Centralizing Monoids with Minimal Function Witnesses on a Three-Element Set

Hajime Machida*

Ivo G. Rosenberg[†]

Abstract

A centralizing monoid M-on a fixed set A is a set of unary functions on A which commute with some set S of functions on A. We call S a witness of M. It is known that every maximal centralizing monoid has a singleton witness consisting of a minimal function where a minimal function is, by definition, a generator of a minimal clone.

In this paper we consider the case where A is a three-element set. Using the result of B. Csákány, we obtain the list of all centralizing monoids on A which have minimal functions as their witnesses. In particular, we determine all maximal centralizing monoids on a three-element set.

Keywords: clone; centralizing monoid; minimal clone

1 Preliminaries

Let A be a finite set. For a positive integer n denote by $\mathcal{O}_A^{(n)}$ the set of all n-variable functions defined over A, i.e., maps from A^n into A. Let \mathcal{O}_A be the set of all functions defined over A, i.e., $\mathcal{O}_A = \bigcup_{n=1}^{\infty} \mathcal{O}_A^{(n)}$. A function $e_i^n \in \mathcal{O}_A^{(n)}$ for $1 \le i \le n$ is the *i*-th nary projection which is defined by $e_i^n(a_1,\ldots,a_i,\ldots,a_n) = a_i$ for every $(a_1,\ldots,a_n) \in A^n$. Denote by \mathcal{J}_A the set of all projections defined on A. For functions $f \in \mathcal{O}_A^{(n)}$ and $g \in \mathcal{O}_A^{(m)}$ we say that f commutes with g, or f and g

commute, if

$$f(g({}^t\boldsymbol{c}_1),\ldots,g({}^t\boldsymbol{c}_n)) = g(f(\boldsymbol{r}_1),\ldots,f(\boldsymbol{r}_m))$$

holds for every $m \times n$ matrix M over A with rows r_1, \ldots, r_m and columns c_1, \ldots, c_n . Note that, for m = n = 1, this means that f(g(x)) = g(f(x)) for every $x \in A$, i.e., an ordinary commutation for unary functions. We write $f \perp g$ when f commutes with g. The binary relation \perp on \mathcal{O}_A is obviously symmetric.

^{*}Graduate School of Arts and Sciences, International Christian University, 3-10-2 Osawa, Mitaka, Tokyo 185-8585 Japan (machida@math.hit-u.ac.jp)

[†]Départment de mathématiques et de statistique, Université de Montréal, C.P.6128, Succ. "Centreville", Montréal, Québec, H3C 3J7, Canada (rosenb@DMS.UMontreal.CA)

For a subset $F \subseteq \mathcal{O}_A$ the *centralizer* F^* of F is defined by

$$F^* = \{ g \in \mathcal{O}_A \mid g \perp f \text{ for all } f \in F \}.$$

For any subset $F \subseteq \mathcal{O}_A$ the centralizer F^* is a clone. When $F = \{f\}$ we often write f^* for F^* . Also, we write F^{**} for $(F^*)^*$. It is easy to see that the map $F \mapsto F^{**}$ is a closure operator on \mathcal{O}_A .

A subset M of $\mathcal{O}_A^{(1)}$ is a monoid if it is closed with respect to composition and contains the identity $id (= e_1^1)$. The set $\mathcal{O}_A^{(1)}$ is the largest monoid and the set $\{id\}$ is the smallest monoid.

2 Centralizing Monoid

A centralizing monoid may be defined in three different ways.

Lemma 2.1 For $M \subseteq \mathcal{O}_k^{(1)}$ the following conditions are equivalent.

- (1) $M = M^{**} \cap \mathcal{O}_k^{(1)}$
- (2) $\exists F \subseteq \mathcal{O}_k, \quad M = F^* \cap \mathcal{O}_k^{(1)}$
- (3) $\exists \mathcal{A} = (A; F) : algebra, M = End(\mathcal{A})$

Definition 2.1 For $M \subseteq \mathcal{O}_k^{(1)}$, M is a centralizing monoid if M satisfies the above conditions given in Lemma 2.1.

