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1 Intrinsic linkedness, intrinsic knottedness and $\triangle Y$-exchange

Let $G$ be a finite graph and $f$ an embedding of $G$ into the 3-dimensional Euclidean
space $\mathbb{R}^{3}$ . Then $f$ is called a spatial embedding of $G$ and $f(G)$ is called a spatial graph.
We denote the set of all spatial embeddings of $G$ by $SE(G)$ . $A$ subgraph of $G$ which is
homeomorphic to a circle is called a cycle of $G.$ $A$ cycle of $G$ which contains exactly $k$

edges is called a $k$ -cycle of $G$ , and a cycle of $G$ which contains all vertices of $G$ is called a
Hamiltonian cycle of $G$ . For a positive integer $n,$ $\Gamma^{(n)}(G)$ denotes the set of all cycles of
$G$ if $n=1$ and the set of all unions of mutually disjoint $n$ cycles of $G$ if $n\geq 2$ . We denote
the union of $\Gamma^{(n)}(G)$ over all positive integer $n$ by $\overline{\Gamma}(G)$ . If $n=1$ , we denote $\Gamma^{(1)}(G)$ by
$\Gamma(G)$ simply, and denote the subset of $\Gamma(G)$ consisting of all $k$-cycles of $G$ by $\Gamma_{k}(G)$ . For
an element $\gamma$ in $\Gamma^{(n)}(G)$ and an element $f$ in $SE(G),$ $f(\gamma)$ is none other than a knot in
$f(G)$ if $n=1$ and an $n$-component link in $f(G)$ if $n\geq 2$ . In particular, for a Hamiltonian
cycle $\gamma$ of $G$ , we call $f(\gamma)$ a Hamiltonian knot in $f(G)$ . $A$ graph $H$ is called a minor of a
graph $G$ if there exists a subgraph $G’$ of $G$ such that $H$ is obtained from $G’$ by contracting
some of the edges. $A$ minor $H$ of $G$ is called a proper minor if $H$ does not equal $G.$

Let $K_{n}$ be the complete graph on $n$ vertices ( $=1$-skelton of $(n-1)$-simplex if $n\geq 2$ ),
see Fig. 1.1 for $n=6,7$ . For spatial embeddings of $K_{6}$ and $K_{7}$ , let us recall the Conway-
Gordon theorems which are very famous in spatial graph theory.

Theorem 1.1 (Conway-Gordon [2])

(1) For any element $f$ in $SE(K_{6})$ , it follows that

$\gamma\in\Gamma(K_{6})\sum_{(2)}1k(f(\gamma))\equiv 1$
(mod 2),

where lk denotes the linking number.
(2) For any element $f$ in $SE(K_{7})$ , it follows that

$\sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))\equiv 1 (mod 2)$
,
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where $a_{i}$ denotes the $ith$ coefficient of the Conway polynomial.

(1) (2)

Figure 1.1. The complete graph on $n$ vertices $K_{n}:(1)n=6,$ (2) $n=7$

A graph is said to be intrinsically linked if for any element $f$ in $SE(G)$ , there exists
an element $\gamma$ in $\Gamma^{(2)}(G)$ such that $f(\gamma)$ is a nonsplittable 2-component link, and to be
intrinsically knotted if for any element $f$ in $SE(G)$ , there exists an element $\gamma$ in $\Gamma(G)$ such
that $f(\gamma)$ is a nontrivial knot. Theorem 1.1 implies that $K_{6}$ is intrinsically linked and $K_{7}$

is intrinsically knotted. Moreover, it is known that $K_{6}$ (resp. $K_{7}$ ) is minor-minimal with
respect to the intrinsic linkedness (resp. knottedness), that is, each of the proper minors
of $K_{6}$ (resp. $K_{7}$ ) is not intrinsically linked [16] (resp. knotted [11]).

