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1 Introduction

A Petri net is a mathematical model which is applied to descriptions of parallel processing systems. So
far, some types of morphisms related to Petri nets (or condition/event net) have been studied in terms of
the category theory, in order to simplify the behavior of more complicated Petri nets and understand the
concurrency in other computation models [4][10].

Studying how the structure of Petri nets have an effect on Petri net languages and codes, we often realize
that the ratio between the number of tokens in a place and the weights of edges connected to the place is
important. So we give our definition of morphims between Petri nets focusing on the connection state/level
of edges which come in or go out a place. This is an extension of an automorphism which we used to
introduce to a net in [5][6].

In the second section we introduce morphims between two Petri nets. The set of all morphisms of a
Petri net forms a monoid expressed by a semi-direct product. Especially, the set of all automorphisms of a
Petri net forms a group. We investigate the inclusion relations among such monoids and groups. The third
section deals with a pre-order induced by a surjective morphism. Two diamond properties are proved. Itis a
common case that one gives some redundancy or multiple provisions to systems to improve their reliability
and safety. Surjective morphism will be effective to analyze such redundant systems. In the last section
we show the properties of languages generated by two Petri nets ordered by a surjective morphism. The
languages generated by them and their reachability sets have close correspondence.

2 Preliminaries

Here we give our definition of morphisms of a Petri net and state the properties of some monoids com-
posed of these morphisms.

2.1 Petri Nets and Morphisms

In this section, we give definitions and fundamental properties related to Petri nets. We denote the set of
all nonnegative integers by N, that is, No = {0,1,2,...}.

First of all, a Petri net is viewed as a particular kind of directed graph, together with an initial state ug,
called the initial marking. The underlying graph N of a Petri net is a directed, weighted, bipartite graph
consisting of two kinds of nodes, called places and transitions, where arcs are either from a place to a
transition or from a transition to a place.

DEFINITION 2.1 (Petrinet) A Petrinetis a4-tuple (P, T, W, pg) where
(1) P={p1,p2,...,pm} is afinite set of places,
(2) T = {t1,t2,...,t,} is a finite set of transitions,
(3) W : E(P,T) — {0,1,2,3,...}, ie.W € No®PT) is a weight function, where E(P,T) =
(PxT)u(T x P),
(4) wo:P —{0,1,2,3,...},ie., po € No*,is the initial marking,
(5) PNT=0and PUT # 0.
A Petri net structure (net, for short) N = (P, T, W) without any specific initial marking is denoted by
N, a Petri net with a given initial marking g is denoted by (V, o). O



In the graphical representation, the places are drawn as circles and the transitions are drawn as bars or
boxes. Arcs are labeled with their weights(positive integers), where a k-weighted arc can be interpreted
as the set of k parallel arcs. Labels for unity weights are usually omitted. A marking (state) assigns a
nonnegative integer k to each place. If a marking assigns a nonnegative integer & to a place p, we say that
p is marked with k tokens. Pictorially, we put & black dots (tokens) in place p. A marking is denoted by 1,
an n-dimensional row vector, where n is the total number of places. The -th component of u, denoted by
w(pi), is the number of tokens in the i-th place p;.

EXAMPLE 2.1 Fig. 1 shows a graphical representation of a Petri net P = (P, T, W, uo). P = {a,b}
and T = {t}. (a, t) and (t, b) are arcs of weights 2 and 1 respectively. (t, a) and (b, t) are arcs of weight 0,
which are not usually drawn in the picture. Note that the weight of (t, b) is omitted since it is unity. That is,
Wi(a,t) = 2,W(b,t) = 1, W(t,a) = W(b, t) = 0. The initial marking po with go(a) = 3, uo(b) =0
is often written like a row vector yo = (3,0). O

a t b
O
Figure 1. Graphical representation of a Petri net

Now we introduce a Petri net morphism based on place connectivity. We denote the set of all positive
rational numbers by Q...

