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A note on the universal sl; invariant of Brunnian bottom tangles

Sakie Suzuki
Research Institute for Mathematical Sciences, Kyoto University

This note is based on the author’s talk “On the universal sl, invariant of Brunnian
bottom tangles” given in the conference “Intelligence of Low-dimensional Topology” held
at the RIMS, Kyoto University, during May 16— May 18, 2012. The details appear in [11]

1 Introduction

The universal sl, invariant has a universality property for the colored Jones polynomial
of links [4, 5, 7, 8]. We are interested in the relationship between topological properties
of tangles and links and algebraic properties of the universal sl invariant and the colored
Jones polynomials.

A bottom tangle is a tangle in a cube consisting of only arc components such that each
boundary point is on the bottom and the two boundary points of each arc are adjacent
to each other, see Figure 1 (a) for example. The closure of a bottom tangle is defined as
in Figure 1 (b).

The universal sl, invariant of n-component bottom tangles takes values in the com-
pleted n-fold tensor power Up,(slz)®™ of the quantized enveloping algebra Up(sly). The
colored Jones polynomial of a link L is obtained from the universal sl, invariant of a
bottom tangle whose closure is L, by taking the quantum traces associated with the
representations attached to the components of links [2].

A bottom tangle is called ribbon if its closure is a ribbon link (cf. [3, 9]). A bottom
tangle is called boundary if its components admit mutually disjoint Seifert surfaces of
bottom tangles (cf. [3, 10]). A bottom tangle T is called Brunnian if every proper
subtangle of T is trivial, i.e., looks like N---N.

Habiro [3] proved that the universal sl, invariant of n-component, algebraically-split,
0-framed bottom tangles takes values in a certain small subalgebra of U, (sly)®™. The
present author proved improvements of Habiro’s result in the special cases of ribbon
bottom tangles [9], boundary bottom tangles [10], and Brunnian bottom tangles [11]. In
[9, 10, 11], she also proved that the colored Jones polynomials of ribbon links, boundary
links, and Brunnian links take values in certain small ideals of Z[g, g™!].

In this note, we give a survey on the paper [11].

This note is organized as follows. In Section 2, we recall the definitions of Uy(sly) and
the universal sly invariant of bottom tangles. In Section 3, we give the main result for the
the universal sl, invariant of Brunnian bottom tangles (Theorem 3.5), and in Section 4,
we give an application of Theorem 3.5 to the colored Jones polynomial of Brunnian links
(Theorem 4.2).
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Figure 1: (a) A bottom tangle T, (b) The closure link of T

2 Universal sl; invariant of bottom tangles

In this section, we recall the definition of of Uy(sl) and the universal sl, invariant of
bottom tangles.
In what follows, we use the following g-integer notations.

{i}q = qi -1, {i}gn= {i}li - 1}q e fi-nt 1}q’ {n}q! = {n}q.nv
o= Gho/ e Dot = bl =t W [3] = G/ kel
fori € Z,n > 0.

2.1 Quantized enveloping algebra Ux(sl;) and universal R matrix

We recall the definition of the universal enveloping algebra Up(sl).
We denote by U, = Ui (slp) the h-adically complete Q[[h]]-algebra, topologically gen-
erated by H, E, and F, defined by the relations

HE - EH =2E, HF —FH = -2F, EF—FE=ql%:;iq{_:;/—2,
where we set
g=exph, K=q"?= exp%.
Set

E® = (¢ 2E) /[l F® = F"K"/[nlgt € Un,

e=(q"*—qV)E, f=(q-1)FK €U,

D = gHeH — oxp (%H ® H) € U,
for n > 0.

We use the following universal R-matriz of U,

R*' =Y ot @t e U,

n>0
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Figure 2: Fundamental tangles, where the orientations of the strands are arbitrary

(a) (b) (c)

Figure 3: (a) A bottom tangle B, (b) A diagram B of B, (c) The labels associated to a state t € S(B)

where we set formally
a; ® B = D! ((—1)”15“(") ® K—"e").

2.2 Universal sl; invariant of bottom tangles

For an n-component bottom tangle T = T} U- - -UT,, we define the universal sly invariant
Jr € UP™ as follows. We follow the notation in [10].

We choose a diagram T of T obtained from the copies of the fundamental tangles
depicted in Figure 2, by pasting horizontally and vertically. We denote by C(T ) the set
of the crossings of T. For example, for the bottom tangle B depicted in Figure 3 (a), we
can take a diagram B with C(B) = {c;, c;} as depicted in Figure 3 (b). We call a map

s: C(T) — {0,1,2,...}

a state. We denote by S(T) the set of states of the diagram 7.