We can obtain another intrinsically linked (resp. knotted) graph from $K_{6}$ (resp. $K_{7}$ )
in the following way. $A\triangle Y$ -exchange is an operation to obtain a new graph $G_{Y}$ from a
graph $G_{\triangle}$ by removing all edges of a 3-cycle $\triangle$ of $G_{\triangle}$ with the edges $uv,$ $vw$ and $wu$ , and
adding a new vertex $x$ and connecting it to each of the vertices $u,$ $v$ and $w$ as illustrated
in Fig. 1.2 (we often denote $ux\cup vx\cup wx$ by $Y$ ). $AY\triangle$ -exchange is the reverse of this
operation. We call the set of all graphs obtained from a graph $G$ by a finite sequence of
$\triangle Y$ and $Y\triangle$-exchanges the $G$ -family and denote it by $\mathcal{F}(G)$ . In particular, we denote
the set of all graphs obtained from $G$ by a finite sequence of $\triangle Y$-exchanges by $\mathcal{F}_{\triangle}(G)$ .

$G_{\Delta} G_{Y}$

Figure 1.2. $\triangle Y$-exchange and $Y\triangle$-exchange
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Example 1.2 (1) The $K_{6}$-family consists of seven graphs as illustrated in Fig. 1.3 and
$\mathcal{F}_{\triangle}(K_{6})=\mathcal{F}(K_{6})\backslash \{P_{7}\}$ . Since $P_{10}$ is isomorphic to the Petersen graph which is
depicted in Fig. 1.5 (1), the $K_{6}$-family is also called the Petersen family.

(2) The $K_{7}$-family consists of twenty graphs as illustrated in Fig. 1.4 and $\mathcal{F}_{\triangle}(K_{7})=$

$\mathcal{F}(K_{7})\backslash \{N_{9}, N_{10}, N_{11}, N_{10}’, N_{11}’, N_{12}’\}$ . Since $C_{14}$ is isomorphic to the Heawood graph
which is depicted in Fig. 1.5 (2), the $K_{7}$-family is also called the Heawood family.

Figure 1.3. $K_{6^{-}}$family $=$ Petersen family

The intrinsic linkedness and the intrinsic knottedness behave well under $\triangle Y$-exchanges
as follows.

Proposition 1.3 (Motwani-Raghunathan-Saran [11])

(1) If $G_{\triangle}$ is intrinsically linked, then $G_{Y}$ is also intrinsically linked.
(2) If $G_{\triangle}$ is intrinsically knotted, then $G_{Y}$ is also intrinsically knotted.

Thus any graph $G$ in $\mathcal{F}_{\triangle}(K_{6})$ (resp. $\mathcal{F}_{\triangle}(K_{7})$ ) is intrinsically linked (resp. knotted).
Moreover, it is also known that $G$ is minor-minomal with respect to the intrinsic linkedness
[16] (resp. knottedness [10]).

$Now$ let us give a proof of Proposition 1.3. We denote the set of all elements in $\overline{\Gamma}(G_{\triangle})$

containing $\triangle$ by $\overline{\Gamma}_{\triangle}(G_{\triangle})$ . Let $\gamma’$ be an element in $\overline{\Gamma}(G_{\triangle})$ which does not contain $\triangle.$

Then there exists an element $\overline{\Phi}(\gamma’)$ in $\overline{\Gamma}(G_{Y})$ such that $\gamma’\backslash \triangle=\overline{\Phi}(\gamma’)\backslash Y$ . It is easy to
see that the correspondence from $\gamma’$ to $\overline{\Phi}(\gamma’)$ defines a surjective map

$\overline{\Phi}:\overline{\Gamma}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})arrow\overline{\Gamma}(G_{Y})$.

Note that if $\gamma’$ is an element in $\Gamma^{(n)}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})$ then $\overline{\Phi}(\gamma’)$ is an element in $\Gamma^{(n)}(G_{Y})$ .
For an element $\gamma$ in $\overline{\Gamma}(G_{Y})$ , we see that the inverse image of $\gamma$ by $\overline{\Phi}$ contains at most two
elements in $\overline{\Gamma}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})$ . In general, the following holds.
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Figure 1.4. $K_{7^{-}}$family $=$ Heawood family
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(1) (2)

Figure 1.5. (1) Petersen graph, (2) Heawood graph

Proposition 1.4 Let $\gamma$ be an element in $\overline{\Gamma}(G_{Y})$ . Then, the inverse image of $\gamma$ by $\overline{\Phi}$

consists of exactly one element if and only if $\gamma$ contains $u,$ $v,$ $w$ and $x$ , or $\gamma$ does not
contain $x.$

Let $f$ be an element in $SE(G_{Y})$ and $D$ a 2-disk in $\mathbb{R}^{3}$ such that $D\cap f(G_{Y})=f(Y)$

and $\partial D\cap f(G_{Y})=\{f(u), f(v), f(w)\}$ . Let $\varphi(f)$ be an element in $SE(G_{\triangle})$ such that
$\varphi(f)(x)=f(x)$ for $x\in G_{\triangle}\backslash \triangle=G_{Y}\backslash Y$ and $\varphi(f)(G_{\triangle})=(f(G_{Y})\backslash f(Y))\cup\partial D$. Thus
we obtain a map

$\varphi$ : SE $(G_{Y})arrow$ SE $(G_{\triangle})$ .

