by the paved set such that

$D(\psi_{1})=\{\square \Vert\psi_{1}(x)|>N^{\epsilon}, \exists x\in\square \}$
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$\{D_{\omega}\}$ have small probabilities to exist because of the large energy $\langle\phi_{1},$ $(-\triangle)_{D}\phi_{1}\rangle$ of $\phi_{1}$

and the factor $\exp[-i\langle:\varphi^{2} :, \psi\rangle/\sqrt{N}]$ , where $(-\triangle)_{D}$ is the restriction of $-\triangle$ on to the

region $\{\phi_{1}(x);x\in D\}$ . Similarly $D(\psi_{1})$ have small probability to exist because of the

determinants. $D$ can be decomposed into connected components $\{D_{i}\}$ . These regions are

extracted as $g(D_{i}, \psi_{1}, \phi_{1})$ from the Gibbs measure as large field regions. (This definition

applies for $\beta>>N.$ ) These factors satisfy

$|g(D_{\iota}, \varphi_{1}, \psi_{1})|\leq\exp$ [-const. $N^{1+\epsilon}|D|$ ]

In other regions, the fields are small and smooth, we can extract a Gaussian factor:

$\det^{-N/2}(1+i\alpha \mathcal{T}_{0}\psi)$

$=\det_{3}^{-N/2}(1+i\alpha \mathcal{T}_{0}\psi)\cross\exp[-i\sqrt{N}\langle \mathcal{T}_{0}, \psi\rangle-\langle\psi, \mathcal{T}_{0^{02}}\psi\rangle]$ (25)

This and the previous factor yield a new Gaussian term of $\psi$ :

$\exp[-\frac{i}{\sqrt{N}}\langle(\varphi_{1}^{2}-N\beta_{1}), \psi\rangle-\langle\psi,\tilde{H}_{1}^{-1}\psi\rangle]$

$\tilde{H}_{1}^{-1}=\mathcal{T}_{0^{02}}+2\mathcal{G}_{1}\circ \mathcal{T}_{0}$

Here $\beta_{1}=\beta_{0}-\mathcal{T}_{0}(x, x),$ $(\beta_{0}=\beta)$ . Since $\beta_{0}>>1,\tilde{H}_{1}^{-1}\sim 2\beta_{1}\mathcal{T}_{0}$ is again a Laplacian with

small mass term. But we see that $\tilde{H}_{n}^{-1}$ becomes soon massive.

We need another block spin. transformation of the auxiliary field $\psi$ to decompose. the

bilinear form of $\psi$ . Since the field $\psi$ has the dimension $($ length$)^{-2}$ , we define the block spin

operator $C’=L^{2}C$ of $\psi$ by

$(C’ \psi)(x)=L^{2}(C\psi)(x)=\sum_{\zeta\in\triangle 0}\psi(Lx+\zeta)$
(26)

Since $\mathcal{T}_{0}(x, y)$ decreases exponentially fast in $|x-y|$ , and $\mathcal{G}_{1}(x, y)$ is a slowly decreasing

function such that $\mathcal{G}_{1}(x, y)\sim\beta_{1}$ for $|x-y|<O(1),$ $\mathcal{T}_{0^{02}}+2\mathcal{G}_{1}\circ \mathcal{T}_{0}$ has two types of

eigenvectors. The first one is (almost) a block-wise constant vector corresponding to the

eigenvalue $O(1)$ and the second’ ones are the zero-average eigenvectors corresponding to the

eigenvalues of order $O(\beta_{1})$ . Put

$\psi(x)=\tilde{A}_{1}\psi_{1}+Q\tilde{\psi}_{0}$ (27)

$\psi_{1}(x)=(C’\psi)(x)=\sum_{\zeta\in\triangle 0}\psi(Lx+\zeta)$
(28)

57



so that

$\langle\psi,\tilde{H}_{1}^{-1}\psi\rangle=\langle\psi_{1}, H_{1}^{-1}\psi_{1}\rangle+\langle\tilde{\psi}_{0}, Q^{+}\tilde{H}_{1}^{-1}Q\tilde{\psi}_{0}\rangle$ (29)

$\langle:\varphi_{1}^{2}:, \psi\rangle=\langle:\varphi_{1}^{2}:, A_{1}\psi_{1}\rangle.+\langle:\varphi_{1}^{2}:, Q\tilde{\psi}_{0}\rangle$ (30)

where: $\varphi_{1}^{2};=\varphi_{1}^{2}-N\beta_{1}$ and $H_{1}^{-1}=\tilde{A}_{1}^{+}\tilde{H}_{1}^{-1}\tilde{A}_{1}$ . Contrary to $CA_{n}=1$ , it holds that
$C\tilde{A}_{n}=L^{-2}C’\tilde{A}_{n}=L^{-2}$ . Thus the Gaussian integration over $\tilde{\psi}_{0}$ yields