DEFINITION 2.2 Let Py = (P, Ty, Wi, u1) and Pp = (P2, T2, W2, u2) be Petri nets. Then a triple
(f, (a, B)) of maps is called a morphism from P; to Py if the maps f : P, — Q4+, : Pi — P and
B : Ty — Ty satisfy the condition that forany p € P; and t € T},

Wa(a(p), B(2)) = f(p)Wi(p, 1),

Wa(8(t), a(p)) = f(p)W1(t, p), 2.1)
p2(a(p)) = f(p)r1(p)-
In this case we write (f, (o, 3)) : Py — Pa. a

The morphism (f, (o, 3)) : Py — P is called injective (resp. surjective) if both o and [ are injective
Then P; is said to be isomorphic to Py and we write P; ~ P,. Moreover, in case of P; = P, an
isomorphism is called an automorphism of Py. By Aut(P) we denote the set of all the automorphisms of
P.

For Petri nets P; and Py, we write P; 3 P if there exists a surjective morphism from P; to Ps. The
relation 2 forms a pre-order (a relation satisfying the reflexive law and the transitive law) as shown below.
Of course, the pre-order is regarded as an order by identifying isomorphisms. -

PROPOSITION 2.1  Let Py, Py, P3 be Petri nets. Then,
(1) P3P

(2) P13dPrandPy; AP <= P >~ Ps.

(3) 'P1 Q Pg and Pz ; P3 imply' 7)1 _:_| Pg.

Proof) Let P; = (B, T;, W;, ui) (¢ = 1,2, 3) through the proof. The proof complete in the order (1),
(3, (2. :

(1) Trivial.

(3) There exist surjective morphisms (f;, (e, 3,)) : P, — Piy1 (¢ = 1,2). We define amap f: P —
Q4+ by f(p) = fi(p) - fa(a(p)). Then (f, (12, B102)) is a surjective morphism from P; to Ps.
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(2) (=) There exist surjective morphisms (f, (c,8)) : P, — Ps and (g, (¢/,3')) : P2 — P;. Since
aca’ is surjective by (3) above and P is finite, both « and o are bijections. § and (3’ are also. Therefore
Pl >~ P3.

(<) If (£, (o, B)) be a isomorphism from P; to Pq, then it is easily shown that (a1, (a™},471))
is a isomorphism from P, to P;, where f~! : P, = Q4+,p — 1/f(p). )

DEFINITION 2.3 (Similar) Let P = (P, T, W, 1) be a Petri net. Two places p,q € P are said to be
similar if there exists some positive rational number v such that u(p) = ru(q), W(q,t) = rW(p,t) and
W(t,q) = W (t,p) for all t € T. Two transitions s,t € T are said to be similar if W (p, s) = W(p,t)
and W(s,p) = W(t,p) forallp € P. O

The similarity defined above is obviously an equivalence relation on P U T'. We denote this relation by
~p or simply ~ and the ~p-class of a place or a transition u by C(u). A place (resp. a transition) is said
to be isolated if it has no connection to any transitions (resp. any places). Especially, a place p is O-isolated
if it is isolated and u(p) = 0. Note that two 0-isolated places p and ¢ are similar because for any positive
rational number r u(p) = 0 = ru(q), W(q,t) = 0 =rW(p,t) and W(t,q) = 0 = rW(t,p) forallt € T.

2.2 Monoids S?! of Surjective Morphisms of Petri Nets

We introduce a composition of morphisms; all the morphisms between Petri nets form a monoid under
this composition.

Let P; = (P, T;, Wy, ;) (i = 1,2, 3) be Petri nets, (f, (a,3)) : Py — Pz and (g, (7,6)) : P2 — Ps
be morphisms. Then,

Wa(v(a(p)), 3(8(t))) = g(a(p))Wa(a(p), B(2))

= g(a(p)) f(p)Wh(p, ),
Ws(8(8(t)),v(a(p))) = (a(p))Wz(ﬂ(t), a(p))

= g(a(p)) f(p)W1(t, p),
p3(y(a(p))) = gla(p))u2(a(p)) = g(a(p)) f(p)u1(p)

hold.