Then we have the following.

Proposition 1.5 Let $f$ be an element in $SE(G_{Y})$ and $\gamma$ an element in $\overline{\Gamma}(G_{Y})$ . Then,
$f(\gamma)$ is ambient isotopic to $\varphi(f)(\gamma’)$ for each element $\gamma’$ in the inverse image of $\gamma$ by $\overline{\Phi}.$

Proof of Proposition 1.3. We show (2), namely if $G_{\triangle}$ is intrinsically knotted then $G_{Y}$

is also intrinsically knotted. For any element $f$ in $SE(G_{Y})$ , there exists a element $\gamma’$ in
$\Gamma(G_{\triangle})$ such that $\varphi(f)(\gamma’)$ is a nontrivial knot because $G_{\triangle}$ is intrinsically knotted. Note
that $\gamma’$ is not equal to $\triangle$ because $\varphi(f)(\triangle)$ is a trivial knot. Thus $\overline{\Phi}(\gamma’)$ belongs to $\Gamma(G_{Y})$ .
Then, by Proposition 1.5, $f(\overline{\Phi}(\gamma’))$ is ambient isotopic to the nontrivial knot $\varphi(f)(\gamma’)$ .
We can also show (1) in a similar way. $\square$

Remark 1.6 It is known that the converse of Proposition 1.3 (1) is also true [15], but
the converse of Proposition 1.3 (2) is not true, see Remark 3.5.

As we see above, $\triangle Y$ exchanges carry the intrinsic linkedness and the intrinsic knotted-
ness for a graph to the one for another graph. Our purpose in this report is to introduce
a method to carry not only the intrinsic linkedness and the intrinsic knottedness but also
the Conway-Gordon type dependent relation for a graph to the one for another graph by
$\triangle Y$-exchanges.

5



2 $\triangle Y$-exchange and Conway-Gordon theorem

Let $A$ be an additive group and $\alpha$ an $A$-valued unoriented link invariant. We say that $\alpha$

is compressible if $\alpha(L)=0$ for any unoriented link $L$ which have a component $K$ bounding
a disk $D$ in $\mathbb{R}^{3}$ with $D\cap L=\partial D=K$ . Namely $\alpha(L)=0$ if $L$ contains a trivial knot as a
split component. In particular, $\alpha(L)=0$ when $L$ is a trivial knot. Suppose that for each
element $\gamma’$ in $\overline{\Gamma}(G_{\triangle})$ , an $A$-valued unoriented link invariant $\alpha_{\gamma’}$ is assigned. Then for each
element $\gamma$ in $\overline{\Gamma}(G_{Y})$ , we define an $A$-valued unoriented link invariant $\tilde{\alpha}_{\gamma}$ by

$\tilde{\alpha}_{\gamma}(L)=\sum_{\gamma’\in\overline{\Phi}^{-1}(\gamma)}\alpha_{\gamma’}(L)$
.

Then we have the following lemma.

Lemma 2.1 (Nikkuni-Taniyama [13]) If $\alpha_{\gamma’}$ is compressible for any element $\gamma’$ in $\overline{\Gamma}_{\triangle}(G_{\triangle})$ ,
then it follows that

$\sum_{\gamma\in\overline{\Gamma}(G_{Y})}\tilde{\alpha}_{\gamma}(f(\gamma))=\sum_{\gamma’\in\overline{\Gamma}(G_{\triangle})}\alpha_{\gamma’}(\varphi(f)(\gamma’))$

for any element $f$ in $SE(G_{Y})$ .