$\mathcal{F}_{1}=\frac{1}{4N}<:\varphi_{1}^{2}:, Qf_{1}Q^{+}:\varphi_{1}^{2}:>$

where $f_{1}=[Q^{+}\tilde{H}_{1}^{-1}Q]^{-1}$ . Then we have

$\mathcal{F}_{1}=\frac{1}{32N\beta_{1}}\sum_{\mu}\sum_{x}(\nabla_{\mu}\varphi^{2}(x))^{2}$

$\sim\frac{1}{8N\beta_{1}}\langle\nabla_{\mu}\varphi_{1}, (\varphi_{1}\otimes\varphi_{1})\nabla_{\mu}\varphi_{1}\rangle$

This is a reminiscence of $(\varphi_{1}^{2}-N\beta_{1})^{2}$ which shows that the fluctuation field of $\varphi_{1}$ is perpen-

dicular with $\varphi_{1}$ itself. The $RG$ flow of this term is different from that of $(\varphi_{n}^{2}-N\beta_{n})^{2}$ since
$\mathcal{F}$ is made at each step and the latter term keeps its form with a slight change of $\beta_{n}.$

The origin of this term is found in the hierarchical approximation of Dyson-Wilson type

[7, 8] and rediscovered in [11]. This is a part of the probability that two spins $\phi_{\pm}\equiv\phi\pm\xi$

form the block spin $\phi$ such that $\phi^{2}=x$ . In fact put $\phi=(\varphi, 0)\in R_{+}\cross R^{N-1}$ and $\xi=(s, u)\in$

$R\cross R^{N-1}$ . Then

$\int f((\phi+\xi)^{2})f((\phi-\xi)^{2})dsd^{N-1}u$

$= \int f((\varphi+s)^{2}+u^{2})f((\varphi-s)^{2}+u^{2})dsd^{N-1}u$

$= \frac{1}{\sqrt{x}}\int_{0}^{N\beta}\int_{0}^{N\beta}f(p)f(q)(\frac{p+q}{2}-x-\frac{(p-q)^{2}}{16x})^{(N-3)/2}dpdq$

where
$\frac{(p-q)^{2}}{16x}=\frac{(\phi_{+}^{2}-\phi_{-}^{2})^{2}}{16\phi^{2}}=\frac{\langle\phi,\xi\rangle^{2}}{\phi^{2}}$ (31)

corresponds to $\mathcal{F}_{1}$ . In the hierarchical model, this is restricted to each block, and does not

enter the next step. In the real systems, however, this enters the next step since $(\phi_{+}^{2}-\phi^{\underline{2}})^{2}$

is replaced by $\sum_{\mu}(\nabla_{\mu}\phi^{2})^{2}$ , and this term increases slowly in $n.$

Let us see the role of $\psi$ integration. We observe

$\int\frac{e^{-i:\varphi^{2}:\psi}}{(1+i\psi)^{N/2}}d\psi=$ const. $e^{:\varphi^{2}:}\cross\{\begin{array}{l}(-:\varphi^{2}:)^{N/2-1} if: \varphi^{2}:<00 otherwise\end{array}$
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Applying this discussion to the block $\triangle$ in which $|$ : $\varphi^{2}:|=|\varphi^{2}-N\beta|$ is large, one finds a

constant $\beta_{1}=\beta-O(1)$ such that for $\varphi^{2}<N\beta$

$\exp[L^{2}(\varphi^{2}-N\beta)+\frac{L^{2}}{2}(N-2)\log(N\beta-\varphi^{2})]$

$\sim\exp[-\frac{L^{2}}{N}(\varphi^{2}-N\beta_{1})^{2}]$ (32)

This is the probability density that the arithmetic average of $L^{2}$ balls takes its value at $\varphi.$

This is a rediscovery of the facts found in the hierarchical model approximation which goes

back some decades [7, 8]. This means that the fluctuation of: $\varphi^{2}$ : is considerably small.

