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Results about dependence and convolution
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Abstract

A necessary and sufficient condition for two arithmetic functions to be
linearly dependent over the set of prime-free functions is derived. A new
kind of convolution is introduced and an application is given.

1 Introduction

The set A of arithmetic functions is a unique factorization domain under the
usual addition and convolution. (or Dirichlet product), [6], defined by

(F+9)n) = f(n)+g(n), (fxg)n):=>_ f)g(i) (fige AneN).
ij=n
The convolution identity I, is defined by I(1) =1 and I(n) =0 for all n > 1.
For r € N, we say that fi, fa,..., fr € A are algebraically dependent over C,
or C-algebraically dependent, if there exists

P(Xy,.... Xr) =Y apXP - XF e C[Xy,..., X, ]\{0}
(4)
such that
P(fla---,f'r') = Za(i)ffl LD :’" =4,
(&
and are C-algebraically independent otherwise. If the polynomial P is homo-
geneous of degree one in each variable, we say that fi, f2,..., f, are C-linearly
dependent and C-linearly independent otherwise.
A derivation d, over A is a map d: A — A satisfying

d(fxg) =df xg+ f*dg, d(cif + cag) = c1df + codg,

where f,g € A and c¢;,c; € C. Derivations of higher orders are defined in the
usual manner. Two typical examples of derivation are:
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e The p-basic derivation, p prime, defined by

(dpf)(n) = f(np) vp(np) (n€N),

where v,(m) denotes the exponent of the highest power of p dividing m; for
any primes p,q , we write dp, f instead of dyd,f.

e The log-derivation defined by
(d2f)(n) = f(n)logn (n € N).

In 1986, Shapiro and Sparer [7] gave a systematic investigation of algebraic in-

dependence of Dirichlet series using the notion of Jacobian. Let fi,...,fr € A
and di,...,d, be derivations over A, the Jacobian of f; relative to d; is the
determinant

J(fl, TN ,fr/dla ey dr) = det(di(fj)),

with multiplication being convolution. Clearly, a Jacobian is an element of A. In
the case where each d is a p-basic derivation corresponding to some prime p, we
shall use the notation J(fi,..., fr/p1,...,pr) for the corresponding Jacobian.

Shapiro-Sparer’s criterion for C-algebraic dependence of arithmetic functions
states that:

Proposition 1. Let fi,...,fr € A and d1,...,d, be distinct derivations over A
which annihilate all elements of a subring € C A. If J(f1,-.., fr/d1,...,ds) #0,
then fi,..., fr are algebraically independent over &.

In our earlier work, a necessary and sufficient criterion about C-linear inde-
pendence based, as guided by the real number case, on the notion of Wronskian
was established.

Theorem 1. Let fi,..., f. € A and let d be a derivation on A. If f1,..., fr are
C-linearly dependent, then their Wronskian, relative to d,

fl f2 fr

d d df

Wit fy=| T d
i dfy ... dTYNf,

vanishes, where, here an throughout, the multiplication involved in the determi-
nant expansion is the Dirichlet product.



Theorem 2. Let f1,...,fr € A\{0}. If their Wronskian W = Wr(f1,..., fr)
relative to the log-derivation vanishes identically, then fi,...,f, are C-linearly
dependent.

There are two investigations presented here. First, we consider Jacobians
of two arithmetic functions for various p-basic derivations, but undergone an
arbitrarily high order of derivations, and evaluate the resulting element at a
single point 1. This enables us to obtain a necessary and sufficient condition
for two arithmetic functions to be linearly dependent over the set of prime-free
functions. Second, we consider a new kind of convolution, which was originated
from the works of Haukkanen-Téth, [8]. Our aim is to generalize this notion to
the so-called @Q,-convolution and to connect it with a characterization problem.

2 Prime-free dependence

For n € N, let Q(n) be the number of prime factors of n counting multiplicity.
An arithmetic function f is said to be a prime-free function if f(m) = f(n)
for all m,n € N having Q(m) = Q(n). Examples of prime-free functions are
abundant, for example, zero function, Q(n), 2%, ((n) := 1 (n € N) are prime-
free functions.

It will be convenient to single out the set
A" :={fe€A: f(n) #0for all n € N}.

We say that two arithmetic functions f,g € A* are prime-free dependent if there
exists a prime-free function H such that f = Hg. It is easy to check that prime-
free dependence is an equivalence relation on A*.