Proof. For an element $\gamma’$ in $\overline{\Gamma}_{\triangle}(G_{\triangle})$ , we see that $\varphi(f)(\gamma’)$ is the trivial knot if $\gamma’$ belongs
to $\Gamma(G_{\triangle})$ and a link containing a trivial knot as a split component if $\gamma’$ belongs to
$\overline{\Gamma}(G_{\triangle})\backslash \Gamma(G_{\triangle})$ . Since $\alpha_{\gamma’}$ is compressible for any element $\gamma’$ in $\overline{\Gamma}(G_{\triangle})$ , we see that

$\sum_{\gamma’\in\overline{\Gamma}(G_{\Delta})}\alpha_{\gamma’}(\varphi(f)(\gamma’))=\sum_{\gamma’\in\overline{\Gamma}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})}\alpha_{\gamma’}(\varphi(f)(\gamma’))$

.

Note that

$\overline{\Gamma}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})=\bigcup_{\gamma\in\overline{\Gamma}(G_{Y})}\overline{\Phi}^{-1}(\gamma)$

.

Then, by Proposition 1.5, we see that

$\sum_{\gamma’\in\overline{\Gamma}(G_{\triangle})\backslash \overline{\Gamma}_{\triangle}(G_{\triangle})}\alpha_{\gamma’}(\varphi(f)(\gamma’))=\sum_{\gamma\in\overline{\Gamma}(G_{Y})}(\sum_{\gamma’\in\overline{\Phi}^{-1}(\gamma)}\alpha_{\gamma’}(\varphi(f)(\gamma’)))$

$= \sum_{\gamma\in\overline{\Gamma}(G_{Y})}(\sum_{\gamma’\in\overline{\Phi}^{-1}(\gamma)}\alpha_{\gamma’}(f(\gamma)))$

$= \sum_{\gamma\in\overline{\Gamma}(G_{Y})}\tilde{\alpha}_{\gamma}(f(\gamma))$

.

Thus we have the result. $\square$

By Lemma 2.1, we immediately have the following theorem.
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Theorem 2.2 Suppose that $\alpha_{\gamma’}$ is compressible for each element $\gamma’$ in $\overline{\Gamma}_{\triangle}(G_{\triangle})$ . Suppose
that there exists a subset $A_{0}$ of $A$ such that

$\sum_{\gamma’\in\overline{\Gamma}(G_{\triangle})}\alpha_{\gamma’}(g(\gamma’))\in A_{0}$

for any element $g$ in $SE(G_{\triangle})$ . Then we have

$\sum_{\gamma\in\overline{\Gamma}(G_{Y})}\tilde{\alpha}_{\gamma}(f(\gamma))\in A_{0}$

for any element $f$ in $SE(G_{Y})$ .

Proof. Suppose that there exists a subset $A_{0}$ of $A$ such that

$\sum_{\gamma\in\overline{\Gamma}(G_{\triangle})}\alpha_{\gamma’}(g(\gamma’))\in A_{0}$
(2.1)

for any element $g$ in $SE(G_{\triangle})$ . Then by Lemma 2.1 and (2.1), we have

$\sum_{\gamma\in\overline{\Gamma}(G_{Y})}\tilde{\alpha}_{\gamma}(f(\gamma))=\sum_{\gamma’\in\overline{\Gamma}(G_{\triangle})}\alpha_{\gamma’}(\varphi(f)(\gamma’))\in A_{0}$

for any element $f$ in $SE(G_{Y})$ . $\square$

As an application of Theorem 2.2, a “Conway-Gordon type” theorem for any element in
$\mathcal{F}_{\triangle}(K_{6})$ (resp. $\mathcal{F}_{\triangle}(K_{7})$ ) can be produced by the Conway-Gordon theorem for $K_{6}$ (resp.
$K_{7})$ .

Example 2.3 Let $Q_{7}$ be the graph which is obtained from $K_{6}$ by a single $\triangle Y$-exchange.
For each element $\gamma’$ in $\overline{\Gamma}(K_{6})$ , we define a $\mathbb{Z}_{2}$-valued unoriented link invariant $\alpha_{\gamma’}$ of
an unoriented link $L$ by $\alpha_{\gamma’}(L)\equiv a_{1}(L)(mod 2)$ . Note that $\alpha_{\gamma’}(L)=0$ if $L$ is not
a 2-component link and $\alpha_{\gamma’}(L)\equiv$ lk $(L)(mod 2)$ if $L$ is a 2-component link. Then by
Theorem 1.1 (1), we have