For very large $\psi(|\psi|\geq O(N^{1/2}))$ where $1/P(\psi)$ is small and the Gaussian factor is small,

we have the stability of the determinant which comes from the determinant inequality

$|\det^{2}(1+i\alpha ABA^{*})|\geq\det(1+k_{0}^{2}\alpha^{2}B^{2})$ (33)

where $k_{0}=$ $infspecAA^{*}$ and $B=B^{*}.$ $($We put $A=(\Gamma_{0})^{1/2},$ $B=Q^{+}\psi Q)$ . This is the reason

why we need $N\geq 3.$

4. Renormalization Group Flow. We combine two types of block transformations to

$W_{n}(\phi_{n}, \psi_{n})$ . One is the block spin transformation of the $N$ component boson model of mass
$m_{n}^{2},$ and the other is the block spin transformation of the auxiliary field $\psi_{n}$ which has the

dimension $($ length$)^{-2}$

The induction assumption is that the main part of $W_{n}(\phi_{n}, \psi_{n})$ is given by (13), and

we have to prove that the change of $W_{n}$ is absorbed by the parameters $m_{n}^{2}$ in $G_{n}^{-1},$
$\gamma_{n}$ and

$u_{n}=N\beta_{n}$ . Moreover $H_{0}^{-1}=0,$ $\gamma_{0}=0,$ $\beta_{0}=\beta$ and we discarded irrelevant terms. Compared

with $W_{0}$ , the most strange term is

$\gamma_{n}\sum(\nabla_{\mu}\phi_{n}^{2}(x))^{2}\sim 4\gamma_{n}\langle\nabla_{\mu}\phi_{n}, (\phi_{n}\otimes\phi_{n})\nabla_{\mu}\phi_{n}\rangle$

which means that the fluctuation field $\xi_{n}\sim\nabla_{\mu}\phi_{n}$ is almost orthogonal to the block spin

field $\phi_{n}$ since $\gamma_{n}\geq 0$ increases as $narrow\infty$ . This term is a reminiscence of $\langle(\phi_{k}^{2}-u_{k}),$ $\psi_{k}\rangle,$

$k\leq n$ and they sum up to yield $\gamma_{n}.$

Let $\Lambda_{n}=L^{-n}\Lambda\cap Z^{2}$ and let $\phi_{n}$ be the nth block spin $(\phi_{n+1}=C\phi_{n})$ :

1. Set $\phi_{n}=A_{n+1}\phi_{n+1}+Q\xi_{n}$ so that

$<\phi_{n}, G_{n}^{-1}\phi_{n}>=<\phi_{n+1}, G_{n+1}^{-1}\phi_{n+1}>+<\xi_{n}, \Gamma_{n}^{-1}\xi_{n}>$

where $G_{n+1}^{-1}=A_{n+1}^{+}G_{n}^{-1}A_{n+1}$ and $Q^{+}G_{n}^{-1}Q=\Gamma_{n}^{-1}.$
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2. The Gaussian part of $\xi$ also comes from $\gamma_{n}$ and we have

$\gamma_{n}\langle\nabla_{\mu}\phi_{n}, (\phi_{n}\otimes\phi_{n})\nabla_{\mu}\phi_{n}\rangle=\gamma_{n}\langle\nabla_{\mu}\phi_{n+1}, (\phi_{n+1}\otimes\phi_{n+1})\nabla_{\mu}\phi_{n+1}\rangle$

$+\gamma_{n}\langle\nabla_{\mu}Q\xi_{n}, (\phi_{n+1}\otimes\phi_{n+1})\nabla_{\mu}Q\xi_{n}\rangle$

where we assume $\phi_{n}(x)$ changes slowly in $x$ (i.e. outside of the domain wall region)

Moreover we have

$\frac{i}{\sqrt{N}}<\phi_{n}^{2}, \psi_{n}>=\frac{i}{\sqrt{N}}<\phi_{n+1}^{2}+2\phi_{n+1}(Q\xi_{n})+(Q\xi_{n})^{2}, \psi_{n}>$

3. The $\xi_{n}$ integration is strongly affected by the block spin $\phi_{n+1}.$

$d \mu(\xi_{n})=[-\frac{1}{2}\langle\xi_{n}, P_{n}\xi_{n}\rangle]\prod_{x}d\xi_{n}(x)$ (34)

$P_{n}=1_{N}\otimes[\Gamma_{n}^{-1}+i\alpha Q^{+}\Psi_{n}Q]+\gamma_{n}[\phi_{n+1}\otimes\phi_{n+1}]\otimes_{x}\Gamma_{n}^{-1}$ (35)

where $([\phi\otimes\phi]\otimes_{x}\Gamma_{n}^{-1})(x, y)=\phi(x)\otimes\phi(x)\Gamma_{n}^{-1}(x, y)$ is an $N\cross N$ matrix.

