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On saddle basic sets for Axiom A polynomial skew products on C?

HRIEAR%® HiRF#S (Shizuo Nakane)

Tokyo Polytechnic University

1 Introduction

In this note, we consider Axiom A regular polynomial skew products on C2.
It is of the form : f(z,w) = (p(z),q(z,w)), where p(z) and ¢(z,w) are polyno-
mials of some degree d. Let € be the set of non-wandering points for f. Then
f is said to be Axiom A if Q is compact, hyperbolic and periodic points are
dense in Q. For polynomial skew products, Jonsson [J2] has shown that f is
Axiom A if and only if

(a) p is hyperbolic,
(b) f is vertically expanding over J,
(c) f is vertically expanding over A, := {attracting periodic points of p}.

We are interested in the dynamics of f on J, x C. Put ¢,(w) = ¢(z,w)
and consider the critical set C;, = {(z,w) € Jp x C; g, (w) = 0} over the base
Julia set J,. Let K denotes the set of points with bounded orbits, K, :=
{w € C;(z,w) € K} and J, = OK,. Then the condition (b) implies that the
posteritical set for C, is disjoint from the second Julia set Jo = Uzey, {2} X Ja.
It follows from (b) that the map z +— J, is continuous on Jj, hence J, =
Uzejp{z} X J,.

For any subset X in C?, its accumulation set is defined by

A(X) = NnxoUnan fH(X).

DeMarco & Hruska define the pointwise and component-wise accumulation sets
of C;, respectively by

Ap(Cy,) = Usec, A(z) and Ace(C,) = Ucec(c,,)A(C),

where C(C},) denotes the collection of connected components of Cy,.
Let A be the saddle part of  in J, x C. It decomposes into a disjoint union
of saddle basic sets: A = L2 A;. Put

We(A) = {yeC%f"(y) — A},
W*(A) = {ye€ C? 3 prehistory § = (y—&) — A}.
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Put Ag := 0, W*(Ag) := (J, xC) \ K and C; := C;, NW*(A;) for 0 < ¢ < m.
Then C;, = U2,C;.

Theorem 1. (DeMarco-Hruska [DHI1]) A = A,:(C,) C Acc(Cy,) C A(Cy,) =
W*(A) N (J, x C).

Theorem 2. (Nakane [N]) A.(C;,) = Ap(Cy,) <= VC € C(Cy,), 0 < Fi <
m, s.t. C C CZ

Theorem 3. (Nakane [N]) For each i > 0,
A(Cy) = Ny < C; is closed .
Consequently,
A(Cy,) = Ap(Cy,) <= Vi > 0,C; is closed.

We state a stability result on the equalities A.(Cj,) = Ap(Cy,) and
A(C;,) = Ap(Cy,). See also [DH2].

Theorem 4. (Nakane [N]) Both equalities Ac.(Cj,) = Ap(Cy,) and A(C,) =
Ap(Cy,) are preserved in hyperbolic components.

The proof of Theorem 4 is an application of the holomorphic motions of hy-
perbolic sets developped by Jonsson [J1] and DeMarco & Hruska [DH1, DH2].
In Section 2, we prepare the notion of holomorphic motions and stability re-
sults of hyperbolic sets. As another application, in Section 3, we give examples
which have solenoids as saddle basic sets.

2 Holomorphic motion

Let {f.;a € D} be a holomorphic family of polynomial endomorphisms on C?
and L be a hyperbolic set of f = fy. A holomorphic motion of L parametrized
in D, = {|a| < r} is a continuous map ¢ : I, x L — C? such that

(1) QD(O, ) = ZdLa
(2) ¢(-, z) is holomorphic in D, for each fixed z,
(3) wa = (a,-) is injective for each fixed a.

If the fiber Julia sets J, and fiber saddle sets A, = {w € C;(z,w) € A}
move holomorphically, it is easy to show Theorem 4. It is true for fiber Julia
sets, but not for fiber saddle sets. However, we have continuous dependence
on parameters for fiber saddle sets.
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Theorem 5. ([J1]) Let {f,;a € D} be a holomorphic family of polynomial
endomorphisms on C%, uniformly expanding on L. Then there ezxist r > 0 and
a holomorphic motion ® : D, x L — C? such that f, is uniformly ezpanding
on Ly = ®,(L) and f, = ®, 0 foo ®;! on L, for all a € D,.

