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1 Introduction

2 Pattem Generation
For a set of real numbers $\mathbb{R}$, a two-dimensional plane is denoted by $\mathbb{R}\cross \mathbb{R}.$ $A$ set $F\subseteq \mathbb{R}\cross \mathbb{R}$ is
called a two-dimensional figure, and a set of all two-dimensional figures is denoted by $\mathcal{F}$, that
is $\mathcal{F}=\{F|F\subseteq \mathbb{R}\cross \mathbb{R}\}.$ $A$ figure which is obtained with moving $F$ by $d\in \mathbb{R}\cross \mathbb{R}$ is denoted
by $F+d=\{p+d|p\in F\}$ , and a figure which is obtained with extending $F$ by $a(a>0)$ times
is denoted by $a\cdot F=\{a\cdot p|p\in F\}$ . We define mappings $S_{d}$ and $Z_{a}$ as follows, respectively.

$S_{d}(F)=F+d, Z_{a}(F)=a\cdot F.$

We define a similarity relation $\sim$ on $\mathcal{F}$ using $S_{d}$ and $Z_{a}$ as follows.

For $F_{1},$ $F_{2}\in \mathcal{F},$

$F_{1}\sim F_{2}\Leftrightarrow F_{2}=S_{d}Z_{a}(F_{1})(=aF_{1}+d)$.
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The relation $\sim$ is an equivalence relation on two-dimensional figures. We define a pattem
as a equivalence class using this relation as follows.

Definition 1
For a figure $F$, a pattern $[F]$ containing $F$ is defined by

$[F]=\{F’|F’\sim F\},$

and a set of patterns $\mathcal{P}$ is defined by

$\mathcal{P}=\mathcal{F}/\sim=\{P|P=[F], F\in \mathcal{F}\}.$

For any $m,n>0,$ $[0,m]\cross[0,n]\subseteq \mathbb{R}\cross \mathbb{R}$ is called a screen of size $m\cross n$, and it denoted by
$C_{mxn}$ , where $[a,b]$ is an interval $\{x|a\leq x\leq b\}.$

Definition 2
For a pattem $P\in \mathcal{P}$ assuming $P=[F]$ , generation of $P$ on $C_{m\cross n}$ is to obtain a set $D\subseteq C_{mxn}$

which satisfies following conditions.

1. $\exists a,d$ $D=S_{d}Z_{a}(F)$ ,
2. $\forall e,e’>0$ $S_{d+e}Z_{a+\epsilon’}(F)\not\subset C_{m\cross n}.$

Following discussion, we assume that $m$ and $n$ are integers for simplicity. When we dis-
play a figure on a screen, the screen has to be discretized, so we discretize $C_{m\cross n}$ by dividing
the width and the length by $m-1$ and $n-1$ respectively. In this process, for each lattice point
$p$, a copy of small screen is set on it. The small screen at the leftmost and the bottom position
of the discretized screen is $c_{0,0}$ , and a screen which is positioned in the ith position from the
left side of the array and jth position from the bottom of the array is described by $c_{i,j}$, that is
$c_{i,j}=c_{[i-0.5,i+0.5]\cross U-0.5,;+0.5]}.$

We define the screen $C_{m,n}$ which is obtained by discretizing $C_{m\cross n}$ as follows,

$C_{m,n}=\{c_{i,j}|0\leq i\leq m,0\leq j\leq n, i,i\in N\}.$

We define a pattem generation on the discretized screen as follows.