The above condition (2) asserts that a centralizing monoid is the unary part of some centralizer.

For an algebra $\mathcal{A} = (A; F)$ and a map $\varphi : A \longrightarrow A$, i.e., $\varphi \in \mathcal{O}_A^{(1)}$, φ is an *endomorphism* of \mathcal{A} if

$$f(\varphi(x_1),\ldots,\varphi(x_n))=\varphi(f(x_1,\ldots,x_n))$$

holds for every $f \in F$ and all $(x_1, \ldots, x_n) \in A^n$. In other words, φ is an endomorphism of $\mathcal{A} = (A; F)$ if and only if $\varphi \perp f$ for all $f \in F$, i.e., $\varphi \in F^*$. This means that a centralizing monoid is the set of endomorphisms of some algebra.

From Lemma 2.1 it is easy to see the following, which we call the Witness Lemma.

Lemma 2.2 For a monoid $M \subseteq \mathcal{O}_A^{(1)}$ and $S \subseteq \mathcal{O}_A$, suppose the conditions (i) and (ii) hold:

- (i) For any $f \in M$ and any $u \in S$, f and u commute, i.e., $f \perp u$.
- (ii) For any $g \in \mathcal{O}_A^{(1)} \setminus M$ there exists $w \in S$ such that g does not commute with w, i.e., $g \not\perp w$.

Then M is a centralizing monoid.

A subset S in the lemma will be called a *witness* for a centralizing monoid M. We denote by M(S) the centralizing monoid M with S as its witness, i.e., $M(S) = S^* \cap \mathcal{O}_A^{(1)}$. When f is a singleton, i.e., $S = \{f\}$, we write M(f) instead of $M(\{f\})$.

By definition, M^* is a witness for M. Hence, we have:

Lemma 2.3 Every centralizing monoid M has a witness.

This result can be strenghened due to the assumption that A is finite.

Proposition 2.4 For every centralizing monoid M there exists a finite subset of \mathcal{O}_A which is a witness of M, that is, every centralizing monoid M has a finite witness.

3 Maximal Centralizing Monoid and Minimal Clone

A centralizing monoid M is maximal if $\mathcal{O}_A^{(1)}$ is the only centralizing monoid properly containing M.

Proposition 3.1 For every maximal centralizing monoid M, there exists $u \in \mathcal{O}_A$ such that

$$M = M(u),$$

that is, every maximal centralizing monoid has a singleton witness.

For the proof see [MR 11].

Definition 3.1 A function $f \in \mathcal{O}_A$ is called a minimal function if

(i) f generates a minimal clone C, and

(ii) f has the minimum arity among functions generating C.

Theorem 3.2 For any maximal centralizing monoid M, there exists a minimal function $f \in \mathcal{O}_A$ such that

$$M = M(f),$$

that is, every maximal centralizing monoid has a witness which is a minimal function.

The reader is again referred to [MR 11] for the proof.

4 Ternary Case : $E_3 = \{0, 1, 2\}$

In the following we determine all maximal centralizing monoids on a three-element set. We write $E_3 = \{0, 1, 2\}$. In Table 0, we present all unary functions on E_3 , named after [La 84, La 06], which will be used in the sequel.

j4	j_5	u_0	u_1	u_2	u_3	u_4	u_5	v_0	v_1	v_2	v_3	v_4	v_5
1	0	2	0	0	2	2	0	2	1	1	2	2	1
0	1	0	2	0	2	0	2	1	2	1	2	1	2
1	1	0	0	2	0	2	2	1	1	2	1	2	2

	c_0	c_1	c_2
0	0	1	2
1	0	1	2
2	0	1	2

	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	84	<i>\$</i> 5	<i>s</i> 6
0	0	0	1	1	2	2
1	1	2	0	2	0	1
2	2	1	2	0	1	0

Table 0: Unary Functions in $\mathcal{O}_3^{(1)}$

Minimal Clones on E_3 4.1

jз

Ĵ0 Ĵ1 Ĵ2

1 0 0 1

0 1 0 1

0 0 1 0

1

2

The complete list of minimal clones on E_3 was given by B. Csákány (1983).

