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ABSTRACT. For a finite group $G$ , a Tambara functor on $G$ is regarded as a G-
bivariant analog of a commutative ring. In our previous article, we consider a
$G$-bivariant analog of the ideal theory for Tambara functors. In this article, we
will demonstrate calculations of spectra of Burnside Tambara functors, when
$G=\mathbb{Z}/q\mathbb{Z}.$

1. INTRODUCTION AND PRELIMINARIES

A Tambam functor is firstly defined by Tambara [8] in the name ‘TNR-functor’,
to treat the multiplicative transfers of Green functors. (For the definitions of Green
and Mackey functors, see [1]. $)$ Later it is used by Brun [2] to describe the structure
of Witt-Burnside rings.

For a finite group $G$ , a Tambara functor is also regarded as a $G$-bivariant analog
of a commutative ring, as seen in [9]. As such, for example a $G$-bivariant analog of
the fraction ring was considered in [3], and a $G$-bivariant analog of the semigroup-
ring construction was discussed in [5] and [6], with relation to the Dress construction
[7].

In this analogy, we considered a $G$-bivariant analog of the ideal theory for Tam-
bara functors in our previous article [4]. In this article, we will demonstrate calcu-
lations of spectra of Burnside Tambara functors, when $G=\mathbb{Z}/q\mathbb{Z}$ for some prime
number $q.$

Throughout this article, the unit of a finite group $G$ will be denoted by $e$ . Ab-
breviately we denote the trivial subgroup of $G$ by $e$ , instead of $\{e\}.$ $H\leq G$ means
$H$ is a subgroup of G. cset denotes the category of finite $G$-sets and $G$-equivariant
maps. If $H\leq G$ and $g\in G$ , then $gH=gHg^{-1}$ denotes the conjugate $gH=gHg^{-1}.$

A ring is assumed to be commutative, with an additive unit $0$ and a multiphcative
unit 1. $A$ ring homomorphism preserves $0$ and 1.

For any category $\mathscr{C}$ and any pair of objects $X$ and $Y$ in $\mathscr{C}$ , the set of morphisms
from $X$ to $Y$ in $\mathscr{C}$ is denoted by $\mathscr{C}(X, Y)$ .

First we briefly recall the definition of a Tambara functor and its ideal.

Definition 1.1. ([8]) A Tambara functor $T$ on $G$ is a triplet $T=(T^{*}, T_{+}, T.)$ of
two covariant functors

$\tau_{+}:csetarrow Set$ , $T$.: $G^{\mathcal{S}et}arrow Set$
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and one contravariant functor
$T^{*}: G^{8et}arrow Set$

which satisfies the following. Here Set is the category of sets.
(1) $T^{\alpha}=(T^{*}, T_{+})$ is a Mackey functor on $G.$

(2) $T^{\mu}=(T^{*}, T_{\circ})$ is a semi-Mackey functor on $G.$

Since $T^{\alpha},$ $T^{\mu}$ are semi-Mackey functors, we have $T^{*}(X)=T_{+}(X)=T.(X)$
for each $X\in Ob(Gset)$ . We denote this by $T(X)$ .

(3) (Distributive law) If we are given an exponential diagram

$Xarrow^{p}Aarrow^{\lambda}Z$

$f\downarrow exp \downarrow\rho$

$YB\overline{q}$

in $G^{Set}$ , then

$T(X)arrow T(A)\tau_{+(p)}arrow T(Z)T^{*}(\lambda)$

$T.(f)\downarrow$
$T(Y)T(B)\overline{T_{+}(q)}$

is commutative.
If $T=(T^{*}, T_{+}, T.)$ is a Tambara functor, then $T(X)$ becomes a ring for each

$X\in ob(G^{Set)}\cdot For each f\in cset(X, Y)$ ,
$\bullet$ $T^{*}(f):T(Y)arrow T(X)$ is a ring homomorphism.
$\bullet$ $T_{+}(f):T(X)arrow T(Y)$ is an additive homomorphism.
$\bullet$ $T.(f):T(X)arrow T(Y)$ is a multiplicative homomorphism.

$T^{*}(f),$ $T_{+}(f),$ $T.(f)$ are often abbreviated to $f^{*},$ $f+,$ $f..$

In this article, a Tambara functor always means a Tambara functor on some
finite group $G.$

Example 1.2. If we define $\Omega$ by

$\Omega(X)=K_{0}(cset/X)$

for each $X\in$ Ob $(_{G}$ set), where the right hand side is the Grothendieck ring of the
category of finite $G$-sets over $X$ , then $\Omega$ becomes a Tambara functor on $G$ . This is
called the Bumside Tambara functor. For each $f\in cset(X, Y)$ ,

$f.:\Omega(X)arrow\Omega(Y)$

is the one determined by
$f.(Aarrow^{p}X)=(\Pi_{f}(A)arrow\varpi Y)$ $(^{\forall}(Aarrow^{p}X)\in$ Ob$(cset/X))$ ,

where $\Pi_{f}(A)$ and $\varpi$ is

$\Pi_{f}(A)=\{(y, \sigma)$ $\sigma:f^{-1}(y)arrow Aamapp\circ\sigma=id_{f^{-1}(y)}y\in Y$

,
of sets, $\},$

$\varpi(y, \sigma)=y.$

79



ON THE CALCULATION OF THE SPECTRA OF BURNSIDE TAMBARA FUNCTORS

$G$ acts on $\Pi_{f}(A)$ by $g\cdot(y, \sigma)=(gy^{g}\sigma)$ , where $g\sigma$ is the map defined by

$g\sigma(x)=g\sigma(g^{-1}x) (^{\forall}x\in f^{-1}(gy))$ .

Definition 1.3. Let $T$ be a Tambara functor. For each $f\in cset(X, Y)$ , define
$f_{!}:T(X)arrow T(Y)$ by

$f_{!}(x)=f.(x)-f.(0)$

for any $x\in T(X)$ .

Remark 1.4. ([4]) Let $T$ be a Tambara functor. We have the following for any
$f\in cset(X, Y)$ .