In this manuscript, by writing compositions of maps like goar, Yoo and §o3 in the form of multiplications
like g, ary and (4 respectively, the composition of morphisms is written as 1& f®p, (ag), (ay,8d)), where
®p, is the operatlon in the following fundamental commutative group (Q.." , ®p).

The set (Q..¥, ®p) of all maps from a set P to Q. forms a commutative group under the operation ®p
defined by f ®p g: p+— f(p)9(p). 1gp : P— Q4 : pr> listheidentityand f~1 : P - Q4 : pr—
1/f(p) is the inverse of a f € Q.. Whenever it does not cause confusion, we write ® instead of ®p.
Immediately we obtain the following lemma.

LEMMA 2.1 Let o and 8 be arbitrary maps on P and f,g : P — Q.. Then the following equations
are true.

(1) (aB)f = a(Bf).

2 o(f®g)=(af) ®(ag).

3) alg =1g.

@ (af)®(af™!) =1s.

(5) (af) ' =af

Proof) For each p € P, the following equations hold.
(D ((eB)f)(p) = f(B(a(p))) = (Bf)(a(p)) = (a(BS))(p)-
2 (af ®9)(p) = flalp)) - 9(a(p)) = (af)(p) - (ag)(p) = ((af) ® (ag))(p).
(3) (alg)(®) = 1g(a(p)) = 1(p)-
(4) By (2)and (3) above, (af) ® (af ) =a(f @ f!) = alg = 1g.
5) (af)Hp) =1/f(a(®)) = F~Halp)) = (af ~1)(p). O

For a surjective morphim & : P; — Pq, P; is called the domain of z, denoted by Dom(z), and P; is
called the image(or range) of z, denoted by Im(z). Especially Dom(0) = Im(0) =



We denote the set of all surjective morphisms between two Petri nets and a zero element 0, by S. S forms
a semigroup, equipped with the multiplication of z = (f, (¢, 8)) and y = (g, (v,9)):

dﬁf{ (f @ ag, (a7, 68) if Im(z) = Dom(y).
Y1 o0 otherwise.

S = S U {1} is the monoid obtained from S by adjoining an (extra) identity 1, thatis,1-s=s-1= s for
alseSand1-1=1.

EXAMPLE 22 Let P; = (P;,T;, Wi, ;) (1 < i < 3) be Petri nets shown in Figure 2. The four mor-
phisms z; = (f;, (., 8,)) (0 € ¢ < 3) are from P; to Py, where

fo= n pz), op = b1 P2 ’

1/2 1 Qg

—_{ 1 D2 [ 1 P
A=l3p 13 ) 2= g ¢ )

o P2 o p2

=12 3 ) 2 \a o)
f=( ™ Pz), w=( P P2

and Bg = By = P2 = f3 : 11 — T, t, — s, tga — s. Especially only zq and z, are surjective morphisms.
Only one morphism y = (g, (v, d)) exists from P, to Pz, where

9:Po—Qu,q1—1,q—1/3,
Y:P - PB,q—rgerT,
6: T —T3,5— u.

This is a surjective morphism. The compositions of morphisms z, (0 < 4 < 3) and y are the same surjective
morphism (h, (o, 7)) from P; to Ps, where

h:Pl_*Q+7p1H1/2vp2H1/3’
0=a27:P1’_’P3)p1H7'>p2H7"’
7=0;6:T1 » Ts,t; — u,tz — u.

forany ¢ = 1,2, 3,4. Note that h is expressed as h = f; ® (¢, 9). O

(a) Petrinet Py (b) Petrinet P, (c) Petrinet Ps

Figure 2. Petri nets P;, P, and P; with P, 3 P, 1 Ps.