Definition 3
For a pattem $P=[F]\in \mathcal{P}$ , generation of $P$ on $C_{m,n}$ is to obtain the following set $D’\subseteq C_{m,n},$

$D’=\{c_{i,j}|c_{i,j}\cap D\neq\phi\}.$

3 Implementation with Cellular Automata
Two-dimensional cellular automata consist of copies of a finite automaton (cell) each ofwhich
is positioned at lattice point $(i,j)$ . Each cell changes its own state to the state which is deter-
mined by a function with its own state and the adjacent cells’ states. We call the own and
adjacent cells neighbors, the function to determine the next state according to neighbors’ states
is called a local map. Each cell is expressed by $a_{i},;$, which means ith row and the jth col-
umn from the leftmost lowest cell. The interval of updating state is called a step. Formally, a
two-dimensional cellular automaton $\mathcal{M}$ is defined as follows,

$\mathcal{M}=(M, Q,\sigma,N)$,

where $M\subseteq Z\cross Z$ is a set of coordinates where cells exist (we assume it is connected. $Z$
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means a set of integers), $Q$ is a set of states, $\sigma$ : $Q\cross Q^{|N|-1}arrow Q$ is a local map, and $N$ is a
set of neighbors. In this paper, we consider the automata which consist of $m$ cells widthways
and $n$ cells lengthways and we call them $m\cross n$ cellular automata. We assume $N$ as Neumann
neighborhood, namely consisting of the own, upper, lower, right and left cells. In an initial
configuration of $\mathcal{M},$

$a_{0,0}$ is in an active state, and all other cells are in a quiescent state.
By regarding each cell $a_{i,j}$ as $c_{i,j}$ in the discretized screen $c_{m,n}$ , the set $M$ can be regarded as

the discretized screen $C_{m,n}$ , and then, an $m\cross n$ cellular automaton can be denoted as follows,

$\mathcal{M}=(C_{m,n\prime}Q,\sigma,N)$ .

Therefore, we regard a problem to generate $P$ on $C_{m,n}$ as a problem to generate $P$ on a cellular
automaton $\mathcal{M}$ , that is, a problem to construct $\mathcal{M}$ which generates $P.$

To construct such $\mathcal{M}$ is to provide $\sigma$ which specifies $D’\subseteq C_{m,n}$ at a certain time starting
from the initial configuration. Here, $D’$ is specified by letting $a_{i,j}$ be in a special state $s$ if
$a_{i,;}\in D’.$

4 How to Count Square Steps
We explain propagation of signals among cells and how to count square steps in two-dimensional
cellular array.

When a next cell of a cell in a specific state $s$ changes its own state to $s$ at $k$ steps, we call
the signal specified by $s$ propagates at speed $1/k.$ $A$ cell can send signals upper, lower, right,
and left directions.

To draw a circle pattem, we need to count $i^{2}$ steps for each $i$ . We will explain how to count
square steps as follows[8]. Cell $a_{0,0}$ sends Signal $s$ with speed 1/1 to the right. When Signal $s$

reaches a cell at which it has not reached yet, and then the cell sends back Signal $\overline{s}$ to $a_{0,0}$ with
speed 1/1. After receiving Signal $\overline{s}$, cell $a_{0,0}$ sends Signal $s$ to the right again. By repeating
this, cell $a_{i,0}$ receives Signal $s$ just in $i^{2}$ steps as shown in Figure 1. In the following discussion,
we call this method Square$(s)$ .

By following argument, it is clear that this method counts $i^{2}$ steps for $i>0$ . Assume that
we can count $i^{2}$ steps by Square$(s)$ by sending Signal $s$ and Signal $\overline{s}$ between $a_{0,0}$ and $a_{i,0}$ . After
receiving Signal $s,$ $a_{i,0}$ sends Signal $\overline{s}$ to $a_{0,0}$ . After receiving Signal $\overline{s},$

$a_{0,0}$ sends Signal $s$ to the
right direction again. $a_{i,0}$ receives Signal $s$ , and the next cell $a_{i+1,0}$ receives Signal $s$ at the next
step. $a_{i+1,0}$ receives Signal $s$ with $2i+1$ steps after that $a_{i,0}$ receives Signal $s$ for the first time,
that is, $a_{i+1,0}$ can receive Signal $s$ with $i^{2}+2i+1=(i+1)^{2}$ steps. Therefore, we can count
square steps by using the method Square$(s)$ .