Proposition 4.1 ([Cs 83]) On E_3 there are 84 minimal clones. The number of minimal clones generated by each of five types of minimal functions is as follows:

Unary functions	:	13	(4)
Binary idempotent functions	:	48	(12)
Ternary majority functions	:	7	(3)
Ternary semiprojections	:	16	(5)

The numbers in the parentheses indicate the numbers of conjugate classes.

For each minimal function $f \in \mathcal{O}_3^{(1)}$, let $\{f\}$ be a witness and construct a centralizing monoid M(f). Then some of such centralizing monoids are maximal while some are not.

Centralizing Monoids with Minimal Functions as their Witnesses 4.2

We have explicitly determined all centralizing monoids on E_3 which have minimal functions as their witnesses. The complete list of such centralizing monoids is presented in Tables 1–4 at the end of this paper.

In [Cs 83], B. Csákány numbered each minimal function in the following way.

• A unary function $u_r(x)$ is numbered by:

t

$$r = u(0) \times 3^2 + u(1) \times 3^1 + u(2) \times 3^0$$

A binary idempotent function $b_s(x, y)$ is numbered by: •

$$s = b(0,1) \times 3^{5} + b(0,2) \times 3^{4} + b(1,0) \times 3^{3} + b(1,2) \times 3^{2} + b(2,0) \times 3^{1} + b(2,1) \times 3^{0}$$

A ternary majority function $m_t(x, y, z)$ is numbered by:

$$= m(0,1,2) \times 3^{5} + m(0,2,1) \times 3^{4} + m(1,0,2) \times 3^{3} + m(1,2,0) \times 3^{2} + m(2,0,1) \times 3^{1} + m(2,1,0) \times 3^{0}$$

• A ternary function $p(x_1, x_2, x_3)$ is called a *semiprojection* if there exists $j (\in \{1, 2, 3\})$ such that $p(x_1, x_2, x_3) = x_j$ whenever $|\{x_1, x_2, x_3\}| < 3$. A semiprojection $p_t(x, y, z)$ has a similar numbering as a majority function:

$$t = p(0,1,2) \times 3^5 + p(0,2,1) \times 3^4 + p(1,0,2) \times 3^3 + p(1,2,0) \times 3^2 + p(2,0,1) \times 3^1 + p(2,1,0) \times 3^0$$

In Tables 1–4, we use these numberings to indicate minimal functions, except unary minimal functions for which we use D. Lau's naming introduced in Table 0.

In the tables, minimal functions f for all minimal clones on E_3 appear in the leftmost column. In the row with a minimal function f in the leftmost place, all members of the centralizing monoid M(f) are shown as indicated by the circle "o".

4.3 Minimal Functions corresponding to Maximal Centralizing Monoids

Due to Theorem 3.2, one can determine all maximal centralizing monoids on E_3 by inspecting all centralizing monoids shown in Tables 1–4.

Proposition 4.2 On E_3 , there are 10 maximal centralizing monoids. Among them,

- 3 maximal centralizing monoids have unary constant functions as their witnesses, and
- 7 maximal centralizing monoids have ternary majority functions which generate minimal clones as their witnesses.

Recall that there are exactly 7 minimal clones generated by ternary majority functions. Hence every minimal clone generated by a ternary majority function corresponds to a maximal centralizing monoid.

The following is the set of minimal functions which give maximal centralizing monoids as their witnesses.

(I) Constant functions

 $c_i(x) = i$ for any $x \in E_3$ (i = 0, 1, 2)

(II) **Majority functions** (showing the values only for mutually distinct x, y and z.) Let $\sigma = \{0, 1, 2\}, (1, 2, 0), (2, 0, 1)\}$ and $\tau = \{(0, 2, 1), (1, 0, 2), (2, 1, 0)\}.$

$$\begin{array}{rcl} m_0 \left(x, y, z \right) &=& 0 & \text{ if } |\{x, y, z\}| = 3 \\ m_{364}(x, y, z) &=& 1 & \text{ if } |\{x, y, z\}| = 3 \\ m_{728}(x, y, z) &=& 2 & \text{ if } |\{x, y, z\}| = 3 \\ m_{109}(x, y, z) &=& \begin{cases} & 0 & \text{ if } (x, y, z) \in \sigma \\ 1 & \text{ if } (x, y, z) \in \tau \\ 2 & \text{ if } (x, y, z) \in \tau \end{cases} \\ \end{array}$$