If the maps are Axiom A polynomial skew products, f is uniformly ex-
panding on L = J;. Thus we have

Theorem 6. ([DH1]) If the maps fo(z,w) = (pa(2),¢a(2,w)) are Aziom A
polynomial skew products in Theorem 5, ®, is also a skew product ®,(z, w) =

(0a(2), Ya(2,w)), where :

(1) ¢ : D, x J(po) — C 1is a holomorphic motion of Jp, such that p, = @4 ©.
Do © W;l on Jp, = ‘Pa(*]po)r

(2) for each z € Jpy, Va(z,w) defines a holomorphic motion ¢ : D, x J.(fo) —
C such that ¢a( (fO)) wa(Z)(fa)

If the hyperbolic set L is not uniformly expanding, we cannot expect the
existence of holomorphic motion. See Example 1 below. Instead, we have
a holomorphic motion for the natural extension L = {§ = (Y_n)n>0;Y-n €
L, f(y-n) =y_ns1}. Let m: L = L be the projection : 7(§) = yo. The map f
induces a homeomorphism f : L — L by f((y_n)) = (y—nt1)-

Theorem 7. ([J1]) Let {fs;a € D} be a holomorphic family of polynomial
endomorphisms on C? and let L be a hyperbolic set of fo. Then there exist
r > 0 and a holomorphic motion h of L on D,, which induces a continuous
maph—woh D, x L — C%. That is,

(1) for each a € Dy, f, = h, ofooh Lon Ly = ho(L),

(2) for each a € Dy, Ly = ho(L) is a hyperbolic set of fa,

(3) for each a € Dy, hy satisfies fo 0 hy = = hg Ofo,

(4) for each & € L, the map h(-, %) : D, — C? is holomorphic in D,.

Theorem 8. ([DH2]) If the maps f, are polynomial skew products in Theorem
7, then hg is also a skew product : 7ig 0 hg = Qg 0 7. Here, g : Ag — Jp, 15
the projection and @, : J, — Jp, ts the lift of ¢,.

3 Examples
First, we will give an example which does not admit holomorphic motions.

Example 1. ([J1]) f.(z,w) = (22, w? + az).



A remarkable fact is that it is semiconjugate to the product map g,(z, w) =
(22, w? + a) by the map p(z,w) = (22, 2w) : pogs = f,0p. As a consequence,
we have A(f,) = p(A(94)) = {(22, ae2);|z| = 1}, where a, is the attracting
fixed point of the map w? +a. A(fy) is a circle while for a # 0, A(f,) is a
fiber bundle over the circle with two point set as a fiber. Hence A(f,) is not a
holomorphic motion of A(fp).

In this example, A( fo) is a solenoid as a natural extension of the circle
by angle doubling map. By Theorem 7, A( fa) is also a solenoid for small |al.
It is natural to ask whether a solenoid appears as a saddle set by a further
perturbation of f,. This actually occurs.

Example 2. ([FS2], Example 7.3, [J2], Example 9.4)
2 2
falz,w) = (2%, aw® + oY + :2-2)

It is well known that f; has a solenoid Ag as a hyperbolic set. See for
example, Devaney [D], Section 2.5. By Theorem 7, there exists a continuous
map h, such that A, = h,(Ag) is a hyperbolic set of f,. Since fj is injective in
a neighborhood of Ag, so is f,, hence Aa = A, for small a. Again, by Theorem
7, it follows that iza is a homeomorphism between Ag = Ao and A, = Aa.
Thus we conclude that A, is also a solenoid for small a. For a # 0, the map

1
To(2, w) = (2, aw) satisfies 7,0 f, = k,07,, where k,(z, w) = (2%, w2+ﬁw+gz).
That is, it gives a conjugacy between f, and k,. Hence for small |a| > 0, k,
has a solenoid 7,(A,) as a saddle set. As a — 0, these solenoids tend to the

circle S* x {0}, a saddle set of ky. Note that Jy(f.) = 7, (Ja(k,)) tends to
[0:1:0] as a — 0. As a consequence, fy has no second Julia set.

Example 3. (Mihailescu & Urbainski [MU], Theorem 4.1)
fe(z,w) = (2%, w? + a + €(b2? + czw + 2 + dw)).

Let a, be the attracting fixed point of w? + a. Since fy has a saddle set
Ao = S' x {a,}, Theorem 7 assures that f. has a saddle set A.. They showed
that there exist a(b, ¢, d),€(a,b,c,d) > 0 such that f. : A, — A, is injective for
0 < |a| < a(b,c,d),0 < || < €(a,b,c,d). Recall that Ag is a solenoid. Thus,
by the same argument as in Example 2, A, = A, is also a solenoid for such a
and e.

We consider a perturbation of the maps in Example 1. By a similar argu-
ment as in Example 3, we get the following.

Proposition 1. Take a so that 0 < |a,| < 1/4. Then the map f,4(z,w) =
(2%, w? + az + bw) is injective on a saddle set Ay for small |b| > 0.
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proof. Note that Ao = {(z, £a,/2);|2z| = 1} and that
fa,O(Za _—taa\/;) = (227 aaz), fa,O(_za -_J:aa V '—Z) = (ZQa _aaz)' (1)
Here we fix the branch of the square root \/z. Now put

B= max min(jw— a.Vz|, |w+ a.vz|)
(Z1w)€Aa,b
and B = |wg — aq+/Z0| for some (29, wo) € Aqp. If we take a preimage (2, w) of

(20, wp), it follows

20 =22, wo=w?+az+bw.