$\sum_{\gamma’\in\overline{\Gamma}(K_{6})}\alpha_{\gamma’}(g(\gamma’))=1$
(2.2)

in $\mathbb{Z}_{2}$ for any element $g$ in $SE(K_{6})$ . Note that $\alpha_{\gamma’}$ is compressible for any element $\gamma’$ in
$\overline{\Gamma}(K_{6})$ . Thus by Theorem 2.2 and (2.2), we have

$\sum_{\gamma\in\overline{\Gamma}(Q_{7})}\tilde{\alpha}_{\gamma}(f(\gamma))=1$

(2.3)

in $\mathbb{Z}_{2}$ for any element $f$ in $SE(Q_{7})$ . Note that each union of mutually disjoint two cycles
of $Q_{7}$ contains all of the vertices. Thus by Proposition 1.4, for any element $\gamma$ in $\Gamma^{(2)}(Q_{7})$ ,
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the inverse image of $\gamma$ by $\overline{\Phi}$ consists of exactly one element. Therefore we have

$\tilde{\alpha}_{\gamma}(L)=\sum_{\gamma’\in\overline{\Phi}^{-1}(\gamma)}\alpha_{\gamma’}(L)\equiv a_{1}(L) (mod 2)$
(2.4)

for any element $\gamma$ in $\Gamma^{(2)}(Q_{7})$ . Thus by (2.3) and (2.4), we have

$1= \sum_{\gamma\in\overline{\Gamma}(Q_{7})}\tilde{\alpha}_{\gamma}(f(\gamma))\equiv\sum_{\gamma\in\overline{\Gamma}(Q_{7})}a_{1}(f(\gamma))\equiv\sum_{\gamma\in\Gamma^{(2)}(Q_{7})}1k(f(\gamma)) (mod 2)$

.

3 Conway-Gordon type theorems over integers

Conway-Gordon theorems give dependent relations on the invariants of constituent knots
and links in a spatial graph over $\mathbb{Z}_{2}$ . In this section, we consider Conway-Gordon type
theorems over integers. It is known that the Conway-Gordon theorems for $K_{6}$ and $K_{7}$

have integral lifts as follows.

Theorem 3.1 (Nikkuni [12])

(1) For any element $f$ in $SE(K_{6})$ , it follows that

$2 \sum_{\gamma\in\Gamma_{6}(K_{6})}a_{2}(f(\gamma))-2\sum_{\gamma\in\Gamma_{5}(K_{6})}a_{2}(f(\gamma))=\sum_{\gamma\in\Gamma^{(2)}(K_{6})}1k(f(\gamma))^{2}-1.$

(2) For any element $f$ in $SE(K_{7})$ , it follows that

$7 \sum_{\gamma\in\Gamma_{7}(K_{7})}a_{2}(f(\gamma))-6\sum_{\gamma\in\Gamma_{6}(K_{7})}a_{2}(f(\gamma))-2\sum_{\gamma\in\Gamma_{5}(K_{7})}a_{2}(f(\gamma))$

$=2 \sum_{\gamma\in\Gamma_{3,4}^{(2)}(K_{7})}1k(f(\gamma))^{2}-21,$

where $\Gamma_{k,l}^{(2)}(G)$ denotes the set of all pairs of two disjoint cycles consisting of a $k$-cycle

and a $l$-cycle of $G.$

Note that Theorem 1.1 (1) and (2) can be obtained from Theorem 3.1 (1) and (2)

respectively by taking the modulo two reduction. Then, by combining Theorem 2.2 with
Theorem 3.1 in a similar way as Example 2.3, it can be shown the following.

Theorem 3.2 (Nikkuni-Taniyama [13])

(1) Let $G$ be an element in $\mathcal{F}_{\triangle}(K_{6})$ . Then, there exist a map $\omega$ from $\Gamma(G)$ to $\mathbb{Z}$ such

that for any element $f$ in $SE(G)$ , it follows that

$2 \gamma\in\Gamma(\gamma\in\Gamma(G)\sum_{G)}\omega(\gamma)a_{2}(f(\gamma))=\sum_{(2)}1k(f(\gamma))^{2}-1.$
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(2) Let $G$ be an element in $\mathcal{F}_{\triangle}(K_{7})$ . Then, there exists a map $\omega$ from $\overline{\Gamma}(G)$ to $\mathbb{Z}$ such
that for any element $f$ in $SE(G)$ , it follows that