$m_{510}(x,y,z)$	=	{	2 0	$egin{array}{cc} ext{if} & (x,y,z)\in\sigma \ ext{if} & (x,y,z)\in au \end{array} \ \end{array}$
$m_{624}(x,y,z)$	=	y	if	$ \{x,y,z\} =3$

For the reader's sake, we summarize all maximal centralizing monoids on E_3 . Recall that M(f) means the centralizing monoid having f as its witness.

Maximal centralizing monoids on E_3

$M(c_0)$	=	$\{s_1,s_2\}\cup\{j_1,j_2,j_5,u_1,u_2,u_5\}\cup\{c_0\}$
$M\left(c_{1} ight)$	=	$\{s_1,s_6\}\cup\{j_1,j_3,j_5,v_0,v_2,v_4\}\cup\{c_1\}$
$M(c_2)$	=	$\{s_1,s_3\}\cup\{u_2,u_4,u_5,v_2,v_4,v_5\}\cup\{c_2\}$
$M(m_0)$	=	$\{s_1,s_2\} \cup \; \{j_1,j_2,j_3,j_4,u_1,u_2,u_3,u_4\} \cup \; \{v_1,v_2,v_3,v_4\} \cup \{c_0,c_1,c_2\}$
$M(m_{364})$	=	$\{s_1, s_6\} \cup \{j_0, j_2, j_3, j_5, u_0, u_2, u_3, u_5\} \cup \{v_0, v_2, v_3, v_5\} \cup \{c_0, c_1, c_2\}$
$M(m_{728})$	=	$\{s_1, s_3\} \cup \ \{j_0, j_1, j_4, j_5, u_0, u_1, u_4, u_5\} \cup \ \{v_0, v_1, v_4, v_5\} \cup \{c_0, c_1, c_2\}$
$M(m_{109})$	=	$\{s_1,s_3\}\cup\{j_2,j_3,u_2,u_3,v_2,v_3\}\cup\{c_0,c_1,c_2\}$
$M(m_{473})$	=	$\{s_1,s_2\}\cup\{j_0,j_5,u_0,u_5,v_0,v_5\}\cup\{c_0,c_1,c_2\}$
$M(m_{510})$	=	$\{s_1,s_6\}\cup\{j_1,j_4,u_1,u_4,v_1,v_4\}\cup\{c_0,c_1,c_2\}$
$M(m_{624})$	=	$\{s_1,s_2,s_3,s_4,s_5,s_6\}\cup\{c_0,c_1,c_2\}$

References

- [Cs 83] Csákány, B, All minimal clones on the three element set, Acta Cybernet., 6, 1983, 227-238.
- [La 84] Lau, D., Die Unterhalbgruppen von (P¹₃;*), Rostock Math. Colloq., 26, 1984, 55-62.
- [La 06] Lau, D., Function Algebras on Finite Sets, Springer Monographs in Mathematics, Springer, 2006.
- [MR 04] Machida, H. and Rosenberg, I. G., On centralizers of monoids, Novi Sad Journal of Mathematics, Vol. 34, No. 2, 2004, 153-166.
- [MR 09] Machida, H. and Rosenberg, I. G., On endoprimal monoids in clone theory, *Proc.* 39th Int. Symp. Multiple-Valued Logic, IEEE, 2009, 167-172.
- [MR 10] Machida, H. and Rosenberg, I. G., Endoprimal monoids and witness lemma in clone theory, Proceedings 40th International Symposium on Multiple-Valued Logic, IEEE, 2010, 195-200.
- [MR 11] Machida, H. and Rosenberg, I. G., Maximal Centralizing Monoids and their Relation to Minimal Clones, Proceedings 41st International Symposium on Multiple-Valued Logic, IEEE, 2011.