(1) $f_{!}$ satisfies $fi(x)fi(y)=f_{!}(xy)$ for any $x,$ $y\in T(X)$ .
(2) If $f$ is surjective, then we have $fi=f..$
(3) If

$X’arrow^{f’}Y’$

$\xi\downarrow \square \downarrow\eta$

$Xarrow Yf$

is a pull-back diagram, then $f[\xi^{*}=\eta^{*}fi$ holds.
(4) If

$Xarrow^{p}Aarrow^{\lambda}Z$

$f| exp |\rho$
$Y\Pi\overline{\varpi}$

is an exponential diagram, then $\varpi_{+}\rho_{!}\lambda^{*}=f_{!}p+$ holds.

Definition 1.5. ([4]) Let $T$ be a Tambara functor. An ideal $\mathscr{I}$ of $T$ is a family of
ideals $\mathscr{I}(X)\subseteq T(X)(^{\forall}X\in$ Ob($c$ set) $)$ satisfying

(i) $f^{*}(\mathscr{I}(Y))\subseteq \mathscr{I}(X)$ ,
(ii) $f_{+}(\mathscr{I}(X))\subseteq \mathscr{I}(Y)$ ,
(iii) $f_{!}(\mathscr{I}(X))\subseteq \mathscr{I}(Y)$

for any $f\in cset(X, Y)$ . These conditions also imply

$\mathscr{I}(X_{1}\coprod X_{2})\cong \mathscr{I}(X_{1})\cross \mathscr{I}(X_{2})$

for any $X_{1},$ $X_{2}\in Ob(cset)$ .

Obviously when $G$ is trivial, this definition of an ideal agrees with the ordinary
definition of an ideal of a commutative ring.

Remark 1.6. For any ideal $\mathscr{I}\subseteq T$ , we have $\mathscr{I}(\emptyset)=T(\emptyset)=0.$

Definition 1.7. ([4]) An ideal $\mathfrak{p}\subsetneq T$ is prime if for any transitive $X,$ $Y\in$ Ob(cset)
and any $a\in T(X),$ $b\in T(Y)$ ,

$\langle a)\langle b\rangle\subseteq \mathfrak{p}$ $\Rightarrow$ $a\in \mathfrak{p}(X)$ or $b\in \mathfrak{p}(Y)$

is satisfied. Remark that the converse always holds.
An ideal $m\subsetneq T$ is maximal if it is maximal with respect to the inclusion of ideals

not equal to $T.$ $A$ maximal ideal is always prime.
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Definition 1.8. ([4]) For any Tambara functor $T$ on $G$ , define Spec $(T)$ to be the
set of all prime ideals of $T$ . For each ideal $\mathscr{I}\subseteq T$ , define a subset $V(\mathscr{I})\subseteq Spec(T)$

by
$V(\mathscr{I})=\{\mathfrak{p}\in Spec(T)|\mathscr{I}\subseteq \mathfrak{p}\}.$

Remark 1.9. ([4]) For any Tambara functor $T$ , we have the following.
(1) $V(\mathscr{I})=\emptyset$ if and only if $\mathscr{I}=T.$

(2) $V(\mathscr{I})=Spec(T)$ if and only if
$\mathscr{I}\subseteq\bigcap_{\mathfrak{p}\in Spec(T)}\mathfrak{p}.$

Remark 1.10. ([4]) For any Tambara functor $T$, the family { $V(\mathscr{I})|\mathscr{I}\subseteq T$ is an ideal}
forms a system of closed subsets of Spec $(T)$ . Thus Spec $\Omega$ becomes a topological
space.

2. SOME PROPOSITIONS

Proposition 2.1. Let $T$ be a Tambam functor. Suppose we are given a family of
ideals indexed by the set of finite non-empty transitive $G$ -sets

(2.1)
$\{\mathscr{I}(X_{0})\subseteq T(X_{0})\}_{\emptyset\neq x_{0\in Ob(set)}^{tmns\cdot t\iota ve}G}.$

For any $X\in Ob(G\mathcal{S}et)$ , take its orbit decomposition
$X=\coprod_{1\leq\iota\leq s}X_{i}$ and put

$\mathscr{I}(X)=\mathscr{I}(X_{1})\cross\cdots\cross \mathscr{I}(X_{s})\subseteqT(X)$ .

(We used the identification $T(X) \cong\prod_{1\leq\iota\leq s}T(X_{t}).$ ) Then the following are equivalent.

(1) $\mathscr{I}=\{\mathscr{I}(X)\}_{X\in Ob(set)}G$ is an ideal of $T.$

(2) The family (2.1) satisfies
(i) $f^{*}(\mathscr{I}(Y_{0}))\subseteq \mathscr{I}(X_{0})$

(ii) $f_{+}(\mathscr{I}(X_{0}))\subseteq \mathscr{I}(Y_{0})$

(iii) $f.(\mathscr{I}(X_{0}))\subseteq \mathscr{I}(Y_{0})$

for any tmnsitive $X_{0},$ $Y_{0}\in$ Ob(cset) and any $f\in G^{Set(x_{0},Y_{0})}$

Proof. Remark that for any non-empty transitive $X_{0},$ $Y_{0}\in$ Ob $(_{G^{\mathcal{S}}}et)$ and any $f\in$

$cset(X_{0}, Y_{0})$ , we have $f.$ $=f_{!}$ . Obviously, (1) implies (2). We will show the
converse.

Assume (2) holds. It suffices to show $\mathscr{I}$ satisfies (i), (ii), (iii) in Definition 1.5
for any $f\in cset(X, Y)$ .