$\sum_{\gamma\in\Gamma(G)}\omega(\gamma)a_{2}(f(\gamma))=2\sum_{\gamma\in\Gamma^{(2)}(G)}\omega(\gamma)1k(f(\gamma))^{2}-21.$

Remark 3.3 Recall that $\mathcal{F}(K_{6})\backslash \mathcal{F}_{\triangle}(K_{6})=\{P_{7}\}$ . It is known that $P_{7}$ is also a minor-
minimal intrinsically linked graph [16], and $O$ ’Donnol showed that Theorem 3.2 (1) also
holds for $P_{7}[14]$ . Therefore Theorem 3.2 (1) holds for any graph in the $K_{6}$-family.

By taking the modulo two reduction on Theorem 3.2, we immediately have the following.

Corollary 3.4 (1) (Sachs [16], Taniyama-Yasuhara [17]) Let $G$ be an element in $\mathcal{F}(K_{6})$ .
Then, for any element $f$ in $SE(G)$ , it follows that

$\sum_{\gamma\in\Gamma^{(2)}(G)}1k(f(\gamma))\equiv 1 (mod 2)$
.

(2) Let $G$ be an element in $\mathcal{F}_{\triangle}(K_{7})$ . Then, there exists a subset $\Gamma$ of $\Gamma(G)$ such that for
any element $f$ in $SE(G)$ , it follows that

$\sum_{\gamma\in\Gamma}a_{2}(f(\gamma))\equiv 1 (mod 2)$
.

Remark 3.5 Recall that $\mathcal{F}(K_{7})\backslash \mathcal{F}_{\triangle}(K_{7})=\{N_{9}, N_{10}, N_{11}, N_{10}’, N_{11}’, N_{12}’\}$ . It is known
that any graph in $\mathcal{F}(K_{7})\backslash \mathcal{F}_{\triangle}(K_{7})$ is not intrinsically knotted [3], [7], [6].

In Theorem 3.2, the proof of the existence of a map $\omega$ is constructive. So we can
“theoretically” give $\omega(\gamma)$ for each element $\gamma$ in $\overline{\Gamma}(G)$ concretely (but it is accompanied
by a complicated work to carry it out). For a map $\omega$ : $\Gamma(G)arrow \mathbb{Z}$ in Theorem 3.2 (1),
Hashimoto-Nikkuni gave $\omega(\gamma)$ for each element $\gamma$ in $\Gamma(G)[8].$

Example 3.6 In Theorem 3.2 (2), let us consider the case that $G=C_{14}$ , namely $G$ is
the Heawood graph. We define a map $\omega$ : $\overline{\Gamma}(C_{14})arrow \mathbb{Z}$ by

$\omega(\gamma)=\{\begin{array}{ll}7 if\gamma\in\Gamma_{14}(C_{14})15 if \gamma\in\Gamma_{12}(C_{14})-6 if\gamma\in\Gamma_{10}(C_{14})-32 if\gamma\in\Gamma_{8}(C_{14})-12 if\gamma\in\Gamma_{6}(C_{14})2 if \gamma\in\Gamma^{(2)}(C_{14})=\Gamma_{6,6}^{(2)}(C_{14})0 otherwise\end{array}$
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for an element $\gamma$ in $\overline{\Gamma}(C_{14})$ $($ since $C_{14} is$ bipartite, $we have \Gamma_{k}(C_{14})=\emptyset$ if $k$ is odd). Then
it can be shown that

$\sum_{\gamma\in\Gamma(C_{14})}\omega(\gamma)a_{2}(f(\gamma))=2\sum_{\gamma\in\Gamma^{(2)}(C_{14})}\omega(\gamma)1k(f(\gamma))^{2}-21$

for any element $f$ in $SE(C_{14})$ . This implies that

$\sum_{\gamma\in\Gamma_{12}(C_{14})\cup\Gamma_{14}(C_{14})}a_{2}(f(\gamma))\equiv 1 (mod 2)$

for any element $f$ in $SE(C_{14})$ . Let $f$ and $g$ be two elements in $SE(C_{14})$ as illustrated in

Fig. 3.1. Then it can be shown that $f(C_{14})$ contains exactly one nontrivial knot $f(\gamma_{1})$

which is drawn by bold lines, where $\gamma_{1}$ is an element in $\Gamma_{14}(C_{14})$ (such a spatial embedding
of $C_{14}$ was exhibited by Kohara-Suzuki first [10] $)$ . On the other hand, $g(C_{14})$ contains
exactly one nontrivial knot $g(\gamma_{2})$ which is drawn by bold lines, where $\gamma_{2}$ is an element in
$\Gamma_{12}(C_{14})$ . As far as the author knows, $g$ is a first example of a spatial embedding of $C_{14}$

whose image does not contain a nontrivial Hamiltonian knot.