Given a state s € S(T'), we attach labels on the copies of the fundamental tangles in
the diagram following the rule described in Figure 4, where “S” should be replaced with
the identity if the string is oriented downward, and with S otherwise. For example, for
a state t € S(B), we put labels on B as in Figure 3 (c), where we set m = t(c;) and
n = t(c).

We read the labels we have just put on 7" and define an element Jr s € Uy &n g5 follows.
Let T=T1U.---UT, ., where T} corresponds to T;. We define the ith tensorand of Jr.s

as the product of the labels on 7T}, where the labels are read off along T; reversing the
orientation, and written from left to right. For example, for the bottom tangle B and the
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Figure 4: How to place labels on the fundamental tangles

state t € S(B) in Figure 3, we have
Jé,t = S(am)s(ﬂn) ® onfm.

Here, we identify the labels S'(af) and S'(8F) with the first and the second tensorands,
respectively, of the element S'(of) ® S'(5;") € UP?. Also we identify the label K*! with
the element K*! € Uy. Thus J;, is a well-defined element in UP". For example, we have

JB,t = S(am)s(ﬂn) ® anﬂm
= Z gz™m=Ngan(n=1g( D! fm) ™) §(Dle™) @ DyF™ K" Dlle™
_ (_1)m+nq—n+2mnD—2(F(m)K—Znen ® F”v(n)K—2mem) € U}fw’
where D = )" D{®D{ = 3 Dy®Djy. Note that J; , depends on the choice of the diagram.

Set
Jr=> Ji,

seS(T)

As is well known [7], Jr does not depend on the choice of the diagram, and defines an
isotopy invariant of bottom tangles.

3 Result for the universal sl; invariant

In this section, we give the main result for the universal sl; invariant of Brunnian bottom
tangles. Before that, we recall Z[g, ¢ !]-subalgebras of U, and several results for the
universal sl, invariant of algebraically-split bottom tangles.

3.1 Z[g,q !]-subalgebras of Uy

We recall Zq, ¢~!]-subalgebras of Up. ) )

Let Uz, C Uy denote the Z[g, g~ !]-subalgebra generated by K, K -1 E(™ and F™ for
n > 1, which is a Z[g, ¢~!]-version of Lusztig’s integral form (cf. [6, 9]). ) :

Let U, C Uz, denote the Z[g,q !]-subalgebra generated by K,K',e, and F™ for
n>1.

Let U, C U, denote the Z[g, ¢~']-subalgebra generated by K, K ~1 e and f, which is a
Z[q, ¢ ']-version of the integral form defined by De Concini and Procesi (cf. 11, 9]).

For X = Ugg, Uy, Uy, let X® denote the Zlg, g~ ']-subalgebra of Uy defined by the
same generators as X except that K*2 replaces K*'.

To summarize, we have the following inclusions of the subalgebras of Up.
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Ue c uv c Ug,
N n N
U, ¢ U C Uy C U

We recall the completion L{e" of Z/{ev in Uy, and its completed tensor powers (L{e")@” for
n 2 0.

For p > 0, let F,(14;") be the two-sided ideal in U generated by e?. Let Z/{e" be the
completion of U in Uh with respect to the decreasmg filtration {F,(Us )}pzo, ie., we

define L{e" as the image of the homomorphism

lim U/ Fy(US) = Un

p>0

induced by U7 C Uy,
Forn>1and p > 0, set

F(U)°r) = S0 @ () @ U,

=1

For n > 1, we define (If(;")@’" as the completion of ({4;¥)®" in U,?" with respect to the
decreasing filtration {F, ((U)®") }p0-

For a Z[g, ¢~*]-subalgebra A of (U¥)®", we denote by {A} the closure of A in (Z:{;")@",
i.e., we set

{A¥ = Im (Lm(A/ (5 (©g)°) 0 A) - U,?n).

p>0
For n = 0, we define ({*")®° = Z[g, ¢ ].
3.2 Universal sl; invariant of algebraically-split bottom tangles, ribbon bot-
tom tangles and boundary bottom tangles

We recall several results for the value of the universal sl invariant of algebraically-split
bottom tangles. In what follows, we assume that bottom tangles are 0-framed.