3 Ideals in the monoid S!

In this section we consider ideals and Green’s relations on the monoid S7.
At first, we consider some properties of the structure of the automorphism group of a Petri net P.
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3.1 Green’s equivalences on the monoid S?

In general, Green’s equivalences £, R, J,H,D on a monoid M, which are well-known and important
equivalence relations in the development of semigroup theory, are defined as follows:

2Ly <= Mz = My,
TRy <= zM =yM,
zJy <= MzM = MyM,
H=LNR,

D= (LUR)*,

where (£ UR)* means the reflexive and transitive closure of LUR. Mz (resp. x M) is called the principal
left (tesp. right ) ideal generated by x and Mx M the it principal (two-sided) ideal generated by z. Then,
the following facts are generally true[2, 1].

FACT 1 The following relations are true.

(U)D=LR=RL
(2)HC L (resp.R)y cDCJ

FACT 2 An H-class of a monoid M is a group if and only if it contains an idempotent.

Now we consider the case of M = S! in the rest of the maniscript. The following lemma is obviously
true,

LEMMA 3.1 Letz : Py — P3, y: P3 — Py € SL. Then,

(1) z8'CcyS' = P, =P3and P, C P;.

(2) SlzcSl'y== P, CPsand Py =P;.

3) zS! = ySl = Py =Psand P, EKV'P4.

4) Sz=8y=—= P, ~Psand P, =P;. a

Note that any reverses of the implications above are not necessarily true.

PROPOSITION 3.1 The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Aut(P) for some Petri net P.

Proof) (1)==(2) By FACT?2, H contains an idempotent e, that is €2 = e. This implies Dom(e) =
Im(e) = P for some Petri net P. By (3) and (4) of LEMMA 3.1, Dom(z) = Dom(e) = P and
Im(z) = Im(e) = P for any z € H because zS! = eS! and S’z = Sle hold. Therefore each element
of H is an automorphism of P. Conversely, for an automorphism z of P, z € H because z is a surjective
morphism with Dom(z) = I'm(z) = P. Hence we have H = Aut(P).

(2==(1) For z,y € H = Aut(P), there exists z,w € H such that z = zy and wz = y. This implies
S8z = S'y. Similarily we have 8! = yS*. Therefore 2Hy. Conversely, zHy and € H implies y € H
because y is a surjective morphism with Dom(y) = Im(y) = P. Hence H is an H-class and a group. [J

PROPOSITION 3.2 On the monoid S*, J =D .
Proof) Since D C J holds, it is enough to show the reverse inclusion.

zJy <= S'aS! =SS!
<= Ju,v,z,w € 8! (z = uyv,y = zzw)

implies that z = uzzwv, y = zuyvw. Setting
P = Dom(z),Q = Dom(y),R = Im(z) and S = Im(y),uz : P - P,2u: Q — Q,wv: R — R,
vw : § — S are automorphisms. This implies that u, v, z, w are isomorphisms and u™! = z,v™! = w. Let
t = zw. Then,

z = z(ww™?!) = (zw)w?! = tw™?!

y = z(zw) = 2t

t=(z"12)t=2"1(at) = 271y

Therefore S! = tS! and St = Sly, thatis, zRtLy. Thus D C J. a



3.2 Intersection of principal ideals

The aim here is that for given z,y € S! we find a elements z such that Slz N S'y = Slz (resp.
2SI NyS! = 281). 28! NyS! = {0} (resp. Sz N Sty = {0}) is a trivial case(z = 0). We should only
consider the non-trivial case.

LEMMA 3.2 Let P; = (P, T;. Wi, w;)(i = 1,2,3) be Petri nets, x = (f,(,8)) : Pr = Pz, y =
(9, (7,6)) : P2 — P be elements of S*. If |~ (p)| < |y~ ()| and |87 (¢)| < [671(¢)| for anyp € Ps
andt € Ty, then S'y C Slz.