$f$ $g$

Figure 3.1. Two elements $f$ and $g$ in $SE(C_{14})$

4 Conway-Gordon type theorem for $K_{3,3,1,1}$

Let $K_{3,3,1,1}$ be the graph as illustrated in Fig. 4.1, which is one of the complete four-
partite graph on 8 vertices. In [11], Motwani-Raghunathan-Saran claimed that it may

be proven that $K_{3,3,1,1}$ is intrinsically knotted by using the same technique of Conway-

Gordon theorem for $K_{7}$ , namely, by showing that for any element in $SE(K_{3,3,1,1})$ , the

sum of $a_{2}$ over all of the Hamiltonian knots is always congruent to one modulo two. But

Kohara-Suzuki showed in [10] that the claim did not hold, that is, the sum of $a_{2}$ over

all of the Hamiltonian knots is dependent to each element in $SE(K_{3,3,1,1})$ . Actually, they
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demonstrated the specific two elements $f$ and $g$ in $SE(K_{3,3,1,1})$ as illustrated in Fig. 4.2.
Then $f(K_{3,3,1,1})$ contains exactly one nontrivial knot $f(\gamma_{0})$ ( $=$ a trefoil knot) which is
drawn by bold lines, where $\gamma_{0}$ is a Hamiltonian cycle of $K_{3,3,1,1}$ , and $g(K_{3,3,1,1})$ contains
exactly two nontrivial knots $g(\gamma_{1})$ and $g(\gamma_{2})$ ( $=$ two trefoil knots) which are drawn by
bold lines, where $\gamma_{1}$ and $\gamma_{2}$ are also Hamiltonian cycles of $K_{3,3,1,1}$ . Thus the situation of
the case of $K_{3,3,1,1}$ is different from the case of $K_{7}.$

Figure 4.1. $K_{3,3,1,1}$

$f g g$
Figure 4.2. Two elements $f$ and $g$ in $SE(K_{3,3,1,1})$

By using another technique different from Conway-Gordon’s, Foisy proved the following.

Theorem 4.1 (Foisy [4]) For any element $f$ in $SE(K_{3,3,1,1})$ , there exists an element $\gamma$ in
$\bigcup_{k=4}^{8}\Gamma_{k}(K_{3,3,1,1})$ such that $a_{2}(f(\gamma))\equiv 1(mod 2)$ .

Corollary 4.2 $K_{3,3,1,1}$ is intrinsically knotted.

Proposition 1.3 (2) and Corollary 4.2 implies that any element $G$ in $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ is also
intrinsically knotted. Note that the number of the elements in $\mathcal{F}(K_{3,3,1,1})$ is fifty eight,
and the number of the elements in $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ is twenty six. Since Kohara-Suzuki pointed
out that each of the proper minors of $G$ is not intrinsically knotted [10], it follows that
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any element in $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ is minor-minimal with respect to the intrinsic knottedness.
Note that a $\triangle Y$-exchange does not change the number of edges of a graph. Since $K_{7}$ and
$K_{3,3,1,1}$ have different numbers of edges, the families $\mathcal{F}_{\triangle}(K_{7})$ and $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ are disjoint.

On the other hand, Hashimoto-Nikkuni showed the following Conway-Gordon type the-
orem for $K_{3,3,1,1}$ over integers. Here, $x$ and $y$ denote the exactly two vertices of $K_{3,3,1,1}$

with valency 7.

