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Let us consider the classical Kloosterman sum

$A_{c}(m,n)= \sum_{a(md\mathcal{C}\},ad\equiv 1\mathring{(}mod c)}e^{2\pi i(\frac{ma+nd}{c})}.$

Here the numbers $m$ and $n$ are any integers, and the modulus $c$ is a positive integer.
$A_{c}(m, n)$ is a “genuine” $KlooSterm\mathfrak{W}$ sum if $mn\neq 0,$ $A_{c}(m, 0)=A_{c}(0, m)$ is a
Ramanujan sum if $m\neq 0$ , and $A_{c}(0,0)$ is simply Buler’s totient $\phi(c)$ . The signifi-
cance of Kloosterman sums to the theory of modular forms dates back a century to an
astonishingly little-known work of Poincare [10]. In 1926 Kloosterman [4] published
his seminal paper regarding Ramanujan’s problem of representing sufficiently large
integers by quatemary quadratic forms. Since then these sums have surfaced with an
almost unreasonable ubiquity throughout arithmetic.

It is plain that $A_{c}(m, n)=A_{c}(-m, -n)$ and hence $A_{c}(m, n)$ is real. As such, it
is natural to ask whether the sequence $\{A_{c}(m, n)\}_{c=1}^{\infty}$ is oscillatory for fixed integers
$m$ and $n$ . That is, are there infinitely many $c$ such that $A_{c}(m, n)>0$ and infinitely
many $c$ such that $A_{c}(m, n)<0$ ? Obviously, $\{A_{c}(0,0)\}_{c=1}^{\infty}$ is positive. And it is
clear that $\{A_{c}(m, 0)\}_{c=1}^{\infty}$ is oscillatory for $m\neq 0$ because of the familiar formula
(see, for example, [2, p. 238])

$A_{c}(m, 0)= \mu(\tilde{c})\frac{\phi(c)}{\phi(\tilde{c})},$

where $\tilde{c}=\frac{c}{(c,m)}$ and $\mu(\cdot)$ is the Mobius function. (So as $c$ runs through just the
squarefree numbers with at most 2 prime factors, the resulting subsequence is itself
oscillatory.) But what if $mn\neq 0$? On the one hand, Kuznetsov’s [6] estimate

$\sum_{1\leq c\leq x}\frac{A_{c}(m,n)}{c}=0_{m,n}(x^{1}6(\log x)^{1}3)$ (1)
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has often been cited as evidence for the conclusion that cancellation occurs in sums
of Kloosterman sums. On the other hand, as apparently pointed out by Serre (see
Samak’s book [14, p. 33] as well as the survey paper by Michel [8, p. 247] $)$ , it is
plausible that (1) may not be caused by $sign$ changes, but rather be a consequence of
all the sums $A_{c}(m, n)$ being uniformly small for fixed $m$ and $n$ . Nonetheless, Fouvry
and Michel [1] (see also [8]) established that $\{A_{c}(1,1)\}_{c=1}^{\infty}$ is indeed oscillatory. In
fact, they proved that as $c$ mns through the squarefree numbers with at most 23 prime
factors, the resulting subsequence is oscillatory. They achieved this result by using the
theory of automorphic forms coupled with sieve methods and techniques from $P$ -adic
cohomology. Subsequently, Sivak-Fischler replaced this number of prime factors by
22 in [16] and then further reduced it to 18 in [17]. And rather recently, Matomaki
[7] brought this number down to 15.

Now, is it possible to prove merely that $\{A_{c}(1,1)\}_{c=1}^{\infty}$ is oscillatory in some simple
manner? Yes. By applying the spectral theory of automorphic forms to Selberg’s
Kloosterman zeta-function

$Z_{m,n}(s)= \sum_{c=1}^{\infty}\frac{A_{c}(m,n)}{c^{2s}},$

it is not difficult to demonstrate the more general result that $\{A_{c}(m, n)\}_{c=1}^{\infty}$ is oscil-
latory for any fixed integers $m$ and $n$ such that $mn\neq 0$ . We sketch this in a few
broad strokes. Evidently, $Z_{m,n}(s)$ is holomorphic for $\sigma={\rm Re} s>i$ . Thanks to
the profound work of Selberg [15], it possesses a meromorphic continuation to the
whole $s$ -plane. What’s more, owing to the fact that the underlying group is $SL(2, \mathbb{Z})$ ,
$Z_{m,n}(s)$ is holomorphic for $\sigma>0$ except for the presence of (infinitely many) nonreal
poles in $0<\sigma\leq 1/2$ . By Landau’s Theorem (conceming the abscissa of conver-
gence of Dirichlet series with nonnegative coefficients) this implies immediately that
$\{A_{c}(m, n)\}_{c=1}^{\infty}$ is oscillatory. For further applications of Landau’s Theorem to estab-
lish the oscillatory behavior of certain sequences arising in number theory, see [5] as
well as [11] and [12]. And for more information conceming the analytic behavior of
$Z_{m,n}(s)$ , please read [6] and [14, pp. 33-41].

But is it possible to prove that $\{A_{c}(1,1)\}_{c=1}^{\infty}$ is oscillatory in some elementary
way? Yes. The main purpose of these notes is to provide an extremely easy proof of
the following (more general) result.