Originally we have $[(\phi\otimes\phi)\circ\Gamma_{n}^{-1}]_{(i,x),(j,y)}\equiv\phi_{i}(x)\phi_{J}(y)\Gamma_{n}^{-1}(x, y)$ . This is approximated

as above when $\Gamma_{n}^{-1}(x, y)$ decays fast in $|x-y|.$

4. The determinant $\det^{-1/2}(P_{n})$ . and $P_{n}^{-1}$ depends on an approximate projection opera-

tor $\varphi_{n}\otimes\varphi_{n}$ and the fluctuations paralelle with $\phi_{n}$ are very much depressed and the

fluctuations perpendicular with $\phi_{n}$ are not affected.

$\int\exp[-i\alpha<\xi_{n}, Q^{+}(\phi_{n+1}\psi_{n})>]d\mu(\xi_{n})$

$= \det^{-1/2}(P_{n})\exp[-\frac{1}{N}\langle\psi_{n}, \phi_{n+1}Q\frac{1}{P_{n}}Q^{+}\phi_{n+1}\psi_{n}\rangle]$

5. If $\gamma_{n}$ is small, then

$\phi_{n+1}QP_{n}^{-1}Q^{+}\phi_{n+1}\sim NG_{n+1}\circ T_{n}\sim N\beta_{n+}{}_{1}T_{n}$

where $T_{n}=Q\Gamma_{n}Q^{+}$ . This is very large. If $\gamma_{n}$ is large then

$\phi_{n+1}QP_{n}^{-1}Q^{+}\phi_{n+1}=\frac{1}{\gamma_{n}}T_{n}\sim 0$

In the same way, for small $\gamma_{n},$

$\det^{-1/2}(P_{n})=\det^{-N/2}(1+i\alpha T_{n}\psi_{n})$

and for large $\gamma_{n}$

$\det^{-1/2}(P_{n})=\det^{-(N-1)/2}(1+i\alpha T_{n}\psi_{n})$
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6. Thus we obtain the Gaussian term of $\psi_{n}$ expanding the determinant up to the second

order. The first term is used to decrease $\beta_{n}$ by $T_{n}=O(1)$ and the second term is used

to make the Hamiltonian of $\psi_{n}$ . Remark that $\langle\varphi_{n},$ $\Psi_{n}\rangle\sim\langle\phi_{n},$ $\psi_{n}\rangle,$ $\langle\varphi_{n}^{2},$ $\Psi_{n}\rangle\sim\langle\phi_{n}^{2},$ $\psi_{n}\rangle$

etc., thanks to the properties of $\mathcal{A}_{n}$ and $\tilde{\mathcal{A}}_{n}.$

Then $H(\psi_{n})=\langle\Psi_{n}(\mathcal{T}_{n}^{02}+2\mathcal{T}_{n}\circ \mathcal{G}_{n+1})\Psi_{n}\rangle$ for small $\gamma_{n}$ and $H(\psi_{n})=\langle\Psi_{n},$ $\mathcal{T}_{n}^{02}\Psi_{n}\rangle$ for

large $\gamma_{n}$ . Put $\psi_{n}=\tilde{A}_{n+1}\psi_{n+1}+Q\tilde{\psi}_{n}$ . The integral of $\langle\phi_{n+1}^{2},$ $Q\tilde{\psi}_{n}\rangle$ by $\tilde{\psi}_{n}$ yields a new
factor of order $O(N^{-1})$ of form $\gamma_{n}$ since $Q^{+}$ acts as a differential operator on $\phi_{n+1}^{2}.$

7. As a conclusion, the term proportional to $\gamma_{n}$ does not have strong effects on the flow.

The flow of $u_{n}$ is not affected by $\gamma_{n}$ . The curvature of the potential at $\phi_{n}^{2}=u_{n}=$

$N(\beta_{0}-O(n))$ is $N^{-1}$ uniformly in $n$ . This is what happens in the hierarchical model

approximation of Dyson-Wilson type of the sigma model with large $N.$

8. Thus our iteration continues except for the regions of the large fields and domain walls

which have a small probability to exist. Thus this transformation iterates well and we
reach at the high-temperature region [16].

As we discussed, our conclusion follows from the form of $W_{n}$ of large $n$ such that $\beta_{n}=$

$O(1)$ . We are not sure if the idea used here can be apphed to the study of the non-abelian

lattice gauge theory.
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