First, we reduce to the case where $Y$ is transitive. Take the orbit decomposition
$Y=\square Y_{j}1\leq j\leq t$

, put

$X_{g}=f^{-1}(Y_{j}) , f_{j}=f|x_{J}:X_{\mathcal{J}}arrow Y_{j},$

and suppose (i), (ii), (iii) in Definition 1.5 holds for each $f_{J}$ . Since we have com-
mutative diagrams

$T(X) arrow^{\underline{}\simeq}\prod_{j}T(X_{j})$ $T(Y)- \prod_{j}T(Y_{j})\underline{\simeq}$ $T(X) arrow^{\simeq\underline{}}\prod_{j}T(X_{j})$

$f_{+}\downarrow$ $0$ $\downarrow\Pi_{\mathcal{J}}f_{J+},$ $f^{*}\downarrow$

$T(Y) \overline{\underline{\simeq}}\prod_{j}T(Y_{j})$ $T(X) arrow\underline{\simeq}\prod_{j}T(X_{j})$ $T(Y) \overline{\underline{\simeq}}\prod_{j}T(Y_{j})$
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under the canonical identification, we obtain

$f_{+}( \mathscr{I}(X))=\prod f_{J+}(\mathscr{I}(X_{j})) \subseteq \prod_{j}\mathscr{I}(Y_{j})=\mathscr{I}(Y)$
,

$f^{*}( \mathscr{I}(Y))=\prod f_{j}^{*}(\mathscr{I}(Y_{j})) \subseteq \prod_{J}\mathscr{I}(X_{j})=\mathscr{I}(X)$
,

$fi$
$( \mathscr{I}(X))=\prod_{l}f_{j!}(\mathscr{I}(X_{j}))$

$\subseteq$

$\prod_{J}\mathscr{I}(Y_{j})=\mathscr{I}(Y)$
.

Now it remains to show in the case $Y$ is transitive. If $X=\emptyset$ , then there is
nothing to show. Otherwise, take the orbit decomposition $X=1\leq i\leq sLIX_{i}$ and put

$f_{l}=f|x$ . : $X_{i}arrow Y$ . Remark that in this case, we have $f.$ $=f_{!}$ . By assumption,
each $f_{i}$ satisfies

$f_{i+}(\mathscr{I}(X_{\iota})) \subseteq \mathscr{I}(Y)$ ,
$f_{i}^{*}(\mathscr{I}(Y)) \subseteq \mathscr{I}(X_{i})$ ,

$f_{i}.(\mathscr{I}(X_{\iota})) \subseteq \mathscr{I}(Y)$ .

Under the identification $T(X) \cong\prod_{1\leq\iota\leq s}T(X_{i})$
, we obtain $f^{*}(\mathscr{I}(Y))\subseteq \mathscr{I}(X_{1})\cross$

. . . $\cross \mathscr{I}(X_{s})=\mathscr{I}(X)$ . Moreover, for any $x\in \mathscr{I}(X)$ , under the identification
$\mathscr{I}(X) = \mathscr{I}(X_{1})\cross\cdots \mathscr{I}(X_{S})$

$x = (x_{1}, \ldots, x_{s})$ ,

we have
$f_{+}(x) = f_{1+}(x_{1})+\cdots+f_{s+}(x_{s})\in \mathscr{I}(Y)$ ,
$f.(x)$ $=$ $f_{1}.(x_{1})$ . . . . . $f_{s}.(x_{S})\in \mathscr{I}(Y)$ .

Thus it follows $f_{+}(\mathscr{I}(X))\subseteq \mathscr{I}(Y),$ $f.(\mathscr{I}(X))\subseteq \mathscr{I}(Y)$ . $\square$

Corollary 2.2. To give an ideal $\mathscr{I}$ of a Tambam functor $T$ on $G$ is equivalent to
give a family of ideals indexed by $\mathcal{O}_{G}$

$\{\mathscr{I}(G/H)\subseteq T(G/H)\}_{H\in \mathcal{O}(G)}$

satisfying
(i) $res_{K}^{H}(\mathscr{I}(G/H))\subseteq \mathscr{I}(G/K)$

(ii) $ind_{K}^{H}(\mathscr{I}(G/K))\subseteq \mathscr{I}(G/H)$

(iii) $jnd_{K}^{H}(\mathscr{I}(G/K))\subseteq \mathscr{I}(G/H)$

(iv) $c_{g,H}(\mathscr{I}(G/H))\subseteq \mathscr{I}(G/gH)$

for any $K\leq H\leq G$ and $g\in G$ . In particular, $\mathscr{I}(G/H)\subseteq T(G/H)$ is $N_{G}(H)/H-$

invariant.

By construction, for ideals $\mathscr{I},$ $\mathscr{J}\subseteq T$ , we have
$\mathscr{I}\subseteq \mathscr{J}\Leftrightarrow \mathscr{I}(G/H)\subset \mathscr{J}(G/H)(^{\forall}H\in \mathcal{O}(G))$ .

Corollary 2.3. When $G=\mathbb{Z}/q\mathbb{Z}$ where $q$ is a prime number, then to give an ideal
$\mathscr{I}$ of $T$ is equivalent to give

$\bullet$ a $G$ -invari ant ideal $\mathscr{I}(G/e)\subseteq T(G/e)$ ,
$\bullet$ an ideal $\mathscr{I}(G/G)\subseteq T(G/G)$ ,
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satisfying
(i) $\pi^{*}(\mathscr{I}(G/G))\subseteq \mathscr{I}(G/e)$ ,
(ii) $\pi_{+}(\mathscr{I}(G/e))\subseteq \mathscr{I}(G/G)$ ,
(iii) $\pi.(\mathscr{I}(G/e))\subseteq \mathscr{I}(G/G)$ ,

where $\pi:G/earrow G/G$ is the unique constant map.

Remark 2.4. (Corollary 4.5 in [4]) An ideal $\mathscr{I}\subseteq T$ is prime if and only if for
any transitive $X,$ $Y\in$ Ob(Gset) and any $a\in T(X),$ $b\in T(Y)$ , the following two
conditions become equivalent.

(1) $a\in T(X)$ or $b\in T(Y)$ .
(2) For any $C\in$ Ob(cset) and for any pair of diagrams in cset

$Carrow^{v}Darrow^{w}X, Carrow^{v’}D’arrow^{w’}Y,$

$(v_{!}w^{*}(a))\cdot(v_{!}’w^{J*}(b))\in \mathscr{I}(C)$ is satisfied.
Note that (1) always implies (2).

By the following lemma, it is enough to check (2) only when $C,$ $D,$ $D’$ are tran-
sitive.

Lemma 2.5. Let $\mathscr{I}\subseteq T$ be an ideal. Condition (2) in Remark 2.4 is equivalent
to the following.