Proof) By the assumption, we can choose arbitrary surjective morphisms § : P, — Pyandn: Ty — T
such that £(y~1(p)) = a~(p) for any p € Ps and n(6~1(¢)) = f~1(t) forany t € T5. h: P, — Q. is
defined by h(q) = g~'(q)f(£(q)) for each q € Ps. Then, we can verify that z = (h, (§,7)) is a surjective
morphism from P, to P; and thus z € 8!, y = zz. Therefore S'y C S'z. O

LEMMA 3.3 Let P, = (P, T;.Wi,u;)(i = 0,1,2) be Petri nets, z = (f,(a,3)) : Po = P,y =
(g, (7,6)) : Po — P be elements of St. If for any p € Py and t € T}, there exist ¢ € Py and s € T5 such
that a~Y(p) C v~1(q) and B~1(t) C 6 1(s), then yS! C zS*.

Proof) Let p and ¢ be arbitrary elements of P; and T}, respectively. By the assumption,q € P, and s € T3
is uniquely defined and

a~l(p) = {PI,PZa Ve 7pn} c 7—1(Q)7

B7Hp) = {t1,t2,.. ., tm} C671(s).

Then we can easily chech that pa(g) = g(p:)f ™' (pi)ur(p), Walg,s) = g(pi)f~'(pi)Wi(p,t;) and
Wa(s,q) = g(pi)f~1(ps) Wi(t;,p) forany i (1 < ¢ < n)and any j(1 < j < m). Since the values
of g(p;) f ~1(p;) are the same rational number determined only depending on p € P, the maps

§: Py — Py, pr q, where o 1(p) C v~ (q),
n:Ty — Ty, t s, where 8~1(t) C 671(s) and
h:Py— Qy, p— g(m)f ' (pi), where a(p;) =p

are well-defined. Therefore we have z = (h, (£,n)) € S? and thus y = zz, that is, yS* C 8. O

PROPOSITION 3.3 (Intersection of Principal Left Ideals) Let P; = (P;, T;.W;, 1:)( = 1,2,3) be
Petri nets, x = (f1,(c1,51)) : P1 — P3, y = (f2,(02,82)) : Po — Ps be elements of S*, P3 =
{C1,62,...,CN} andT3 = {dl,dz,...,dM}.

ns = max{|oy(c,), |oz " (¢:)[} for eachi = 1,2,..., N,
m; = max{|8;'(d;)|, 85" (d;)|} for eachj = 1,2,..., M.

Taking disjoint sets Cy,Cs,...,Cn and Dy, Dy, ..., Dy with their sizes |C;| = n;(i = 1,2,...,N) and
|Dj| = m;(j = 1,2,..., M), we define a Petri net P = (P,T.W, ), where P = UISiSNC’i!T _
U15j5M Dj,and foranyp € Pandt €T,

W(p’t) = WS(ci,dj) lf(pa t) € C; x Djs
W (t,p) = Ws(dj,c;) if (t,p) € Dj x Cy,
u(p) = p3(ci) ifpeC,

Then, z = (1gp, (¥,9)) : P — P3, wherey: C; 3 p+> c;and § : D; 5 t — d; are surjective morphisms.
Moreover, S'x N Sly = S1z.

Proof) Let We can easily check that z = uz = vy for some u,v € S!. Therefore z € Sz NSly.
Conversely we show that w = (h, (£,1)) € S'z NS’y implies w € S'z. We can write w = v'z = v'y
for some u/,v' € S'. Let p € Ps. In our construction, |y (p)| = max{|a;*(p)|,|a3*(p)|}. Since w =
w'z = v’y holds, we have |ag ' (p)| < |67 (p)] and |a; ' (p)| < |€71(p)| and thus |y~1(p)| < |€71(p)|.
Similarily, |6~ (p)| < [n~(p)|. By LEMMA 3.2, we conclude S'z N Sty = Stz. a
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COROLLARY 3.1 (Diamond Property I) Let P; =
(P, T, Wiy i) (i = 1,2,3) be Petri nets with Py 2 Pz and Py 3 Ps3. Then there exists a Petri net Py
such that Py J Py and Py 3 Ps.