If f and g are C-linearly dependent, then they are clearly prime-free depen-
dent, but the converse is not true. For example, let f(n) = 2%™n and g(n) = n,
then f and g are prime-free dependent. But

f g
dif drg

= f(Dg(2) - F(2)9(1) = -2 # 0,

W(f,9)(2) = (2) = (fxdrg — g*drf)(2)

that is, f and g are C-linearly independent.
Let f,g € A and k,£ € N. An (k,¢)-Jacobian of f, g with respect to distinct
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primes pi,...,p, and distinct prime q,...,q, is denoted by

dyer _par [ dpea porg

J Tt 3 : - ’
(2 - ppr, g = dﬁl o A g

where 0 <o; < k,0< B; <{, 3105 =k, > ;_; B = £. In the same manner,
let f1,...,fs€ Aand ky,...,ks € N. An (ky,...,ks)-Jacobian of f1,..., fs with
respect to distinct primes p11,...,P1ry---,Ps1,-- -, Psr 18 denoted by

d o o e d o a
P p2r f1 211 p01r fs
x11 Qi Qs (63 — .
J(pll B SUIERRREY O% mit ps:r) - :
p 1 - msr f]_ v dp"‘fl.__p?fr fs
s

where 0 < a;; < k;, Z;=1aij =k (t=1,...,8 j=1,...,7).
Our first main result is:

Theorem 3. Let f,g € A*.

(1) If f and g are prime—free dependent, then with k € N, the (k, k)-Jacobian,
p pﬂ pr , vanishes at 1 for all r € N and primes p,p1,...,pr .

(2) If there exists a prime p such that for all k € N, the (k,k)-Jacobian,
J(pk,p’lgl- pE’), vanishes at 1 for all r € N and primes py,...,pr, then
f and g are prime-free dependent.

Proof. (1) If f and g are prime-free dependent, then there exists a prime-free
function H such that f = Hg. Let p be a prime. Then with k,r € N, for all
primes p1,...pr and fi,...,B, € Nsuch that 0 < By,...,6, < k, >, Bi =k,

we have
J(o*, 8" - pfr)(1)
= pkf(l)dpfl,__P'l?rg(l) - dpkg(l)dpflu_pfrg(l)
=kIBi!- - B! (f(zv")g(;olﬁl By — g(F) (R - -pf'))
= kB! B! (H(pk)g(pk)g( P pl) = 9@ H @ o) g (o ---pfr))
=0.

(2) Assume that there exists a prime p such that for all k € N, the (k, k)-
Jacobian, J(p*, s g pr") vanishes at 1 for all r € N and primes py, ..., p,, that

57



58

is,

J@* o0 - pE) (D) = dpp f(Dd g 9(1) = dprg(D)d iy g (1)

= Kipr! - B! (f(p")g(pfl o) = 9@ F @ - pE))

Thus, .
Fft - pf) = J;gk;g(ﬁ’f‘ S plr)
ie.,
f(n) = —‘i(pk)g(n) foralln € N with Q(n) = k.
Taking ’
H(n) = —g—(pk) for all n € N with Q(n) = k,

the desired result follows. O

The method of proof in Theorem 3 extends easily to the following more general
case.

Theorem 4. Let f,g € A*.

1. If f and g are C-linearly dependent, then with k,j € N, the (3, k)-Jacobian,
J(p?,pit - -pf'), vanishes at 1 for all r € N and all primes p,p1,. .., pr.

2. If there exist a prime p and j € N such that for all k € N, the (j,k)-
Jacobian, J(pj,pllil---pf'), vanishes at 1 for all ¥ € N and all primes
D1,---,Pr, then f and g are C-linearly dependent.

Proof. (1) Assume that f and g are C-linearly dependent. Then f = cg for some
constant ¢ € C. Let k,j € N. Then for all r € N, for all primes p, pi,...p, and
Bi,-..,Br € Nsuch that 0 < fi,...,08 <k, Y i_;Bi =k, we have

J@,p7 - pP)() = dpz‘f(l)dpfl,,.pgrg(l) - dpjg(l)dpfl_,.pgrg(l)
= B! B! (f(pj)g(p‘fl copBr) — g(0?) f (2] - -p‘f’))

= j1Bul- - Bl (co@)g @ - pE) - 9()eg(wf? - - pE)) =0.