(2)’ For any transitive $C\in$ Ob(cset) and for any pair of diagrams in cset
$Carrow^{v}Darrow^{w}X, Carrow^{v’}D’arrow^{w’}Y$

where $D$ and $D’$ are transitive, $(v.w^{*}(a))\cdot(v’.w^{J*}(b))\in \mathscr{I}(C)$ is satisfied.
Proof. It suffices to show (2)’ implies (2). Assume (2)’ holds, take any $C\in$

Ob(cset) and

$Carrow^{v}Darrow^{w}X, Carrow^{v’}D’arrow^{w’}Y,$

with not necessarily transitive $C,$ $D,$ $D’.$

Let
$C=I_{l}1C_{i}a\leq\leq m$ be the orbit decomposition, and put

$D_{i}=v^{-1}(C_{l}) D_{l}’=v^{;-1}(C_{l})$ ,
$v_{i}=v|_{D_{x}}:D_{i}arrow C_{i} v_{i}’=v’|_{D_{l}’}:D_{l}’arrow C_{i},$

$w_{t}=w|_{D_{t}}:D_{\iota}arrow X w_{i}’=w’|_{D_{l}’}:D_{i}’arrow Y$

Then we have $v_{!}w^{*}(a)=(v_{1!}w_{1}^{*}(a), \ldots, v_{m!}w_{m}^{*}(a))$, where

$v_{\iota!}w_{l}^{*}(a)=\{\begin{array}{ll}v_{i}.w_{l}^{*}(a) if D_{i}\neq\emptyset 0 if D_{\iota}=\emptyset.\end{array}$

Similarly for $b$ . In any case, $(v_{i!}w_{l}^{*}(a))\cdot(v_{\iota!}’w_{i^{*}}’(b))\in \mathscr{I}(C_{t})$ $(1\leq\forall_{i}\leq m)$ follows
from (2)’, which means

$(v_{!}w^{*}(a))\cdot(v_{!}’w^{\prime*}(b))\in \mathscr{I}(C)$ .
$\square$
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Proposition 2.6. Let $T$ be a Tambara functor, and $\mathfrak{p}\subseteq T$ be a prime ideal. Let
$T(G/e)^{G}$ denote the subring of $G$-invariant elements in $T(G/e)$ :

$T(G/e)^{G}=\{x\in T(G/e)|gx=x(^{\forall}g\in G)\}$

Similarly for $\mathfrak{p}(G/e)^{G}$ :
$\mathfrak{p}(G/e)^{G}=\mathfrak{p}(G/e)\cap T(G/e)^{G}$

Then, $\mathfrak{p}(G/e)^{G}\subseteq T(G/e)^{G}$ is a prime ideal (in the ordinary ring-theoretic meaning).

Proof. Suppose $a,$ $b\in T(G/e)^{G}$ satisfies $ab\in \mathfrak{p}(G/e)$ . By Lemma 2.5, it suffices to
show for any transitive $C,$ $D,$ $D’$ and any pair of diagrams in cset
(2.2) $Carrow^{v}Darrow^{w}G/e, Carrow^{v’}D’arrow^{w’}G/e,$

$(v.w^{*}(a))\cdot(v’.w^{\prime*}(b))\in \mathfrak{p}(C)$ is satisfied. Since $D$ and $D’$ are transitive with trivial
stabilizers, we may assume $D=D’=G/e$ . Furthermore, modifying $v$ and $v’$ by
conjugations, we may assume

$C=G/H, v=v’=p_{e}^{H}:G/Harrow G/e$

for some $H\leq G$ . Thus (2.2) is reduced to the case

$G/HL^{e}-G/eHarrow^{w}G/e, G/HL_{-}^{H}ec/earrow^{w’}G/e,$

where $w,$ $w’$ are the multiplication by some $g,g’\in G$ . Then we have
$((p_{e}^{H}).w^{*}(a))\cdot((p_{e}^{H}).w^{J*}(b)) = (p_{8}^{H}).((ga)\cdot(g’b))$

$=$ $(p_{e}^{H})$ . (ab) $\in \mathfrak{p}(G/H)$ .
$\square$

Corollary 2.7. If $\mathfrak{p}\subseteq\Omega$ is prime, then $\mathfrak{p}(G/e)\subseteq\Omega(G/e)$ is prime.

Proof. This immediately follows from the fact that $\Omega(G/e)\cong \mathbb{Z}$ has a trivial G-
action. $\square$

3. $Spec\Omega$ FOR $G=\mathbb{Z}/q\mathbb{Z}$

In the following, we assume $G=\mathbb{Z}/q\mathbb{Z}$ for some prime number $q$ , and denote the
canonical projection by $\pi=p_{e}^{G}:G/earrow G/G.$

3.1. Structure of $\Omega.$

Proposition 3.1. For $G=\mathbb{Z}/q\mathbb{Z}$ , Bumside Tambara functor has the following
structure.

(1) There are isomorphisms of rings

$\Omega(G/e)$
$arrow^{\underline{}\simeq}$

$\mathbb{Z}$ ; $\ell G/e\mapsto\ell,$

$\Omega(G/G)$
$arrow^{\underline{}\simeq}$ $\mathbb{Z}[X]/(X^{2}-qX)$ ; $mG/e+nG/G\mapsto m+nX.$

(2) Under the isomorphisms in (1), the structure morphisms $\pi_{+},$ $\pi^{*},$ $\pi$. are

$\pi+$ : $\mathbb{Z}arrow \mathbb{Z}[X]/(X^{2}-qX);\ell\mapsto lX,$

$\pi^{*}$ : $\mathbb{Z}[X]/(X^{2}-qX)arrow \mathbb{Z}$ ; $m+nX\mapsto m+qn,$

$\pi$. : $\mathbb{Z}arrow \mathbb{Z}[X]/(X^{2}-qX)$ $; \ell\mapsto\ell+\frac{\ell^{q}-\ell}{q}X.$
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Proof. The only non-trivial part will be

$\pi.(\ell)=\ell+\frac{\ell^{q}-\ell}{q}X.$

This is shown by using the following.

Fact 3.2. (Proposition 4.17 in [4])
The following diagram is commutative.