We consider the intersection of two pﬁcipal right ideals. The case of principal right ideals is rather
difficult compared to that of principal left ideals. We begin with an introduction of the relation =;.

Let P be a set and f, g maps whose domain is P. The relation = on P defined by (Vz,y € P){z =y

Y & f(z) = f(y)} . Then (=5 U =,)* is the smallest equivalence relation on P which includes both

=y and =g, where (=7 U =,)* is the reflexive and transitive closure of =7 U =,.

PROPOSITION 3.4 (Intersection of Principal Right Ideals) Let P; = (P;,T;.W;, ui)(i = 0,1,2) be
Petri nets, z = (f1,(01,51)) : Pr = P3, y = (f2,(02,082)) : Po — Ps be elements of S1. Let
C1,Ca,...,CN be all the (=q, U =q,)*-classes in Py and D1, Dy, ...,Dp be all the (=g, U =g,)*-
classes in Tj.

f € Q.F is defined by if p is O-isolated then f(p) = 1 and otherwise

f(p) = 1/ng({l‘l‘(p)aW0(pa ti), WO(thp) I 1<:< n})

where n = |To| and Ty = {t1,12,...,t,} and gcd(S) denotes the greatest common divisor of all integers
inasetS.
(1) A Petri net P3 = (P3,T3.W3, us) can be constructed in the following way:

PS = PO/(=a1 U=a2)* = {CI?CQ:”-’CN})
T3 =To/(=p, U=g,)* = {D1, Dz,...,Dm}.

Forie{1,2,...,N},j €{1,2,...,M},

u3(Ci) = f(p)uo(p) for anyp € C;,
W3(C;, D;) = f(p)Wo(p,t) foranyp € C;,t € Dj;,
W3(Dj, C;) = f(p)Wolt,q) foranyp € Ci,t € D;

are well-defined.
(2) Let z = (f,(a,B3)) : Po — Ps, where o is the canonical surjection from Py onto Ps, 3 is the
canonical surjection from Ty onto T5. Then, z is a surjective morphism and zS* NyS! = 281,

Proof) Omitted.
The above-mentioned proposition immediately leads the following corollary.,

COROLLARY 3.2 (Diamond Property II)  Let P; = (P;, T3, Wy, ;) (¢ = 0,1,2) be Petri nets with
Po 3 P, and Py 3 P,. Then there exists a Petri net P3 such that P, 3 Pz and P, 3 Ps.

We define the concept of irreducible forms of a Petri net with respect to J.
DEFINITION 3.1 (Irreducible) A Petri net P is called a J-irreducible if P 3 P’ implies P ~ P’ for
any Petri net P'. Then P is called an J-irreducible form. O
COROLLARY 3.3 Let P, P’ and P” be Petri nets with P 2 P’ and P 1 P”. Then one has: If P/ and
P are J-irreducible, then P’ ~ P”. '

Proof) Trivial by COROLLARY 3.2 and the definition of J-irreducibility. a



4 Surjective Morphisms and Petri Net Languages

4.1 Behavior of Petri Nets

The behavior of many systems can be described in terms of system states and their changes. In order to
simulate the dynamic behavior of a system, a state or marking in a Petri net P = (P, T, W, p) is changed
according to the following transition (firing) rule:

(1) A transition t € T is said to be enabled (under the marking u or under the Petri net P) if W(p,t) <
w(p) for every place p € P, where W(p, t) is the weight of the arc from p to ¢. Then each input place p of
t is marked with at least W (p, t) tokens. An enabled transition may or may not fire (depending on whether
or not the event actually takes place).