Theorem 4.3 (Hashimoto-Nikkuni [9])

(1) For any element $f$ in $SE(K_{3,3,1,1})$ , it follows that

$4 \sum a_{2}(f(\gamma))-4\sum_{x\gamma y},a_{2}(f(\gamma))\gamma\in\Gamma_{8}(K_{3,3,1,1})\gamma\in\Gamma_{7}(K_{33})$

$-4 \sum_{\gamma\in\Gamma_{6}(K_{33,1} ,\gamma\cap\{x,y\}\neq\emptyset^{1)\gamma\in\Gamma_{5}(K_{33,1,1})}},,a_{2}(f(\gamma))-4\sum_{\gamma\not\supset\{x,y\}},a_{2}(f(\gamma))$

$= \sum_{\gamma\in\Gamma_{3,5}^{(2)}(K_{33,1,1})}.1k(f(\gamma))^{2}+2\sum_{\gamma\in\Gamma_{4,4}^{(2)}(K_{3,3,1.1})}1k(f(\gamma))^{2}-18.$

(2) For any element $f$ in $SE(K_{3,3,1,1})$ , it follows that

$\sum_{\gamma\in\Gamma_{3,5}^{(2)}(K_{3,3,1,1})}1k(f(\gamma))^{2}+2\sum_{\gamma\in\Gamma_{4,4}^{(2)}(K_{3,3,1,1})}1k(f(\gamma))^{2}\geq 22.$

By combining Theorem 4.3 (1) and (2), we immediately have the following, which gives

an alternative proof of Corollary 4.2.

Corollary 4.4 For any element $f$ in $SE(K_{3,3,1,1})$ , it follows that

$\gamma\in\Gamma_{8}(K_{33,1,1})\gamma\in\Gamma_{7}(K_{33,1,1})\sum,a_{2}(f(\gamma))-\sum_{\gamma\not\supset\{x,y\}},a_{2}(f(\gamma))$

$\gamma\in\Gamma_{6}(K_{33,1,1})\gamma\in\Gamma_{5}(K_{33,1,1})\sum_{\gamma\cap\{x,y\}\neq\emptyset},a_{2}(f(\gamma))-\sum_{\gamma\not\supset\{x,y\}},a_{2}(f(\gamma))\geq 1$

. (4.1)

In particular, $K_{3,3,1,1}$ is intrinsically knotted.

From a point of identyfing the place of nontrivial knots in $f(K_{3,3,1,1})$ , Corollary 4.4 is a

refinement of Theorem 4.1. We also remark here that we see the left side of (4.1) is not

always congruent to one modulo two by considering two elements $f$ and $g$ in $SE(K_{3,3,1,1})$

as illustrated in Fig. 4.2. Thus Corollary 4.4 shows that the argument over integers has

a nice advantage.
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As an application of Theorem 2.2, a Conway-Gordon type theorem over integers for any
element in $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ also can be produced by Corollary 4.4.

Theorem 4.5 (Hashimoto-Nikkuni [9]) Let $G$ be an element in $\mathcal{F}_{\triangle}(K_{3,3,1,1})$ . Then, there
exist a map $\omega$ from $\Gamma(G)$ to $\mathbb{Z}$ such that for any element $f$ in $SE(G)$ , it follows that

$\sum_{\gamma\in\Gamma(G)}\omega(\gamma)a_{2}(f(\gamma))\geq 1.$

Remark 4.6 In addition to the elements in $\mathcal{F}_{\triangle}(K_{7})\cup \mathcal{F}_{\triangle}(K_{3,3,1,1})$ , many minor-minimal
intrinsically knotted graph are known [5], [6]. In particular, it has been announced in [6] by
Goldberg-Mattman-Naimi that all of the thirty two elements in $\mathcal{F}(K_{3,3,1,1})\backslash \mathcal{F}_{\triangle}(K_{3,3,1,1})$

are minor-minimal intrinsically knotted graphs. Note that their method is based on Foisy’s
idea in the proof of Theorem 4.1 with the help of a computer.

Remark 4.7 Conway-Gordon type theorems may have applications to molecular topol-
ogy. $A$ spatial graph is said to be rectilinear if each of the edges is a straight line segment
in $\mathbb{R}^{3}.$ $A$ rectilinear spatial graph appears in polymer chemistry as a mathematical model
for chemical compounds (see [1], for example). For example, as applications of Theorem
3.1 and Theorem 4.3, we can show that the image of a rectilinear spatial embedding of
$K_{7}$ always contains a nontrivial Hamiltonian knot which is ambient isotopic to a trefoil
knot [12], and the image of a rectilinear spatial embedding of $K_{3,3,1,1}$ always contains a
nontrivial Hamiltonian knot [9].
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