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Abstract

In our recent work with M. Rogers on resolving some Boyd’s conjectures
on two-variate Mahler measures, a new analytical machinery was introduced to
write the values $L(E, 2)$ of $L$-series of elliptic curves as periods in the sense of
Kontsevich and Zagier. Here we outline, in slightly more general settings, the
novelty of our method with Rogers, and provide a simple illustrative example.

Throughout the note we keep the notation $q=e^{2\pi i\tau}$ for $\tau$ from the upper half-plane
${\rm Re}\tau>0$ , so that $|q|<1$ . Our basic constructor of modular forms and functions is
Dedekind’s eta-function

$\eta(\tau):=q^{1/24}\prod_{m=1}^{\infty}(1-q^{m})=\sum_{n=-\infty}^{\infty}(-1)^{n}q^{(6n+1)^{2}/24}$

with is modular involution
$\eta(-1/\tau)=\sqrt{-i\tau}\eta(\tau)$ . (1)

We also set $\eta_{k}$ $:=\eta(k\tau)$ for short.
We first describe a part of the general machinery from our joint works [6, 7] with

M. Rogers on an example of computing the value $L(E_{32},2)$ of the $L-$-series associated
with a conductor 32 elliptic curve. It is known [3] that the corresponding cusp form in
this case is $f_{32}(\tau)$ $:=\eta_{4}^{2}\eta_{8}^{2}$ , so that $L(E_{32}, s)=L(f_{32}, s)$ . We choose the conductor 32
case here because it is not discussed in [6, 7].

Note the (Lambert series) expansion

$\frac{\eta_{8}^{4}}{\eta_{4}^{2}}=\sum_{m\geq 1}(\frac{-4}{m})\frac{q^{m}}{1-q^{2m}}=m,n\geq 1\sum_{nodd}(\frac{-4}{m})q^{mn}$
, (2)
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where $( \frac{-4}{m})$ is the quadratic residue character modulo 4. In notation $\delta_{2|n}=1$ if 2 $|n$

and $0$ if $n$ is odd, we can write (2) as

$\frac{\eta_{8}^{4}}{\eta_{4}^{2}}=\sum_{m_{)}n\geq 1}a(m)b(n)q^{mn}$, where $a(m):=( \frac{-4}{m})$ , $b(n):=1-\delta_{2|n}.$

Then

$f_{32}(it)= \frac{\eta_{8}^{4}}{\eta_{4}^{2}}\frac{\eta_{4}^{4}}{\eta_{8}^{2}}|_{\tau=it}=\frac{\eta_{8}^{4}}{\eta_{4}^{2}}|_{\tau=it}\cdot\frac{1}{2t}\frac{\eta_{8}^{4}}{\eta_{4}^{2}}|_{\tau=i/(32t)}$

$= \frac{1}{2t}\sum_{m_{1},n_{1}\geq 1}a(m_{1})b(n_{1})e^{-2\pi m_{1}n_{1}}t\sum_{m_{2},n_{2}\geq 1}b(m_{2})a(n_{2})e^{-2\pi m2n_{2}/(32t)},$

where $t>0$ and the modular involution (1) was used.
Now,

$L(E_{32},2)=L(f_{32},2)= \int_{0}^{1}f_{32}\log q\frac{dq}{q}=-4\pi^{2}\int_{0}^{\infty}f_{32}(it)tdt$

$=-2 \pi^{2}\int_{0}^{\infty}\sum_{2m_{1},n_{1},m2n\geq 1},a(m_{1})b(n_{1})b(m_{2})a(n_{2})$

$\cross\exp(-2\pi(m_{1}n_{1}t+\frac{m_{2}n_{2}}{32t}))dt$

$=-2 \pi^{2}\sum_{m_{1},n_{1},m_{2}n_{2}\geq 1},a(m_{1})b(n_{1})b(m_{2})a(n_{2})$