5 Circle Pattern Generation on Cellular automata
We investigate a method to generate a circle pattem of maximum size in the center of a given
$m\cross n$ cellular automaton. In the following example, we assume that $m>n$ , and the area of
the maximum square form in the center of the screen, cell $O,$ $x$-axis, and $y$-axis are obtained
beforehand as shown in Figure 2. We generate an inscribed circle on the square.

5.1 Basic Concept of a Circle Pattem Generation
For each cell $P$ in the square in Figure 3, we can find whether $P$ is in the circle by checking
whether $\overline{PO}\leq\overline{KO}$. This check can be done by counting $\overline{PQ}^{2}+\overline{QO}^{2}$ and $\overline{KO}^{2}$, which is
explained as follows.

We can count $\overline{PQ}^{2}$ steps by Square$(s_{1})$ with Signal $s_{1}$ from $P$ . After receiving Signal $s_{1}$ , cell
$Q$ send Signal $s_{2}$ to cell $0$, and then we can count $\overline{QO}^{2}$ steps by Square$(s_{2})$ with Signal $s_{2}$ from
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Figure 1: square signal

$Q$ . Combining these counting, we can count $\overline{PQ}^{2}+\overline{QO}^{2}$ steps in total. Cell $K$ sends Signal $s_{3}$

to cell $0$, and then we can count $\overline{KO}^{2}$ steps by Square$(s_{3})$ with Signal $s_{3}.$

By comparing these numbers of the steps, it is determined whether $P$ is an internal cell of
the circle or not. That is, $if\overline{PQ}^{2}+\overline{QO}^{2}\leq\overline{KO}^{2},$ $P$ is intemal, and $P$ is extemal, otherwise.

5.2 Method to Generate a Circle
We explain each process of the generation of a circle in the center of the screen as follows.

(1) synchronizing for checking

First, we need to synchronize starting time of countings $\overline{PQ}^{2}+\overline{QO}^{2}$ and $\overline{KO}^{2}$ to check
whether cell $P(a_{i,j})$ is an internal one of the circle or not.

The cell $P$ sends Signal $j$ with speed 1/1 and Signal $k$ with speed 1/2 to the cell $K$ via cell
$M$ simultaneously, as shown in Figure 4.

After receiving Signal $j$, cell $K$ sends back Signal $\overline{j}$ to cell $P$ via cell $M$ . Signal $f$ and Signal
$k$ reach cell $P$ and cell $K$ simultaneously, as shown in Figure 5.

(2) checking of the cells

After receiving Signal $J^{\tau}/$ cell $P$ sends Signal $l_{1}$ to cell $Q$, and then $\overline{PQ}^{2}$ steps is counted
by square$(l_{1})$ with Signal $l_{1}$ . After receiving Signal $l_{1}$ , cell $Q$ sends Signal $l_{2}$ to the center cell
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Figure 2: setting the center of the length and the width

Figure 3: basic concept of a circle pattem generation

$O$, and then we can count $\overline{QO}^{2}$ steps by square$(l_{2})$ with Signal $l_{2}$ , accordingly we can count
$\overline{PQ}^{2}+\overline{QO}^{2}$ steps in total.

After receiving Signal $k$, cell $K$ sends Signal $m$ to cell $0$, and then we can count $\overline{KO}^{2}$ steps
by square$(m)$ with Signal $m$, as shown in Figure 6.

Cell $P$ is determined whether it is an internal point of the circle or not by checking which
signal of $l_{2}$ or $m$ will arrive at the center cell $O$ earlier. That Signal $l_{2}$ arrives at the center cell
$O$ earlier, means $\overline{PQ}^{2}+\overline{QO}^{2}\leq\overline{KO}^{2}$ . In this case, the cell $P$ is internal of the circle, otherwise
$P$ is extemal of the circle.