$/7)\ell\mapsto\ell_{\sigma\backslash }$

From this fact, for any $\ell\in \mathbb{Z}$ we have
(3.1) $\pi.(\ell)=\ell+nX$

for some $n\in \mathbb{Z}$ . Remark that $n\geq 0$ holds if $\ell\geq 0.$

Besides, by the definition of $\pi.$ , for any $\ell\in \mathbb{N}_{\geq 0}$ we have

$\pi.(\coprod_{\ell}G/earrow G/e)\nabla=$ { $\sigma|\sigma:G/earrow\coprod_{\ell}G/e$, a section map for $\nabla$ },

and thus
(3.2) $\#(\pi.(\ell))=\ell^{q}.$

From (3.1) and (3.2),

$\pi.(\ell)=\ell+\frac{\ell^{q}-\ell}{q}X$

for any $\ell\geq 0$ . As for a negative $\ell$ , since we have
$\pi.(\ell)=\pi.(-1)\pi.(|\ell|)$ ,

it will be enough to determine $\pi.(-1)$ .
By (3.1), we have $\pi.(-1)=-1+nX$ for some $n\in \mathbb{Z}$ , which should satisfy

$1=\pi.(-1)^{2}=(-1+nX)^{2}=1+n(qn-2)X.$

When $q$ is odd, it follows $n=0$ , and $\pi.(-1)=-1$ . For $q=2$ , both $-1$ and
$-1+X$ satisfy $(-1)^{2}=(-1+X)^{2}=1$ . However, from the Mackey condition for
the pullback

$\coprod_{2}G/earrow^{\nabla}G/e$

$\nabla\downarrow \square \downarrow\pi$

$G/eG\overline{\pi}/G$

$\pi.(-1)$ should satisfy
$\pi^{*}\pi.(-1)=1,$

which leads to $\pi.(-1)=-1+X.$
In any case, we obtain

$\pi.(\ell)=\ell+\frac{\ell^{q}-\ell}{q}X(^{\forall}\ell\in \mathbb{Z})$

for any prime $q.$ $\square$
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3.2. Decomposition into fibers. Using the structural isomorphism in Proposi-
tion 3.1, we go on to determine $Spec\Omega$ for $G=\mathbb{Z}/q\mathbb{Z}$ . By Corollary 2.7, any prime
ideal $\mathfrak{p}\subseteq\Omega$ satisfies $\mathfrak{p}(G/e)=(p)$ for some prime $p$ or $p=0$ . Thus we have a map

$F:Spec\Omegaarrow Spec\mathbb{Z}$ ; $\mathfrak{p}\mapsto \mathfrak{p}(G/e)$ .

( $F$ will be shown to be continuous after Spec $\Omega$ is determined.)

Definition 3.3. Let $p\in \mathbb{Z}$ be prime or $p=0$ . We call an ideal $\mathscr{I}\subseteq\Omega$ is over $p$

if it satisfies $\mathscr{I}(G/e)=(p)$ . $A$ prime ideal over $p$ is simply a prime ideal $\mathfrak{p}\subseteq\Omega$

which is over $p.$

Remark 3.4. By the above arguments, we have
$\bullet$ $F^{-1}((p))=$ { $\mathfrak{p}\in Spec\Omega|$ prime ideal over $p$},
$\bullet$ $Spec\Omega=$ $1I$ $F^{-1}((p))$ .

$(p)\in Spec\mathbb{Z}$

In the following, we investigate the fibers $F^{-1}((p))$ , in the cases $p=0,$ $p=q,$

and $p\neq 0,$ $q.$

For each $(p)\in Spec\mathbb{Z}$ , its fiber $F^{-1}((p))$ at least contains one maximal point. In
fact, the following was shown in [4].

Fact 3.5. (Corollary 4.42 in [4])

Spec $\Omega\supseteq$ { $\mathscr{I}_{(p)}|p\in \mathbb{Z}$ is prime} $\cup\{\mathscr{I}_{(0)}\}\cup\{(0)\}.$

Here, for each ideal $I\subseteq\Omega(G/e)$ , ideal $\mathscr{I}_{I}\subseteq\Omega$ is defined by
$\mathscr{I}_{I}(G/e)=I, \mathscr{I}_{I}(G/G)=(\pi^{*})^{-1}(I)$ .

$\mathscr{I}_{I}$ is the largest one, among all ideals $\mathscr{I}\subseteq\Omega$ satisfying $\mathscr{I}(G/e)=I.$

Under the isomorphism in Proposition 3.1, for any $\ell\in \mathbb{Z}$ we have

$\mathscr{I}_{(\ell)}(G/e) = (l) \subseteq \mathbb{Z},$

$\mathscr{I}_{(\ell)}(G/G) = \{m+nX\in \mathbb{Z}[X]/(X^{2}-qX)|m+qn\in(\ell)\}$

$= \{k\ell+n(X-q)\in \mathbb{Z}[X]/(X^{2}-qX)|k, n\in \mathbb{Z}\}$

$= (\ell, X-q) \subseteq \mathbb{Z}[X]/(X^{2}-qX)$ .

In this article, we denote $\mathscr{I}_{(p)}$ by $m_{p}$ . For any prime $p\neq 0,$ $\mathfrak{m}_{p}$ is a maximal
ideal of $\Omega$ . Namely it is a closed point in Spec $\Omega$ , while $\mathfrak{m}_{0}=\mathscr{I}_{(0)}$ is not. (For this
reason, we prefer to use $\mathscr{I}_{(0)}$ rather than $m_{0}$ only for $p=0.$ )

On the other hand, (0) is the smallest ideal of $\Omega$ , namely the generic point in
Spec $\Omega$ . We have inclusions

(0) $\subsetneq \mathscr{I}_{(0)}\subsetneq \mathfrak{m}_{p}$

for any prime $p\in \mathbb{Z}.$

3.3. The smallest ideal over $p.$

Proposition 3.6. For a prime $p\in \mathbb{Z}$ or $p=0$ , the smallest ideal $I_{p}\subseteq\Omega$ over $p$ is
given by the following.

(1) When $p\neq q$ (including the case $p=0$),
$I_{p}(G/G)=(p)\subseteq \mathbb{Z}[X]/(X^{2}-qX)$ .