Set z = y/Zp. Then

Wo — 0g/20 = w? + az — ag/Zg + bw
w4 az — (@2 +a)z +bw
w? — o’z + bw

= (w— agv2)? + 20,V2(w — agV/z) + bu.
We may assume |w + aq1/2| > |w — aq/z|. Then

ﬁ = IwO - aa\/%l ..<_ |w - aa\/z|2 + 2|aa\/z(w - aa\/z)l + |bw|
< B2+ 2|8 + |bwl.

Moreover, since |w| < |w — agv/z| + | v/z| < B+ ||, B satisfies
5% + (2lag| — 1+ [b])8 + |bag| > 0. Since [ is small for small |b], it follows

1 —2[aq| — [b] — /(1 — 2]aa] — [b])? — 4jbos|

g <

2
|ba| 2
S T2, -7 T 00D
_ |ova
(Ll oemm

for small |b).

Now suppose (z,w), (2, w') € Aqp satisfy fop(2/,w') = fop(2,w). Then
2/ =z or 2/ = z. From (1), |fao(—2,£0av/=2) = fap(2, £as/2)| = 2|a,| > 0.
Hence, 2z’ = z for small |b|. Then w” + a2’ + bw’ = w? + az + bw implies
(w' — w)(w' +w + b) = 0. Suppose w’ # w. Then |w — av/z| < |w+ a2
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implies |w' + a1/z| < |w' — ag/z| for small |b]. Therefore |w — ay/z| < B
and |w’' + a,v/z| < B. Hence

2Io‘a|

T 2loy] + O([8]))19].

W' + w| < | + auvz| + [w— agvz] <268 < (
Thus, if |a,| < 1/4, then |[w'+w| < (1+0(]b]))|b|- This contradicts w’+w+b =
0 for small |b|. Thus we conclude w’ = w. This completes the proof. O

Recall that A, is a solenoid for small |a|. It is true for any a such that
¢a(w) = w? + a has an attracting fixed point :

~

Lemma 1. If q, has an attracting fixzed point a,, Agp s a solenoid.

proof. The semiconjugacy p defined in Example 1 induces an endomor-
phism p : A(gy,) — Agp. It is expressed by p(2,d,) = (B(2),2?). Here
p(z) =22 and G5 = (- -+ , aq, @) is a fixed prehistory. Evidently it is a home-
omorphism. Thus A, 22 A(g,) is a solenoid. [

By Theorem 7, A, is also a solenoid for small |b], hence, so is A4 for small
|b] > 0.

We also give a higher degree analogue of the examples above. Set f.(z,w) =
(29, g(w) + €z), where d > 2 and q is a monic hyperbolic polynomial of degree
d. Then fy is Axiom A. If ¢ has an attracting fixed point o, Ag = S* x {a} is
a saddle basic set of fo. We consider the perturbation A, of Ay.

Proposition 2. Suppose q has an attracting fized point o of multiplier p. If
sin(7/d)

1 + sin(w/d)’

for small |e| > 0.

0< |p| < then f.: Ac — A¢ is injective, hence A is a solenoid,

proof. As before, we put 8 = (m?%\ |w — «|. Here the maximum 3 =
Z,W)ENe

lwp — @] is supposed to be attained at (zq,wp). If fo(z,w) = (20, wp), then
wo = ¢(w) + €z. Therefore

wo — a = q(w) — g(a) + ez = ¢'(a)(w — a) + Z?zzaj(w —a) +ez
for some a;. Thus
B = |wo — al < |plB + TI_sla;|F” + |el,

that is, 3 satisfies '
S alaslF + (lpl = 1)8 + |e| > 0.
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Since |p| < 1, the equation Z;l:Z lajit? + (Jp| — 1)t = 0 has a simple root 0.
Hence, for small |e|, the equation Z?:z laj|t? + (|p] — 1)t + |¢] = 0 has a simple
root t. near the origin. It is real analytic in |¢|. Then we have

le]

<t.=———+ 0(l¢e]?).
Bt = 1+ O(1P)

Now suppose f(z',w') = f.(z,w). Then 2@ = z% and q(w')+€z’ = g(w)+ez.
If we put ¢ = e2™/? 2/ = g7z for some j > 0. First we show 2z’ = 2. Then,
since |¢’(a)| > 0, g is injective in a neighborhood of . Thus we have w' = w

for small |¢| > 0 and the proposition follows.
Since

lq(w') - q(w)] < lq(w’) — q(@)] + la(@) — g(w)] < (I¢'(@)] + O(j€]))26,

we have

€1 — 0%)2] = lq() — a(w)] < 2 ( <+ O(1eP) ) (1ol + O(le)-
1—|p|

2|p|

Then it follows |1 —¢?| < W—FO(IEI). In other words, 2’ # o7z if |[1— 07| >
2 .

1_"0||p' Since |1 — 07| > |1 — o| = 2sin(7/d) for 1 < j < d — 1, we conclude

that 2’ = z if sin(n/d) > 1——'%, which is equivalent to the assumption. This

completes the proof. [J
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