(2) A firing of an enabled transition ¢ removes W(p,t) tokens from each input place p of ¢, and adds
W (¢, p) tokens to each output place p of ¢. As a consequence of the firing, the current marking  is replaced
with the following new marking p':

# (p) = u(p) — W(p, t) + W(t, p) for Vp € P. (4.1)

Then we define the transition function §p by dp(u, t) = .

(3) Asequencew = t;ty...t, of transitions is said to be a firing sequence ina Petrinet P = (P, T, W, u)
if po = p, i, = g, and p, = dp(pi—1, t;) for each i (1 < ¢ < n). Then y’ is called a reachable from P,
and we extend dp from T to T* by dp(u, w) = u/. By assuming that dp(u, w) = L if w is not a firing
sequence from P or p = L, the transition function 6p : (No¥ U {L}) x T* — (No¥ U {L}) is regarded
as a total function. The set of all reachable markings from P is called the reachability set of P, denoted by
R(P).

LEMMA 4.1 Let P; = (P, T;,W;, ;) (¢ = 1,2) be Petri nets. (f, (a,3)) be a surjective morphism
from P; onto P,. Then,
(1) teTiisenableinP; <= f(t) € T, is enable in P,. More precisely,

py = 0p, (u1, t) (# L) <= py = 0p,(k2, B(H)) (F 1),
f®p1 = aus and f ® u) = aps hold.
(2) wis afiring sequence in P; <= B(w) is a firing sequence in P,. More precisely,
Hy = 0p, (1, w) (# L) <= pp = 0p, (p2, B(w)) (# 1), 42)
f®p1 =augand f @ pj = aus hold.
Proof) (1) Foreachpe P,

p2(e(p)) — Wa(a(p), B(t)) = f(p){pa(p) — Wi(p,t)} and  f(p) > 0.

Therefore, if 3(t) is enabled in Py, then ¢ is enabled in P; . Conversely, since « is surjective, §(¢) is enabled
in Ps if ¢ is enabled in P;.

In addition, the equation u3(a(p)) = p2(a(p)) = Wa(a(p), B(t)) + Wa(B(p), (t)) = f(p){m1(p) -
Wi(p, t) + Wi(t,p)} = f(p)ui(p) leads the equivalence of the two firing rules shown in (1).
(2) Itis trivial by (1) and the definition of a firing sequence. ]

LEMMA 42 Let P, = (P, T;,W;,u;) (i = 1,2) be Petri nets. (f, (o, 3)) be a surjective morphism
from Py onto Ps. Then,
(1) ¢: R(P1) = R(P2), iy — ph, where p and pi, are markings satisfying (4.2), is a bijection.

(2) LetR; C R(Pz) with (p(R1) = Ry and K; = {w S 1-11:*|5'P¢(/14ia w) € Rz} (i = 1,2). Then
K; = B(Ky). .
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Proof) (1) s well-defined. Indeed, for any ) € R(P:), there exists at least one marking 5 € R(Ps)
such that f ® u} = ausy by LEMMA 4.1 (2). Moreover if any two marking uj, uy € R(P2) satisfy
f® uy = auh = aul, then we have uj = py because « is surjective.

Next we show that ¢ is surjective. Let pu5 € R(P2). Since 3 is surjective, by LEMMA 4.1 (2), there
exists w € T1* such that ] = &p, (u1,w) and ph = dp,(u2, B(w)). Then p(u}) = us5.

Finally we show that ¢ is injective. Suppose that p(u}) = p(uf) = uh. f O uj = f ® pf = auy. By
LEMMA 2.1, = (f1f) @ i = (1) ® i = p.