If Signal $l_{2}$ arrives at $O$ earlier, the cell $O$ sends signal $y$ with speed 1/1 to the cell $P$ via
cell $Q$, otherwise the cell $O$ send signal $n$ with speed 1/1, as shown in Figure 7. If cell $P(a_{i,j})$

receives Signal $y,$ $P$ changes its own state to the special state’s’ which indicates intemal of the
circle. $P$ also sends Signal $0$ to the lower direction to change states of lower cells of $P$ . The cells
which are passed by Signal $0$ change their own state to the special state’s’, and then Signal $0$

stops at $Q$ . Furthermore, $P$ sends a signal $p$ to the next cell $a_{i+1,j}$, as shown in Figure 8. If cell
$P$ receives Signal $n,$ $P$ sends Signal $p$ to the lower cell $a_{i,j-1}$ . In the cell $a_{i+1,j}$ or $a_{i,j-1}$ , same
checking is performed repeatedly

When Signal $p$ arrives at the cell $R$, the checking finishes.

(3) copies of state’s’

To generate whole circle form, copies of state’s’ are performed in the other quadrants. Cell
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Figure 4: synchronizingl Figure 5: synchronizing2

Figure 6: checking of the cells 1 Figure 7: checkin$g$ of the cells 2

$P$ sends Signal $q$ and $r$ with speed 1/1 with Signal $l_{1}$ simultaneously, as shown in Figure 9,

After receiving Signal $q$, Cell $Q$ sends Signal $t$ with speed 1/1 to the upper and Signal $u$

with speed 1/3 to the lower. After receiving Signal $t$ , Cell $P$ sends Signal $\overline{t}$ with speed 1/1.

Signal $\overline{t}$ and Signal $u$ hit in cell $P’$ which is in line symmetric position of cell $P$, as shown in
figure 10. Similarly, cell $P”$ is obtained in the second quadrant.

If cell $P$ is internal of the circle, cell $P’$ receives Signal $y$ from cell $O$ by the same way as $P,$

and changes its own state to’s’. $P’$ also sends Signal $0’$ to the upper direction to change states
of upper cells of $P’$ . The cells which are passed by Signal $0’$ change their own state to the
special stat$e’s’$, and then Signal $0’$ stops at $Q$ . If cell $P$ is extemal of the circle, cell $P’$ receives
Signal $n$ from cell $O$, and then $P’$ does nothing.

Similarly, the all intemal cells are obtained in the second quadrant. In the third quadrant,
the copies are obtained as follows. When the states of cell $P’$ and $P”$ becom$e’s’$, cell $P’$ sends
Signal $v$ to the left and cell $P”$ sends Signal $w$ to the lower. $A$ signal hits the another signal’s
trace, and then the hit point becomes cell $P”’$ , as shown in Figure 11. The cells in the internal of
the circle change their own state to the special state’s’ by the same way as the other quadrant.
When the all states of the internal of the circle are copied into the all quadrant, we can obtain
the circle.

6 Conclusion
In this paper, we reviewed the definition of a pattem and a pattem generation. Next, we
discretized the screen, and defined a pattern generation on the discretized screen. Second,
we studied a correspondence between the discretized screen and cellular automata, and we
studied the pattern generation on the cellular automata. Furthermore, we explained a method
to count square steps by sending signals. In the last part, we obtained a method to draw a
circle on two-dimensional cellular automata, by using the method to count square steps.

In this paper, we concentrated only the generation of a circle, and did not consider com-
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Figure 8: changing states of the internal cells Figure 9: setting symmetric positionl

Figure 10: setting symmetric position2

plexity issue. In our construction of cellular automaton, by checking only cells near to the
circumference of the circle, we have cellular automaton working in $O(r^{3})$ time. $(r$ means a
radius of a circle) Furthermore, by drawing a circle and copying the states which indicates the
internal of the circle simultaneously, the circle pattern is obtained more quickly.

At present, we have to consider a method for pattem generation according to an individual
figure. If any pattem can be generated using a standardized method, we can use it in a display
such as an electric bulletin board or a printer.

Figure 11: setting symmetric position3
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