$\cross\int_{0}^{\infty}\exp(-2\pi(m_{1}n_{1}t+\frac{m_{2}n_{2}}{32t}))dt.$

Here comes the crucial transformation of purely analytical origin: we make the change
of variable $t=n_{2}u/n_{1}$ . It does not change the form of the integrand but affects the
differential, and we obtain

$L(E_{32},2)=-2 \pi^{2}\sum_{1m_{1},n,m_{2}n_{2}\geq 1},\frac{a(m_{1})b(n_{1})b(m_{2})a(n_{2})n_{2}}{n_{1}}$

$\cross\int_{0}^{\infty}\exp(-2\pi(m_{1}n_{2}u+\frac{m_{2}n_{1}}{32u}))du$

$=-2 \pi^{2}\int_{0}^{\infty}\sum_{1mn\geq 1}a(m_{1})a(n_{2})n_{2}e^{-2\pi m_{1}n2u}$

$\cross\sum_{m2,n_{1}\geq 1}\frac{b(m_{2})b(n_{1})}{n_{1}}e^{-2\pi m_{2}n_{1}/(32u)}du.$

What are the resulting series in the product? The first one corresponds to

$\sum_{m,n\geq 1}a(m)a(n)nq^{mn}=\sum_{m,n\geq 1}(\frac{-4}{mn})nq^{mn}=\sum_{n\geq 1}n(\frac{-4}{n})\frac{nq^{n}}{1+q^{2n}}=\frac{\eta_{2}^{4}\eta_{8}^{4}}{\eta_{4}^{4}},$
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while the second one is

$\sum_{m,n\geq 1}\frac{b(m)b(n)}{n}q^{mn}=\sum_{m,n\geq 1}\frac{q^{mn}}{n}-\frac{q^{(2m)n}}{n}-\frac{q^{m(2n)}}{2n}+\frac{q^{(2m)(2n)}}{2n}$

$= \frac{1}{2}\sum_{m,n\geq 1}\frac{2q^{mn}-3q^{2mn}+q^{4mn}}{n}$

$=- \frac{1}{2}\log\prod_{m\geq 1}\frac{(1-q^{m})^{2}(1-q^{4m})}{(1-q^{2m})^{3}}=-\frac{1}{2}\log\frac{\eta_{1}^{2}\eta_{4}}{\eta_{2}^{3}},$

hence
$L(E_{32},2)= \pi^{2}\int_{0}^{\infty}\frac{\eta_{2}^{4}\eta_{8}^{4}}{\eta_{4}^{4}}|_{\tau=iu}\cdot\log\frac{\eta_{1}^{2}\eta_{4}}{\eta_{2}^{3}}|_{\tau=i/(32u)}du.$

Applying the involution (1) to the eta quotient under the logarithm $sign$ we obtain

$L(E_{32},2)= \pi^{2}\int_{0}^{\infty}\frac{\eta_{2}^{4}\eta_{8}^{4}}{\eta_{4}^{4}}\log\frac{\sqrt{2}\eta_{8}\eta_{32}^{2}}{\eta_{16}^{3}}du\tau=iu.$

Now comes the modular magic: assisted with Ramanujan’s knowledge [1] we choose
a particular modular function $x(\tau)$ $:=\eta_{2}^{4}\eta_{8}^{2}/\eta_{4}^{6}$ , which ranges from 1 to $0$ when $\mathcal{T}\in$

$(0, i\infty)$ , and verify that

$\frac{1}{2\pi i}\frac{xdx}{2\sqrt{1-x^{4}}}=-\frac{\eta_{2}^{4}\eta_{8}^{4}}{\eta_{4}^{4}}d\tau$ and $( \frac{\sqrt{2}\eta_{8}\eta_{32}^{2}}{\eta_{16}^{3}})^{2}=\frac{1-x}{1+x}.$

Thus,

$L(E_{32},2)= \frac{\pi}{8}\int_{0}^{1}\frac{x}{\sqrt{1-x^{4}}}\log\frac{1+x}{1-x}dx.$

The result is a period in the sense of [2], and as such it can be compared with
several other objects like values of generalized hypergeometric functions or even Mahler
measures [4, 5]. This however involves a different set of routines which we do not touch
here.