(2) Letw € K; with dp,(u1,w) = p} € Ry. Then ép,(u2, B(w)) = ph = p(u}) € Re. Therefore
B(w) € K.
Conversely let w € K2 with p, (uz,w) = uh € Ra. Since (3 is surjective, w = G(u) for some u € T *.
6p, (1,u) = pi = o1 (1) € Ry. Therefore w = f(u) € B(Ky).
O

4.2 Petri net Languages

Let P = (P, T, W, pp) be a Petri net, X be an alphabet, o : T — X be a labeling of the transitions
and F C No” be a finite set of final markings. Then we define the languages £1,(P, o, F), La(P, o, F),
L1(P, o) and Lp(P, o) as follows:

Ly(P, o, F) def {o(w)|w € T*, u=dp(uo, w)and u € F},

Lg(P, 0, F) Lef {o(w) | w € T* and 6p(po, w) > pys for some s € F},

L7(P, o) ef {o(w)|w € T* and 6p(uo, w) # Lbutforallt € T,dp(u,wt) = L},
Lp(P, o) ¥ {o(w) |w € T* and 6p(po, w) # L}.

Languages L (P, o, F), Lg(P, o, F), L1(P, o) and Lp(P, o) for some Petri net P, some labeling o'
and some set F' of markings are called L-type, G-type,T-type and P-type Petri net languages respectively.

PROPOSITION 41 Let P; = (P, T;, Wi, ;) (i = 1,2) be Petri nets. (f, (a,8)) be a surjective
morphism from P; onto Ps.

Forany Ly = Lx(P1, o1, F1), X € {L,G} (tesp. L1 = Lx(P1, 01), X € {T,P}), there exists some
Ly = Lx(Pa, 02, F2) (tesp. Ly = Lx(P2, 02)) such that Ly = 01(871(0271(Lz))). Then L, is regular
(resp. linear, context-free) if and only if Lo is regular (resp. linear, context-free).

Proof) 'We only show the case of X = L. The remainder of proof is done in a similar way.

Putting o2 = 1p,, R, = F nR('Pl),FQ =Ry = W(Rl) and K; = {w eT; I(s'p,(u,;, w) € R;} (Z =
1,2), where 17, is the identity map on T3 and ¢ is the bijection defined in LEMMA 4.2. Then we have
L, = 01(Ky), Ly = Lx(Pa, 03, F2) = 02(K3), and by LEMMA 42 (2) K; = B(K;). Therefore
Ly = 01(87 (027 (L2))).

Regarding operations with languages, the families of regular, linear and context-free languages are closed
under the morphism and inverse morphism operations respectively. This leads to the equivalence condition.

O

5 Conclusions

In this paper we introduced Petri net morphisms/automorphism based on similarity of places and trasition.
Some algebraic properties related to them were investigeted. We first considered Green’s relations and
ideals in the monoids S' of morphisms of Petri nets, which is adjoined the extra zero O and the extra
identity 1. For two given monoids, the principal left (resp. right) ideal of them is also a principal left (resp.
right) ideal. This implies two kinds of diamond properties (confluencies) with respect to that the pre-order
induced by surjective morphisms. It is technically interesting to construct such two kinds of synthesis of
Petri nets. Next, the automorphism group G = Aut(P) of a ginve Petri net P was investigated. It is closely
related to the symmetric groups preserves the partition determined by the equivalence relation of simirality
on P. By using this property, we can achieve the decomposition of G into a redundant part N and the other
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K. The similarity can be described in term of a surjective morphism onto an irreducible Petri net Finally
two Petri nets ordered by a surjective morphism have isomorphic reachability sets. Thus, the languages
generated by them have a close correspondence.

Here we did not investigete problems, for example, whether the principal (two-sided) ideal of them
is also a principal ideal in S?, whether an arbitrary left(resp. right, two-sided) ideal is principal in S?.
Also we wonder whether the Petri nets with the same irreducible form constitute a lattice with respect
to the order or not. In addition to these problems, we started investigating the application of Petri net
morphism/automorphism to formal languages and codes. We will apply these results to famous and basic
decision problems related to Petri nets.
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