Theorem 3.1 ([9, Proposition 4.2, Remark 4.7]). Let T be an n- component algebraically-
split bottom tangle. For every dzagmm T of T and every state s € S (T) we have

Jr s € (Z/l;")‘g’".
More precisely, the proof of [9, Proposition 4.2] implies the following proposition.

Proposition 3.2. Let T be an n-component algebraically-split bottom tangle. For any
diagram T and any state s € S(T), we have

Ji.s € Fis|(U)®),

where we set |s| = max{s(c) | c € C(T)}.
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Theorem 3.1 and Proposition 3.2 imply the following theorem, which was first proved
by Habiro [3] in a different way.

Theorem 3.3 (Habiro [3]). For an n-component algebraically-split bottom tangle T', we
have

Jr € (@)

In [3], Habiro denoted by (T2*)"®" the closure {(T¢")®"} of (U")®" in (U*)®". In [9]
and [10], we defined a refined completion (Ug")"®" C ((7;")@", and proved the following
theorem, which is an improvement of Theorem 3.3 in the case of ribbon bottom tangles
and boundary bottom tangles.

Theorem 3.4 ([9, 10])). Let T be an n-component ribbon or boundary bottom tangle. Then
we have

Jr € (U;V)Aébn.

3.3 Results for the universal sl; invariant of Brunnian bottom tangles

The following theorem is the main result of the paper [11], which is an improvement of
Theorems 3.1 and 3.3 in the case of Brunnian bottom tangles.

Theorem 3.5. Let T be an n-component algebraically-split Brunnian bottom tangle with
n > 2.

(i) For eachi=1,...,n, there is a diagram T of T such that
Jior o € (U @ Uz% ® (U7)%
for any state s € S(TW).
(i) We have Jr € Ug,‘,), where we set
Ug;) _ m { ((U;v>®i—l ® Ug,q ® (U;v)@n—i) N (u;v)®n}'~.
i=1

Note that the condition “algebraically-split” in Theorem 3.5 is not necessary when
n > 3.

To compare Theorem 3.5 (ii) with Theorems 3.3 and 3.4 for n > 2, we have the
following diagram.

{n-comp. alg. split bottom tangles} EA (Z:(;")é’"
U
{n-comp. alg. split Brunnian bottom tangles} EA U gl
U

n-comp. ribbon or boundary bottom tangles} EA (Uev)@"
P q
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Figure 5: (a) The Borromean bottom tangle Tz, (b) A bottom tangle T

Example 3.6. Let Ty be the Borromean bottom tangle, which is the Brunnian bottom
tangle depicted in Figure 5 (a). Let Tp be the bottom tangle as in Figure 5 (b). Note that
the bottom tangle Ty is not Brunnian but algebraically-split. We have

Jry = Jry ® 1 ¢ {((U;V)®3 ® UZeyq) N (u;V)®4}t

4 Application to the colored Jones polynomial

In this section, we give an application of Theorem 3.5 to the colored Jones polynomial of
Brunnian links (Theorem 4.2). In what follows, we assume that links are 0-framed.

4.1 Colored Jones polynomials of algebraically-split links, ribbon links and
boundary links

We recall results for the colored Jones polynomials of algebraically-split links.
For m > 1, let V,, denote the m- dlmensmnal irreducible representatlon of U,. Let R
denote the representation ring of Uy over Q(qZ) i.e., R is the Q(q ) algebra,

1{Vm]m21}

R = SpanQ(qﬂ

with the multiplication induced by the tensor product.

For an n-component link L, take a bottom tangle T" whose closure is L. For X1,..., X, €
R, the colored Jones polynomial Jy,x, ... x, of L with the ith component L; colored by X;
is given by

.....

(S

JL;X1,...,Xn = (tr;ﬁ Q- tr;{n)(JT) € Q(q )

Habiro [3] studied the following element in R

1
2

l {l} H ‘/2 - q —i_%) € R’ (1)

for { > 0.
Recall the notation {i},; = {{},{l —1}¢---{{ -t +1}gforl € Z, i > 0. Theorem 3.3

implies the following result.



Theorem 4.1 (Habiro [3]). Let L be an n-component algebraically-split link. Forly,...,l,
0, we have

llllllll

Here we set

2pax + 1
Zéll ----- ln) — { +1 }Q>lmax+1z[ ,q_l],
{1}
where lyax = max(ly,...,l,).

For [ > 0, let I; denote the ideal in Z[q, ¢~!] generated by {I—k},{k},! for k=0,...,L
Theorem 3.4 implies the following result.