To summarize, in our evaluation of $L(E, 2)=L(f, 2)$ we first split $f(\tau)$ into a
product of two Eisenstein series of weight 1 and at the end we arrive at a product of
two Eisenstein(-like) series $g_{2}(\tau)$ and $g_{0}(\tau)$ of weights 2 and $0$ , respectively, so that
$L(f, 2)=cL(g_{2}g_{0},1)$ for some algebraic constant $c$ . The latter object is doomed to be
a period as $g_{0}(\tau)$ is a logarithm of a modular function, while $2\pi ig_{2}(\mathcal{T})d\tau$ is, up to a
modular function multiple, the differential of a modular function, and finally any two
modular functions are tied up by an algebraic relation over $Q.$

The method however can be formalized to even more general settings, and it is this
extension which we attempt to outline below.

For two bounded sequences $a(m),$ $b(n)$ , we refer to an expression of the form

$g_{k}( \tau)=a+\sum_{m,n\geq 1}a(m)b(n)n^{k-1}q^{mn}, q:=e^{2\pi i\tau}$
, (3)
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as to an Eisenstein-like series of weight $k$ , especially in the case when $g_{k}(\tau)$ is a modular
form of certain level, that is, when it transforms sufficiently‘nice’ under $\tau\mapsto-1/(N\tau)$

for some positive integer $N$ . This automatically happens when $g_{k}(\tau)$ is indeed an Eisen-
stein series $(for$ example, $when a(m)=1$ and $b(n)$ is a Dirichlet character modulo $N$

of designated parity, $b(-1)=(-1)^{k})$ , in which case $\hat{g}_{k}(\tau)$ $:=g_{k}(-1/(N\tau))(\sqrt{-N}\tau)^{-k}$

is again an Eisenstein series. It is worth mentioning that the above notion has per-
fect sense in case $k\leq 0$ as well. Indeed, $mo$dular units, or week modular forms of
weight $0$ , that are the logarithms of modular functions are examples of Eisenstein-like
series $g_{0}(\tau)$ . Also, for $k\leq 0$ examples are given by Eichler integrals, the $(1-k)$ th
$\tau$-derivatives of holomorphic Eisenstein series of weight $2-k$ , a consequence of the
famous lemma of Hecke [8, Section 5].

Suppose we are interested in the $L$-value $L(f, k_{0})$ of a cusp form $f(\tau)$ of weight
$k=k_{1}+k_{2}$ which can be represented as a product (in general, as a linear combination
of several products) of two Eisenstein(-like) series $g_{k_{1}}(\tau)$ and $\hat{g}_{k_{2}}(\tau)$ , where the first
one vanishes at infinity $(a=9k_{1}(i\infty)=0 in$ (3) $)$ and the second one vanishes at zero
$(\hat{g}_{k_{2}}(iO)=0)$ . (The vanishing happens because the product is a cusp form!) In reality,
we need the series $g_{k_{2}}(\tau)$ $:=\hat{g}_{k_{2}}(-1/(N\tau))(\sqrt{-N}\tau)^{-k_{2}}$ to be Eisenstein-like:

$g_{k_{1}}( \tau)=\sum_{m,n\geq 1}a_{1}(m)b_{1}(n)n^{k_{1}-1}q^{mn}$
and

$g_{k_{2}}( \tau)=\sum_{m,n\geq 1}a_{2}(m)b_{2}(n)n^{k_{2}-1}q^{mn}.$

We have

$L(f, k_{0})=L(g_{k_{1}} \hat{g}_{k_{2}}, k_{0})=\frac{1}{(k_{0}-1)!}\int_{0}^{1}g_{k_{1}}\hat{g}_{k_{2}}\log^{k_{0}-1}q\frac{dq}{q}$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!}\int_{0}^{\infty}g_{k_{1}}(it)\hat{g}_{k_{2}}(it)t^{k_{0}-1}dt$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\int_{0}^{\infty}g_{k_{1}}$ ( $it$ ) $g_{k_{2}}(i/(Nt))t^{k_{0}-k_{2}-1}dt$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\int_{0}^{\infty}\sum_{m_{1},n_{1}\geq 1}a_{1}(m_{1})b_{1}(n_{1})n_{1}^{k_{1}-1}e^{-2\pi m_{1}n_{1}t}$