List of Centralizing Monoids on E_3 which have Minimal Functions as their Witnesses

In the following tables, all centralizing monoids on $E_3 (= \{0, 1, 2\})$ are shown that have minimal functions as their witnesses. Minimal functions f for all minimal clones on E_3 appear in the leftmost column. In the row starting from a minimal function f in the leftmost box, all members of the centralizing monoid M(f) are shown by the circles "o". That is, the circle "o" in the crossing of row f (minimal function) and column g (unary function) indicates that g is a member of the centralizing monoid M(f), i.e., $g \in M(f)$. (Equivalently, this means $f \perp g$.)

(i) Centralizing Monoids on E_3 with Unary Minimal Functions as their Witnesses

	j_0	j_1	j_2	j_3	j_4	j_5	u_0	u_1	u_2	u_3	u_4	$ u_5 $	v_0	v_1	v_2	v_3	v_4	v_5	s_1	<i>s</i> ₂	<i>s</i> 3	<i>s</i> ₄	s_5	s_6	Const
	1	0	0	1	1	0	2	0	0	2	2	0	2	1	1	2	2	1	0	0	1	1	2	2	
	0	1	0	1	0	1	0	2	0	2	0	2	1	2	1	2	1	2	1	2	0	2	0	1	
	0	0	1	0	1	1	0	0	2	0	2	2	1	1	2	1	2	2	2	1	2	0	1	0	
<i>c</i> ₀		0	0			0		0	0			0							0	0					c_0
c_1		0		0		0							0		0		0		0					0	c_1
c_2									0		0	0			0		0	0	0		0				c_2
j_1		0			0				0										0						$c_0 c_1$
j_5	0					0									0				0						$c_0 c_1$
u_2		0							0	0									0						$c_0 c_2$
u_5							0					0					0		0						$c_0 c_2$
v_2						0									0	0			0						$c_1 c_2$
v_4												0		0			0	ì	0						$c_1 c_2$
s_2																			0	0					<i>c</i> ₀
<i>s</i> 3																			0		0				c_2
$s_4(s_5)$																			0			0	0		
<i>s</i> ₆																			0					0	c_1

Table 1: Unary Minimal Functions

	io	j_1	<i>j</i> 2	j3	j₄	<i>i</i> 5	u_0	u_1	u_2	u_3	u_4	u_5	v_0	v_1	v_2	v_3	v_4	v_5	s_1	<i>s</i> ₂	<i>s</i> 3	84	\$5	<i>s</i> ₆	Const
	1	0	0	1	$\frac{74}{1}$	0	2	0	0	2	2	0	2	1	1	2	2	1	0	0	1	1	2	2	
	0	1	0	1	0	1	0	2	0	2	0	2	1	2	1	2	1	2	1	2	0	2	0	1	
	0	0	1	0	1	1	0	0	2	0	2	2	1	1	2	1	2	2	2	1	2	0	1	0	
b_0		0	0					0	0								Γ		0	0					000
b364				0		0							0		0				0					0	000
b ₇₂₈											0	0					0	0	0		0				000
b ₈		0							0	0									0						000
b ₃₆₈						0									0	0			0						000
b ₈₀							0					0					0		0						000
b ₃₆		0			0				0										0						000
b40	0					0									0				0						000
b ₆₉₂												0		0			0		0						000
b ₁₀			0			0			0			0			0			0	0						000
b ₂₈₀		0		0					0		0				0		0		0						000
b458			0			0			0			0			0			0	0						000
b ₂₀		0				0		0				0	0				0		0						000
b448		0				0		0				0	0				0		0						000
b ₁₈₈		0		0					0		0		l		0		0		0						000
b ₁₁						0						0							0	0					000
b ₂₈₆		0															0		0					0	000
b ₂₁₅									0						0				0		0				000
b ₁₆																			0						000
b ₂₈₁																			0						000
b ₂₉₆																			0						000
b47																			0						000
b_{205}																			0						000
b ₁₇₉																			0						000