Theorem 4.2 ([9, 10]). Let L be an n-component ribbon link or boundary link. For
li,...,l, > 0, we have
lllllll

Here we set

1<i<n, i#im

— {2lmax + 1}q,lmax+1 H I,

{1}‘1 1<i<n,ifiyg

where lyax = max(ly,...,l,) and ip is an integer such that l;,, = lmax-

4.2 Result for the colored Jones polynomial of Brunnian links

The following theorem is an application of Theorem 3.5 to the colored Jones polynomial
of Brunnian links.

Theorem 4.3. Let L be an n-component algebraically-split Brunnian link with n > 2.
Forly,...,l, >0, we have

Jupy..B, € Zgy . @)
Here we set
gt _ Pl Vot 1
{1}q{lmin}‘1! 1<i<n,i#ipng,im
where lpax = max(ly, ..., ln), lmin = min(ly, ..., ln) and ipg,im, in # im, are two integers

such that l;,, = lmax, li,, = lmin, Tespectively.

Note that an algebraically-split Brunnian link satisfies both (2) and (4). In fact, there

is no inclusion which satisfies for all {1,...,l, > 0 between Z,gll """ ) and Zg; """ ) Thus
we have a refinement of Theorem as follows.
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Theorem 4.4. Let L be an n-component algebraically-split Brunnian link with n > 2.
Forly,... 1, >0, we have

~(l 1'~'yln)
JL.ISI ”1’5!/ € ZB11" .
Here we set
Zg;,.u,ln) — Z(ll ..... ln) m Zg:j..‘,ln).

Comparing Theorem 4.4 with Theorems 4.1 and 4.2 for n > 2, we have the following
diagram.

J =14 B!
_ PPy, (l1,0ln)
{n-comp. alg. split links} p)
U
J Pl /
. . . HBy e By, 511, ln)
{n-comp. alg. split Brunnian links} —— Zg!
U
Tobf Bl

{n-comp. ribbon or boundary links} —— ‘Zr(’l;""’l")

Remark 4.5. In fact, the ideals Z{*" l”), Z,Efg""’l”), Zg,{"“’l”) and Zg;""’l") are principal,
each generated by a product of cyclotomic polynomials. See [12] for details and examples.

References

[1] C. De Concini, C. Procesi, Quantum groups. in: D-modules, representation theory,
and quantum groups (Venice, 1992), 31-140, Lecture Notes in Math., vol. 1565,
Springer, Berlin, 1993.

[2] K. Habiro, Bottom tangles and universal invariants. Alg. Geom. Topol. 6 (2006),
1113-1214.

[3] K. Habiro, A unified Witten-Reshetikhin-Turaev invariants for integral homology
spheres. Invent. Math. 171 (2008), no. 1, 1-81.

[4] R. J. Lawrence, A universal link invariant. in: The interface of mathematics and
particle physics (Oxford, 1988), 151-156, Inst. Math. Appl. Conf. Ser. New Ser., vol.
24, Oxford Univ. Press, New York, 1990. '

[5] R.J. Lawrence, A universal link invariant using quantum groups. in: Differential ge-
ometric methods in theoretical physics (Chester, 1989), 55-63, World Sci. Publishing,
Teaneck, NJ, 1989.

[6] G. Lusztig, Introduction to quantum groups. Progress in Mathematics 110,
Birkh&user, Boston, 1993.

[7) T. Ohtsuki, Colored ribbon Hopf algebras and universal invariants of framed links.
J. Knot Theory Ramifications 2 (1993), no. 2, 211-232.



24

[8] N. Y. Reshetikhin, V. G. Turaev, Ribbon graphs and their invariants derived from
quantum groups. Comm. Math. Phys. 127 (1990), no. 1, 1-26.

[9] S. Suzuki, On the universal sl, invariant of ribbon bottom tangles. Algebr. Geom.
Topol. 10 (2010), no. 2, 1027-1061.

[10] S. Suzuki, On the universal sl, invariant of boundary bottom tangles. Algebr. Geom.
Topol. 12 (2012), 997-1057.

[11] S. Suzuki, On the wuniversal sl, invariant of Brunnian bottom tangles.
arXiv:1111.6310.

[12] S. Suzuki, On the colored Jones polynomials of ribbon links, boundary links, and
Brunnian links. arXiv:1111.6408.

Research Institute for Mathematical Sciences
Kyoto University

Kyoto 606-8502

JAPAN

E-mail address: sakie@kurims.kyoto-u.ac.jp

SRR - BORRTRISERN #nK IRK