(2) Assume that there exist a prime p and j € N such that for all k € N,
the (j, k)-Jacobian, J(p?,py* - - -pé'), vanishes at 1 for all 7 € N and all primes

P1s-..,0r. Then
J@ B ) (1) = dys F(Dd e 9(1) — s gDk oy e F(1)
= it ( 109 o) = @) f W 5B
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ie.,
Fo ) = (( ; (5 p).
Thus, _
f(@)
f(n) =cg(n), c= ) €eC (neN),
i.e., f and g are C-linearly dependent. |

Pushing our investigation in another direction, we have:
Theorem 5. Let fi,..., f, € A\{0}.

(1) If f1,...,fs are C-linearly dependent, then with k € N, the (1,...,1,k)-
Jacobian, J(ql,...,qs_l,pf . pf’), vanishes at 1 for oll v € N and all

DPrimes Piy...,Pry Q1 --«5Gs—1-

(2) Assume that there is a set of s — 1 primes {q1 < --+ < gs—1} such that one
of the sets of s — 1 vectors

{(fh(Ql): o af'is—l(QS—l))t 1 S il < i2 << is—l S 5}

is linearly independent over C. If, for all k € N, the (1,...,1,k)-Jacobian,
J(g1...,qs— 1,Pf1' 'pfr), vanishes at 1 for all r € N and all primes
P1s-..,Dr, then f1,..., fs are C-linearly dependent.

Proof. (1)If fi1,..., fs are C-linearly dependent, then there are complex numbers
Cly---,Cs, not all zero, such that

cafit...+efs=0.

Let g1,...,9s—1 be primes and k € N. Thus, forall r e N, 0 < 5y,...,6, < k
with >°7_; B = k and all primes py,. .., p,, we have

fila1) fs(q1)
ol : b, : —0,
fi (‘Is—l) fs(gs—1)
Al ) fo(p* -7
i.e., the s column vectors are linearly dependent implying that
f1(q1) e fs(q)
: =0,
fl(%—l) fs(QS~—1)

fl(pffl . ..pfr) fs(pfl ...pfr)
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and consequently,

dg, f1 dg, fs
J(QI,”.,QS_I,p? ~--pf')(1)= dg,_, 1 dg, 1 fs
dpfl...plgrfl T dpfl_npfr fs
filq) fs(q)
' fl(QS—l) fs(Qs—l)

AR o) o L)

(2) Since, for all £ € N, the (1,...,1,k)-Jacobian, J(q ...,qs_l,p’f‘ ---p,‘?’),
vanishes at 1 for all r € N and all primes p;,...,p,, we have
filar) T fo(q)

fl(Qs—l) e fs(Qs—l)
fl(p/fl...pfr) fs(p/fl...pfr)

0=J(g- ., qs1,P5" - pEr)(1) = Bul - B!

Expanding via the last row, we get

fol@) - fel@) filar) - fe—1(a@)
0=f1(pf1...pfr) : +...+fs(pf191...pfr) :
fa(gs—1) -+ fs(gs-1) fi(gs—1) - fs-1(gs-1)
i.e., for all n € N, we have
fol@) - fs(q) filqr) - femr(@)
0= fi(n) : + oo+ fo(n) : :
falgs—1) -+ fo(gs-1) filgs—1) -+ fo1(gs—1)

Since one of the sets of s — 1 vectors

{(fil(QI)a ~--,fis-1(q.s—1))t 11 <1 <ig < <ig1 < s}

is linearly independent over C, then one of the determinant-coefficients on the
right-hnad side is nonzero, i.e., f1,..., fs are C-linearly dependent. O



3 (Q,-convolution

Let n =[[,p* (") denote the prime factorization of n € N. Haukkanen-Téth, [8],
introduced the binomial convolution of arithmetic function f and g as

(Fog)m =3 (H (”EZ)))) F(d)g(n/d)

din 4

where (‘;) denotes the usual binomial coefficient. Observe that f o g can also be

put under the form

§(n)

BE0) f(@)g(y)

(Fog)n) =3

zy=n

where £(n) = [[, (4p(n)!). This convolution first appeared in 1996 in [1] and

later in [8], where more properties are derived under this convolution, such as,
(A, +,0,C) is a C-algebra under addition and binomial convolution.

We can generalize the binomial convolution even further to a new kind of

convolution by replacing the function ¢ with an arbitrary function. Let o € A*.
The Qq-convolution of two arithmetic function f and g is defined as

(Fogm =3 20 _royom).