(2) When $p=q,$

$I_{q}(G/G)=(qX, X-q)=(q^{2}, X-q)\subseteq \mathbb{Z}[X]/(X^{2}-qX)$ .
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Pmof. (1) $(p)\subseteq I_{p}(G/e)$ follows from

$p = (p+ \frac{p^{q}-p}{q}X)-\frac{p^{q}-p}{pq}\cdot pX$

$= \pi.(p)-\frac{p^{q}-p}{pq}\pi_{+}(p)$ .

To show the converse, it suffices to show that

$\mathscr{I}(G/e)=(p)\subseteq \mathbb{Z}$ and $\mathscr{I}(G/G)=(p)\subseteq \mathbb{Z}[X]/(X^{2}-qX)$

in fact form an ideal $\mathscr{I}$ of $\Omega$ . By Corollary 2.3, this is equivalent to show

$\pi^{*}((p)) \subseteq (p)$ ,
$\pi_{+}((p)) \subseteq (p)$ ,
$\pi.((p)) \subseteq (p)$ .

However, these immediately follow from

$\pi^{*}(p)=p \in(p)$

and

$\pi_{+}(\ell p) = lpX \in(p)$

$\pi.(lp) = \ell p+\frac{\ell^{q}p^{q}-\ell p}{q}X \in(p)$

for any $\ell\in \mathbb{Z}$ . (Remark that $\pi^{*}$ is a ring homomorphism.)
(2) $(qX, X-q)\subseteq I_{q}(G/e)$ follows from

$qX=\pi_{+}(q)$

and

$X-q=q^{q-1}X-(q+ \frac{q^{q}-q}{q}X)=\pi_{+}(q^{q-1})-\pi.(q)$ .

To show the converse, it suffices to show

$\pi^{*}((q^{2}, X-q)) \subseteq (q)$ ,
$\pi_{+}((q)) \subseteq (qX, X-q)$ ,
$\pi.((q)) \subseteq (qX, X-q)$ .

These follow from

$\pi^{*}(q^{2})=q^{2}, \pi^{*}(X-q)=0 \in(q)$ ,

and

$\pi_{+}(\ell q) = \ell qX \in(qX)$

$\pi.(\ell q) = \ell(q-X)+\ell^{q}q^{q-1}X \in(q-X, qX)$

for any $\ell\in \mathbb{Z}.$ $\square$
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3.4. All ideals over $p.$

For $p\neq 0$ , ideals $\mathscr{I}\subseteq\Omega$ over $p$ are only $I_{p}$ and $\mathfrak{m}_{p}.$

Claim 3.7. When $p\in \mathbb{Z}$ is prime $(\neq 0)$ , then there is no ideal between $I_{p}\subsetneq m_{p}.$

Proof. It suffices to show that there is no element $f\in\Omega(G/G)$ satisfying

(3.3) $I_{p}(G/G)\subsetneq I_{p}(G/G)+(f)\subsetneq(p, X-q)$ .

By $f\in(p, X-q)$ , it should be of the form $f=kp+n(X-q)$ for some $k,$ $n\in \mathbb{Z}.$

(1) When $p\neq q,$ $(3.3)$ is equal to

$(p)\subsetneq(p, f)\subsetneq(p, X-q)$ .

This will mean the existence of $n\in \mathbb{Z}$ satisfying $(p)\subsetneq(p, n(X-q))\subsetneq(p, X-q)$ .
However, since

$(p, n(X-q))=\{\begin{array}{ll}(p) if p|n(p, X-q) if p\parallel n\end{array}$

there should not exist such $n.$

(2) When $p=q,$ $(3.3)$ is equal to

$(q^{2}, X-q)\subsetneq(q^{2}, X-q, f)\subsetneq(q, X-q)$ .

This will mean the existence of $k\in \mathbb{Z}$ satisfying

$(q^{2}, X-q)\subsetneq(q^{2}, X-q, kq)\subsetneq(q, X-q)$ .

However, since

$(q^{2}, X-q, kq)=\{\begin{array}{ll}(q^{2}, X-q) if q|k(q, X-q) if q\parallel k\end{array}$

there should not exist such $k.$ $\square$

On the other hand for $p=0$ , there are many ideals between (0) $\subsetneq \mathscr{I}_{(0)}.$

Claim 3.8. If we define $\mathscr{I}_{(0;n)}\subseteq\Omega$ by

$\mathscr{I}_{(0;n)}(G/e)=(0) , \mathscr{I}_{(0;n)}(G/G)=n(X-q)$ ,

then $\mathscr{I}_{(0;n)}\subseteq\Omega$ forms an ideal for each $n\in \mathbb{Z}$ . Indeed, these are exactly the all
ideals $\mathscr{I}\subseteq\Omega$ over $0$ :

$\{\mathscr{I}\subseteq\Omega$ ideal $|\mathscr{I}(G/e)=0\}=\{\mathscr{I}_{(0;n)}|n\in \mathbb{Z}\}$

Proof. Any ideal between (0) $\subsetneq(X-q)$ in $\mathbb{Z}[X]/(X^{2}-qX)$ is of the form $(n(X-q))$
for some $n\in \mathbb{Z}$ . Since $\mathscr{I}_{(0;n)}(G/e)=(0)$ and $\mathscr{I}_{(0;n)}(G/G)=(n(X-q))$ satisfy

$\pi^{*}(n(X-q))=0, \pi_{+}(0)=0, \pi.(0)=0,$

$\mathscr{I}_{(0;n)}\subseteq\Omega$ gives an ideal for each $n\in \mathbb{Z}.$ $\square$
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3.5. Criterion to be prime. Let $p\in \mathbb{Z}$ be a prime or $p=0$ . Now we give a
criterion for an ideal $\mathscr{I}\subseteq\Omega$ over $p$ to be prime.

Proposition 3.9. Let $p\in \mathbb{Z}$ be a prime or $p=0$ . Let $\mathscr{I}\subseteq\Omega$ be an ideal over $p,$

not equal to $m_{p}$ . Then $\mathscr{I}$ is not prime if and only if one of the following conditions
is satisfied.

(cl) There exist $a,$ $b\in \mathfrak{m}_{p}(G/G)$ satisfying
$a\not\in \mathscr{I}(G/G) , b\not\in \mathscr{I}(G/G) , ab\in \mathscr{I}(G/G)$.