Table 2: Binary Idempotent Minimal Functions: Part 1

(iii) Centralizing Monoids on E_3

with Binary Idempotent Minimal Functions as their Witnesses: Part 2

	j_0	\dot{j}_1	<i>j</i> 2	j3	<i>j</i> 4	<i>i</i> 5	u_0	u_1	u_2	u_3	u_4	u_5	v_0	v_1	v_2	v_3	v_4	v_5	$ s_1 $	s_2	s_3	s_4	s_5	<i>s</i> ₆	Const
	1	0	0	1	1	0	2	0	0	2	2	0	2	1	1	2	2	1	0	0	1	1	2	2	
	0	1	0	1	0	1	0	2	0	2	0	2	1	2	1	2	1	2	1	2	0	2	0	1	
	0	0	1	0	1	1	0	0	2	0	2	2	1	1	2	1	2	2	2	1	2	0	1	0	
b ₁₇									0	0					0	0			0						000
b ₂₈₇						-,			0	0					0	ĺΟ.			0						000
b ₅₃	0					0	0					0							0						000
b ₃₈		0			0									0			0		0						000
b_{43}	0					0	0					0							0						000
b ₂₀₆		0			0									0			0		0						000
b ₂₆		0															0		0					0	000
b449						0						0							0	0			_		000
b ₃₇									0						0				0	Ĺ	0				000
b ₃₃																			0	0					000
b122																			0					0	000
b557																			0		0				000
b ₃₅			0	0					0	0									0						000
b ₁₂₅			0	0											0	0			0						000
b71							0					0	0					0	0						000
b_{42}		0			0			0			0								0						000
<i>b</i> ₄₁	0					0							0					0	0						000
b ₅₃₀								0			0			0			0		0						000
b ₆₈													0					0	0	0					000
b_{528}								0			0		ļ						0					0	000
b ₁₁₆			0	0			L									L			0		0				000
b ₁₇₈																			0			0	0		000
b ₂₉₀																			0			0	0		000
b ₆₂₄																			0	0	0	0	·0	0	000

Table 3: Binary Idempotent Minimal Functions: Part 2

(iv) Centralizing Monoids on E_3 with Ternary Majority Minimal Functions or Ternary Minimal Semiprojections as their Witnesses

	jo	j_1	j_2	j_3	j_4	j_5	u_0	u_1	u_2	u_3	u_4	u_5	v_0	v_1	v_2	v_3	v_4	v_5	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> 3	<i>s</i> ₄	s_5	<i>s</i> ₆	Const
	1	0	0	1	1	0	2	0	0	2	2	0	2	1	1	2	2	1	0	0	1	1	2	2	
	0	1	0	1	0	1	0	2	0	2	0	2	1	2	1	2	1	2	1	2	0	2	0	1	
	0	0	1	0	1	1	0	0	2	0	2	2	1	1	2	1	2	2	2	1	2	0	1	0	
m_0		0	0	0	0			0	0	0	0			0	0	0	0		0	0					000
m_{364}	0		0	0		0	0		0	0		0	0		0	0		0	0					0	000
m_{728}	0	0			0	0	0	0			0	0	0	0			0	0	0		0				000
m_{109}			0	0					0	0					0	0			0		0				000
m_{473}	0					0	0					0	0					0	0	0					000
m_{510}		0			0			0			0			0			0		0					0	000
m_{624}																			0	0	0	0	0	0	000
p_0													[0	0					000
p ₃₆₄																			0					0	000
p ₇₂₈																			0		0				000
p_8			0	0					0	0					0	0			0						000
p_{368}			0	0					0	0					0	0			0						000
p_{80}	0					0	0					0	0					0	0						000
p_{36}		0			0			0			0			0			0		0						000
p_{40}	0					0	0					0	0					0	0						000
p_{692}		0			0			0			0			0		Ļ	0		0						000
p_{26}																			0					0	000
p_{449}																			0	0					000
p_{37}																			0		0				000
p_{76}	0					0	0					0	0					0	0	0					000
p_{684}		0			0			0			0			0			0		0					0	000
p ₃₃₂			0	0					0	0					0	0			0		0				000
p ₄₂₄																			0	0	0	0	0	0	000

Table 4: Ternary Majority Minimal Functions and Ternary Minimal Semiprojections