Proposition Let $m$ be anyfixed nonzero integer. Then the sequence ofKloosterman
sums $\{A_{c}(m, m)\}_{c=1}^{\infty}$ is oscillatory. Moreover the following hold.$\cdot$

$Oi$ For any fixed prime $p\equiv-1(mod 4|m|)$ , the subsequence $\{A_{p^{k}}(m, m)\}_{k=2}^{\infty}$ is
alternating and $A_{p^{2}}(m, m)>0.$

(ii) For anyfixed odd integer $k>1$ , the subsequence $\{A_{p^{k}}(m, m)\}_{p\equiv\pm 1(mod 4|m|)}$ is
oscillatory. $(Here, as usual_{J}p$ denotes $a$ prime)

Proof$\cdot$ Since $A_{c}(m, m)=A_{c}(|m|, |m|)$ , we may suppose that $m>0$ . To begin with,
let $p$ be any odd prime such that $(p, m)=1$ and set $c=p^{k}$ , where $k\geq 2$ . By work
of Sali\’e [13] from 1931 (for a modem reference, consult [3, p. 60]), we know that

$A_{c}(m, m)=2( \frac{m}{c})\sqrt{c}{\rm Re}(\epsilon_{c}e^{\underline{4\pi}_{\mathcal{C}}arrow;n})$ , (2)
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where $( \frac{m}{c})$ is the Jacobi symbol and

$\epsilon_{c}=\{\begin{array}{ll}1 if c\equiv 1(mod 4) ,i if c\equiv-1(mod 4) .\end{array}$

Next, let $p$ be any prime such that $p\equiv\pm 1(mod 4m)$ . By the Law of Quadratic
Reciprocity, it follows easily that $( \frac{m}{p})=1$ , and so $(_{\overline{p}^{F}}m)=1.$

To prove (i), choose $p\equiv-1(mod 4m)$ . Since $p^{k}\equiv(-1)^{k}(mod 4)$ , we obtain
from formula (2) that, for $k\geq 2,$

$A_{p^{k}}(m, m)=\{\begin{array}{ll}2 p^{k/2}\cos(\frac{4\pi m}{p^{k}}) if k is even,-2p^{k/2}\sin(\frac{4\pi m}{p^{k}}) if k is odd.\end{array}$

But for some positive integer $j$ , we surely have that $\frac{4\pi m}{p^{k}}=\frac{\pi(p+1)}{p^{k}j}\leq\frac{\pi(p+i)}{p^{2}}\leq\frac{4\pi}{9}.$

This implies (i).
To show (ii), take $p\equiv 1(mod 4m)$ . Because $p^{k}\equiv 1(mod 4)$ , we get from (2)

that, for any $k\geq 2,$

$A_{p^{k}}(m, m)=2p^{k/2} \cos(\frac{4\pi m}{p^{k}})$ .

As before, for some positive integer $j$ , we see that $\frac{4\pi m}{p^{k}}=\frac{\pi(p-1)}{p^{k}j}\leq\frac{\pi(p-1)}{p^{2}}\leq\frac{4\pi}{25}.$

Thus, for any fixed integer $k\geq 2,$ $\{A_{p^{k}}(m, m)\}_{p\equiv 1(mod 4|m|)}$ is positive. This fact
(in conjunction with $(i)$ ) establishes (ii). $\square$

Remarks: (i) By Dirichlet’s Theorem there exist infinitely many primes $p$ such that
$p\equiv 1(mod 4|m|)$ and also infinitely many primes $p$ such that $p\equiv-1(mod 4|m|)$ .
(In fact, for such arithmetic progressions “Euclidean proofs” of infinitude are avail-
able. For more on such matters, see [9]. $)$ (ii) By exploiting Sali\’e’s formula (2), we
can readily deduce further results. For instance, let $m$ be any fixed nonzero integer
and suppose that $p$ is any fixed odd prime such that $(p, m)=1$ . Then it follows
that $\{A_{p^{k}}(m, m)\}_{k=2}^{\infty}$ is oscillatory if and only if $p \equiv-(\frac{|m|}{p})(mod 4)$ . What’s more,
if $p$ satisfies this condition, then $\{\mathcal{A}_{p^{k}}(m, m)\}_{k>k_{0}}$ is alternating, where $k_{0}$ is given

positive, $0$ defmedasbefore. $(iii)BcorepropertiesofK1$oostemansumsby$\max\{\frac{\log 8|m|}{w^{\log p}ithk}, i\}.Otherwise’ ifp\equiv(\frac{|m|}{yp})(mod 4),then\{A_{p^{k}}(m’ m)\}_{k>k_{0}}is$

$A_{c}(m, m)=A_{c}(_{T}^{m}, \delta m)=A_{c}(\delta m,mT)$ , where $\delta$ is any divisor of $m$ such that
$(\delta, c)=1$ . So the Proposition extends to sums such as $A_{c}(1,m^{2})=A_{c}(m^{2},1)$ .

We conclude by recording a significant special case of the Proposition.

Corollary The sequence ofKloosterman sums $\{A_{c}(1,1)\}_{c=1}^{\infty}$ is oscillatory. More-
over, the following hold.$\cdot$

(i) For any fixed prime $p\equiv-1(mod 4)$, the subsequence $\{A_{p^{k}}(1,1)\}_{k=2}^{\infty}$ is alter-
nating and $A_{p^{2}}(1,1)>0.$

(ii) For anyfxed odd integer $k>1$ , the subsequence $\{A_{p^{k}}(1,1)\}_{p>2}$ is oscillatory.
$(Here, as$ before, $p$ denotes $a$ prime.$)$
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Remarks: (i) For any fixed integer $k\geq 2,$ $\{A_{p^{k}}(1,1)\}_{p\equiv 1(mod 4)}$ is positive. (ii) $A$

rather challenging (and seemingly intractable) unsolved problem is to establish that
$\{A_{p}(1,1)\}_{p>2}$ is oscillatory.
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