(c2) There exist $a\in m_{p}(G/G)$ and $b\in\Omega(G/e)$ satisfying
$a\not\in \mathscr{I}(G/G) , \pi.(b)\not\in \mathscr{I}(G/G) , a\cdot(\pi.(b))\in \mathscr{I}(G/G)$.

$(Only here, we use the$ notation $m_{0}=\mathscr{I}_{(0)} for the$ consistency. $)$ In panicular, if
$\mathscr{I}(G/G)\subseteq\Omega(G/G)$ is prime, then $\mathscr{I}\subseteq\Omega$ is prime.

More explicitly, these can be written as follows.
(cl)’ There exist $k,$ $n,$ $k’,$ $n’\in \mathbb{Z}$ satisfying

$kp+n(X-q)\not\in \mathscr{I}(G/G) , k’p+n’(X-q)\not\in \mathscr{I}(G/G)$,
$kk’p^{2}+((n’k+nk’)p+nn’q)(X-q)\in \mathscr{I}(G/G)$ .

(c2)’ There exist $k,$ $n,$ $l\in \mathbb{Z}$ satisfying

$kp+n(X-q) \not\in \mathscr{I}(G/G) , \ell+\frac{\ell^{q}-\ell}{q}X\not\in \mathscr{I}(G/G)$ ,

$kp(l+ \frac{\ell^{q}-\ell}{q}X)+n\ell(X-q)\in \mathscr{I}(G/G)$ .

Proof. By Lemma 2.5, $\mathscr{I}\subseteq\Omega$ is not prime if and only if there exist transitive
$X,$ $Y\in$ Ob(cset) and $a\in\Omega(X),$ $b\in\Omega(Y)$ satisfying $a\not\in \mathscr{I}(X),$ $b\not\in \mathscr{I}(Y)$ and

$(\Diamond)$ $(v.w^{*}(a))\cdot(v’.w^{J*}(b))\in \mathscr{I}(C)$ for any

$Carrow^{v}Darrow^{w}X, Carrow^{v’}D’arrow^{w’}Y,$

with $C,$ $D,$ $D’$ transitive.
We may consider this condition in the following three cases.
(1) $X=Y=G/e.$
(2) $X=Y=G/G.$
(3) $X=G/G,$ $Y=G/e.$

(1) If $X=Y=G/e$, then $(\Diamond)$ is reduced to
$ab\in \mathscr{I}(G/e)=(p)$ ,

which implies automatically $a$ or $b$ is in $\mathscr{I}(G/e)$ . Thus we can exclude this case.

(2) If $X=Y=G/G$, then condition $(\Diamond)$ is equivalent to
$ab\in \mathscr{I}(G/G) , \pi^{*}(a)\pi^{*}(b)\in \mathscr{I}(G/G)$ ,

$(\pi.\pi^{*}(a))\cdot b\in \mathscr{I}(G/G) , a\cdot(\pi.\pi^{*}(b))\in \mathscr{I}(G/G)$ ,
$(\pi.\pi^{*}(a))\cdot(\pi.\pi^{*}(b))\in \mathscr{I}(G/G.)$ .

Since $\mathscr{I}(G/e)=(p)$ is prime, it follows that $\pi^{*}(a)$ or $\pi^{*}(b)$ is in $\mathscr{I}(G/e)$ . Thus
we may assume $\pi^{*}(a)\in(p)$ , namely $a\in \mathfrak{m}_{p}(G/G)$ . Then the above conditions are
reduced to

$ab\in \mathscr{I}(G/G) , a\cdot(\pi.\pi^{*}(b))\in \mathscr{I}(G/G)$ .
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The existence of such $a$ and $b$ can be divided into the following two cases. Remark
that $\pi^{*}(b)\not\in \mathscr{I}(G/e)$ will imply $b\not\in \mathscr{I}(G/G)$ .

(2-1) (the case $\pi^{*}(b)\not\in(p)$ )
There exist $a\in m_{p}(G/G)$ and $b\in\Omega(G/G)$ satisfying

$a\not\in \mathscr{I}(G/G) , \pi^{*}(b)\not\in \mathscr{I}(G/e)$ ,
$ab\in \mathscr{I}(G/G) , a\cdot(\pi.\pi^{*}(b))\in \mathscr{I}(G/G)$ .

(2-2) (the case $\pi^{*}(b)\in(p)$ )
There exist $a,$ $b\in m_{p}(G/G)$ satisfying

$a\not\in \mathscr{I}(G/G) , b\not\in \mathscr{I}(G/G) , ab\in \mathscr{I}(G/G)$.

(3) If $X=G/G$ and $Y=G/e$ , then for $a\in\Omega(G/G)$ and $b\in\Omega(G/e)$ which are not
in $\mathscr{I}$ , condition $(\Diamond)$ is reduced to

$(\pi^{*}(a))\cdot b\in \mathscr{I}(G/e) , a\cdot(\pi.(b))\in \mathscr{I}(G/G)$.
Since $b\not\in \mathscr{I}(G/e)=(p)$ , the condition $(\pi^{*}(a))\cdot b\in \mathscr{I}(G/e)$ is equivalent to
$\pi^{*}(a)\in \mathscr{I}(G/e)$ , namely to $a\in m_{p}(G/G)$ . The existence of such $a$ and $b$ can
be divided into the following two cases. Remark that $\pi.(b)\not\in \mathscr{I}(G/G)$ will imply
$b\not\in \mathscr{I}(G/e)$ .

(3-1) $($the case $\pi.(b)\not\in \mathscr{I}(G/G))$

There exist $a\in m_{p}(G/G)$ and $b\in\Omega(G/e)$ satisfying
$a\not\in \mathscr{I}(G/G) , \pi.(b)\not\in \mathscr{I}(G/G) , a\cdot(\pi.(b))\in \mathscr{I}(G/G)$ .

(3-2) $($ the case $\pi.(b)\in \mathscr{I}(G/G))$

There exist $a\in \mathfrak{m}_{p}(G/G)$ and $b\in\Omega(G/e)$ satisfying
$a\not\in \mathscr{I}(G/G) , b\not\in \mathscr{I}(G/e) , \pi.(b)\in \mathscr{I}(G/G)$ .