$\cross\sum_{m_{2},n_{2}\geq 1}a_{2}(m_{2})b_{2}(n_{2})n_{2}^{k_{2}-1}e^{-2\pi m_{2}n2/(Nt)}t^{k_{0}-k_{2}-1}dt$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\sum_{m_{1},n_{1},m_{2}n_{2}\geq 1},a_{1}(m_{1})b_{1}(n_{1})a_{2}(m_{2})b_{2}(n_{2})n_{1}^{k_{1}-1}n_{2}^{k_{2}-1}$

$\cross\int_{0}^{\infty}\exp(-2\pi(m_{1}n_{1}t+\frac{m_{2}n_{2}}{Nt}))t^{k_{0}-k_{2}-1}dt$;

the interchange of integration and summation is legitimate because of the exponential
decrease of the integrand at the endpoints. After performing the change of variable
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$t=n_{2}u/n_{1}$ and interchanging back summation and integration we obtain

$L(f, k_{0})= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\sum_{m_{1},n_{1},m_{2},n_{2}\geq 1}a_{1}(m_{1})b_{1}(n_{1})a_{2}(m_{2})b_{2}(n_{2})n_{1}^{k_{1}+k_{2}-k_{0}-1}n_{2}^{k_{0}-1}$

$\cross\int_{0}^{\infty}\exp(-2\pi(m_{1}n_{2}u+\frac{m_{2}n_{1}}{Nu}))u^{k_{0}-k_{2}-1}du$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\int_{0}^{\infty}\sum_{m_{1},n_{2}\geq 1}a_{1}(m_{1})b_{2}(n_{2})n_{2^{012}}^{k-1}e^{-2\pi mnu}$

$\cross\sum_{2mn\geq 1}a_{2}(m_{2})b_{1}(n_{1})n_{1}^{k_{1}+k_{2}-k_{0}-1}e^{-2\pi m_{2}n_{1}/(Nu)}u^{k_{0}-k_{2}-1}du$

$= \frac{(-1)^{k_{0}-1}(2\pi)^{k_{0}}}{(k_{0}-1)!N^{k_{2}/2}}\int_{0}^{\infty}g_{k_{0}}(iu)g_{k_{1}+k_{2}-k_{0}}(i/(Nu))u^{k_{0}-k_{2}-1}du.$

Assuming a modular transformation of the Eisenstein-like series $g_{k_{1}+k_{2}-k_{0}}(\tau)$ under
$\tau\mapsto-1/(N\tau)$ , we can realize the resulting integral as $c\pi^{k_{0}-k_{1}}L(g_{k_{0}}\hat{g}_{k_{1}+k_{2}-k_{0}}, k_{1})$ , where
$c$ is algebraic (plus extra terms when $g_{k_{1}+k_{2}-k_{0}}(\tau)$ is an Eichler integral). Altematively,
if $g_{k_{0}}(\tau)$ transforms under the involution, we perform the transformation and switch
to the variable $v=1/(Nu)$ to arrive at $c\pi^{k_{0}-k_{1}}L(\hat{g}_{k_{0}}g_{k_{1}+k_{2}-k_{0}}, k_{1})$ . In both cases we
obtain an identity which relates the starting $L$-value $L(f, k_{0})$ to a different ‘ $L$-value’ of
a modular-like object of the same weight.

The case $k_{1}=k_{2}=1$ and $k_{0}=2$ , discussed in [6, 7] and in our example above,
allows one to reduce the $L$-values to periods. In our future work [9] we plan to address
some examples with $k_{0}>2.$
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