2 a(@)a(y)

The Q,-convolution identity is the function aJ. Two remarks which justifies its

introduction are:

1. if a is a completely multiplicative function, then fo g = f * g, the classical

Dirichlet convolution;
2. if a=¢§, then fog= fog, the Haukkanen-Téth convolution.

The most important result for this concept, which somewhat renders this convo-

lution not too exciting is:

Proposition 2. The algebra (A,+,0,C) and (A, +,*,C) are isomorphic under
the mapping f — f/a.

With this isomorphism, we can express the Q,-convolution in terms of Dirich-

fog:a(£*§>

let convolution as
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or equivalently,
afoa
frg= afeeg
o
If f71* and f~! denote the inverses of f under the Dirichlet convolution and the

Qa-convolution, respectively, both of which exist if and only if f(1) # 0, then we
have:

Theorem 6. If f € A be such that f(1) # 0, then
f~1* — (af)— f— (f) —l )

(87
Proof. From
afoaf™*

I=fafe=

a
we get of = af oaf~*, ie., af 1 = (af)”!. From

aI=f<>f—1=a(i*f__l-),

o «

we get [ = (25 * %—1), ie., f—;—l = (i)_l*. O

¢4

The following characterization of completely multiplicative functions has been
proved by many authors, see e.g. (2], [4], [5].

Proposition 3. Let f € A be a multiplicative fuhction. Then f is completely
multiplicative if and only if

flgxh) = fgx fh for allg,h € A.

We end our presentation with some characterizations of completely multi-
plicative functions using a distributive property through Q.-convolution.

Theorem 7. Let f € A be a multiplicative function. Then f is completely
multiplicative if and only if

f(goh)=fgo fh for all g,h € A.

Proof. Assume that f is completely multiplicative. Let g,h € A. Then
h h
flaom = fa(Lx2) =a (L L) pgom

o
Assume that f(goh) = fgo fhfor all g,h € A. Then

af(g*h)= (agoaz)—afgoafh—a(aig afh)=a(fg*fh)

so f(gxh) = fgxfh, and so by Proposition 3, f is a completely multiplicative. U



In 1973, E. Langford [3] gave a characterization of completely multiplicative
functions using a distributive property over a Dirichlet product. We do the same
here through @Q,-convolution. Let g,k € A and k = g o h. We notice that

a(1)k(p) = g(1)h(p) + g(p)A(1)

for prime p. If the relation

a(1)k(n) = g(1)h(n) + g(n)h(1)

holds only when n is a prime, we say that the product ¥ = go h is Qq-

discriminative.

Theorem 8. Let f € A be such that f(1) # 0. Then f is completely multiplicative
if and only if it distributes over a Qq-discriminative product.

Proof. The necessity part follows from Theorem 7. To prove the sufficiency part,
assume that f distributes over a Q,-discriminative product k = g h. First we
show that f(1) = 1. If k(1) = 0, then

0 =a(l)k(l) = a(l)(goh)(1) = g(1)h(1),

and so
g(1)h(1) +g(1)h(1) = 0 = a(1)k(1)
which contradicts the property of k. Hence, k(1) # 0. From

FR(L) = FK(1) = F(gom)(1) = (Fgo YD) = 7)) LD — pyzeqa)

=)

I

—~
\./
\_/

we get f(1) = 1. To finish the proof it suffices to show that

flp1---pr) = f(p1)--- f(pr) (1)

for all primes p1,...,p, , 7 € N (not necessary distinct). We do this by induction
on 7. Clearly, (1) holds when r = 1. Now, let 7 > 1 and assume that (1) holds for
all1 <s < r. Letpy,...,p, be primes and n = p; - - - p,. By induction hypothesis
and f(goh) = fgo fh, we obtain

0=f(goh)(n) = (fgo fh)(n) = (f(pr---pr) — f(p1) - F(pr)) > a(n)g( ;Z((
TY=n
z,y<n

If
Z a(n) g9(x)h(y) -0,

’ TYy=n a(w)a(y)
z,y<n
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then

k() = (g b)) = a(n) (LML EIRE)),

yielding a(1)k(1) = g(1)h(n) + g(n)h(1), which is impossible for non-prime n.

Thus,
g(z)h( y)
>, ol ) a(y)
Ty=n -
z,y<n
and consequently, f(p1---pr) = f(p1)--- f(pr), as to be proved. d
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