Note that, in (3-2), the conditions for $a$ and $b$ are completely separated. Moreover
since $\mathscr{I}(G/G)\subsetneq \mathfrak{m}_{p}(G/G)$ , such $a$ always exists. Thus (3-2) is reduced to the
following.

(3-2) There exists $b\in\Omega(G/e)$ satisfying
$b\not\in \mathscr{I}(G/e)$ and $\pi.(b)\in \mathscr{I}(G/G)$ .

However, this never happens. Indeed, since we have
$\pi^{*}\pi.(\ell)=\ell^{q}$

for any $\ell\in\Omega(G/e)$ , we obtain
$\pi.(\ell)\Rightarrow\pi^{*}\pi.(b)\in \mathscr{I}(G/e)\Rightarrow\ell\in \mathscr{I}(G/e)$ .

By the arguments so far, $\mathscr{I}\subseteq\Omega$ is not prime if and only if one of (2-1), (2-2),
(3-1) is satisfied. Furthermore, we see (2-1) implies (3). Indeed if $a$ and $b$ satisfy
(2-1), then $a\in\Omega(G/G)$ and $b’=\pi^{*}(b)\in\Omega(G/e)$ satisfy

$a\not\in \mathscr{I}(G/G) , b’\not\in \mathscr{I}(G/e)$ ,
$a\cdot(\pi.(b’))\in \mathscr{I}(G/G) , \pi^{*}(a)\cdot b’=\pi^{*}(ab) \in \mathscr{I}(G/e)$ .

Thus, we can conclude that $\mathscr{I}\subseteq\Omega$ is not prime if and only if one of (2-2), (3-1)
is satisfied. These are respectively the conditions (cl), (c2) in the statement of the
proposition.
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The latter part can be shown easily by using $\mathfrak{m}_{p}(G/G)=(p, X-q)$ . An easy
observation $X(X-q)=0$ will help the calculation. $\square$

3.6. Determine each fiber. Proposition 3.9 enables us to determine the structure
of Spec $\Omega.$

Corollary 3.10. Let $p\in \mathbb{Z}$ be a prime or $p=0$ . In each fiber $F^{-1}((p))$ over $p$ , we
have the following.

(1) $(the case p\neq q, 0)$

If $p\neq 0$ is a prime other than $q$ , then $I_{p}\subseteq\Omega$ in $Prop_{0\mathcal{S}}$ition 3$.9$ is prime.
For this reason, in the rest we denote $I_{p}$ by $\mathfrak{p}_{p}.$

(2) (the case $p=q$)
$I_{q}\subseteq\Omega$ is not prime.

(3) (the case $p=0$)
$\mathscr{I}_{(0;n)}\subseteq\Omega$ in Claim 3.8 is prime if and only if $n=0$ or $n=\pm 1.$

Proof. (1) It suffices to show that either of (cl)’, (c2)’ does not occur. Remark that
we have $\mathfrak{p}_{p}(G/G)=(p)$ .

(cl)’ For any $k,$ $n,$ $k’,$ $n’$ , since
$kp+n(X-q) \not\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p\int n,$

$k’p+n’(X-q) \not\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p\int n’,$

$kk’p^{2}+((n’k+nk’)p+nn’q)(X-q)\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p|nn’,$

these never happens simultaneously.
(c2)’ For any $k,$ $n,$ $l\in \mathbb{Z}$ , since

$kp+n(X-q) \not\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p\int n,$

$\ell+\frac{\ell^{q}-\ell}{q}X\not\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p\parallel\ell,$

$kp( \ell+\frac{\ell^{q}-\ell}{q}X)+n\ell(X-q)\in \mathfrak{p}_{p}(G/G) \Leftrightarrow p|n\ell,$

these never happens simultaneously.

(2) We show (cl) holds for $I_{q}$ . Remark that we have $I_{q}(G/G)=(qX, X-q)$ .
For $a=b=X\in m_{q}(G/G)$ , we have

$a=b\not\in I_{q}(G/G)$ and $ab=qX\in I_{q}(G/G)$ .
Thus $I_{q}$ is not prime.

(3) We already know (0) $\subseteq\Omega$ and $\mathscr{I}_{(0)}\subseteq\Omega$ are prime. It suffices to show $\mathscr{I}_{(0;n)}\subseteq\Omega$

is not prime for $n\not\in\{-1,0,1\}$ . We show (c2) holds for these $n$ . Remark that we
have $\mathscr{I}_{(0;n)}(G/G)=(n(X-q))$ .

For $a=X-q\in\Omega(G/G)$ and $b=n\in\Omega(G/e)$ , we have

$a\not\in \mathscr{I}_{(0;n)}(G/G)$ ,
$\pi.(b)=n+\frac{n^{q}-n}{q}X\not\in \mathscr{I}_{(0;n)}(G/G)$ ,

$(X-q)\cdot(\pi.(b))=n(X-q)\in \mathscr{I}_{(0;n)}(G/G)$ .
Thus $\mathscr{I}_{(0;n)}$ is not prime for $n\not\in\{-1,0,1\}.$ $\square$
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3.7. Total picture. As a consequence, Spec $\Omega$ can be determined as
Spec $\Omega$ $=$ $(\{(0)\}\cup\{\mathscr{I}(0)\})\cup\{\mathfrak{m}_{q}\}$

$\cup$ $(\{\mathfrak{p}_{p}|p\in \mathbb{Z} is$ prime, $p\neq q\}\cup\{m_{p}|p\in \mathbb{Z} is$ prime, $p\neq q\})$ .
Inclusions are

(0) $\subsetneq \mathscr{I}_{(0)}\subsetneq$ $m_{q}$

$n 1\cap$
$\mathfrak{p}_{p} \subsetneq m_{p} (p\neq q)$

Especially the dimension of Spec $\Omega$ is 2.
$\mathfrak{m}_{q}$ and $\mathfrak{m}_{p}$ ’s are the closed points, and (0) is the generic point in Spec $\Omega$ . If we

represent the points in $Spec\Omega$ by their closures, $Spec\Omega$ with fibration $F$ can be
depicted as follows. It can be also easily seen that $F$ is continuous.

FIGURE 1. $Spec\Omega$ for $G=\mathbb{Z}/q\mathbb{Z}$
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