MIXED PENTAGON EQUATION AND DOUBLE SHUFFLE RELATION

HIDEKAZU FURUSHO

ABSTRACT. This paper is a review of the paper [F4] where a geometric interpretation of the generalized (including the regularization relation) double shuffle relation for multiple L-values is given. In precise, it is shown that Enriquez' mixed pentagon equation implies the relations.

0. Introduction

Multiple L-values $L(k_1, \dots, k_m; \zeta_1, \dots, \zeta_m)$ are the complex numbers defined by the following series

(1)
$$L(k_1, \dots, k_m; \zeta_1, \dots, \zeta_m) := \sum_{0 < n_1 < \dots < n_m} \frac{\zeta_1^{n_1} \dots \zeta_m^{n_m}}{n_1^{k_1} \dots n_m^{k_m}}$$

for $m, k_1, \ldots, k_m \in \mathbf{N}(=\mathbf{Z}_{>0})$ and $\zeta_1, \ldots, \zeta_m \in \mu_N$ (:the group of N-th roots of unity in C). They converge if and only if $(k_m, \zeta_m) \neq (1, 1)$. Multiple zeta values are regarded as a special case for N = 1. These values have been discussed in several papers [AK, BK, G, R] etc. Multiple L-values appear as coefficients of the cyclotomic Drinfel'd associator Φ_{KZ}^N (5) in $U\mathfrak{F}_{N+1}$: the non-commutative formal power series ring with N+1 variables A and B(a) ($a \in \mathbf{Z}/N\mathbf{Z}$).

The mixed pentagon equation (4) is a geometric equation introduced by Enriquez [E]. The series Φ_{KZ}^N satisfies the equation, which yields non-trivial relations among multiple L-values. The generalised double shuffle relation (the double shuffle relation and the regularization relation) is a combinatorial relation among multiple L-values. It is formulated as (6) for $h = \Phi_{KZ}^N$. It is Zhao's remark [Z] that for specific N's the generalized double shuffle relation does not provide all the possible relations among multiple L-values.

Our main theorem is an implication of the generalised double shuffle relation (6) from the mixed pentagon equation (4).

Date: September 16, 2012.

This article is for the RIMS-kokyuroku of the conference 'Various Aspects of Multiple Zeta Values' held during 6th-9th September, 2010 in RIMS, Kyoto.

Theorem 1. Let $U\mathfrak{F}_{N+1}$ be the universal enveloping algebra of the free Lie algebra \mathfrak{F}_{N+1} with variables A and B(a) ($a \in \mathbf{Z}/N\mathbf{Z}$). Let h be a group-like element in U_{N+1} with $c_{B(0)}(h) = 0$ satisfying the mixed pentagon equation (4) with a group-like series $g \in U\mathfrak{F}_2$. Then h also satisfies the generalised double shuffle relation (6).

The contents of the article are as follows: We recall the mixed pentagon equation in §1 and the generalised double shuffle relation in §2. In §3 we calculate the 0-th cohomologies of Chen's reduced bar complex for the Kummer coverings of the moduli spaces $\mathcal{M}_{0,4}$ and $\mathcal{M}_{0,5}$. Two variable cyclotomic multiple polylogarithms and their associated bar elements there are introduced in §4. By using them, we prove theorem 1 in §5.

1. MIXED PENTAGON EQUATION

This section is to recall Enriquez' mixed pentagon equation |E|.

Let us fix notations: For $n \ge 2$, the Lie algebra \mathfrak{t}_n of infinitesimal pure braids is the completed Q-Lie algebra with generators t^{ij} $(i \neq j,$ $1 \leq i, j \leq n$) and relations $t^{ij} = t^{ji}$, $[t^{ij}, t^{ik} + t^{jk}] = 0$ and $[t^{ij}, t^{kl}] = 0$ for all distinct i, j, k, l. We note that t_2 is the 1-dimensional abelian Lie algebra generated by t^{12} . The element $z_n = \sum_{1 \le i < j \le n} t^{ij}$ is central in \mathfrak{t}_n . Put \mathfrak{t}_n^0 to be the Lie subalgebra of \mathfrak{t}_n with the same generators except t^{1n} and the same relations as \mathfrak{t}_n . Then we have $\mathfrak{t}_n = \mathfrak{t}_n^0 \oplus \mathbf{Q} \cdot z_n$. Especially when n=3, \mathfrak{t}_3^0 is a free Lie algebra \mathfrak{F}_2 of rank 2 with generators $A:=t^{12}$ and $B = t^{23}$. For a partially defined map $f : \{1, \ldots, m\} \to \{1, \ldots, n\}$, the Lie algebra morphism $\mathfrak{t}_n \to \mathfrak{t}_m : x \mapsto x^f = x^{f^{-1}(1), \dots, f^{-1}(n)}$ is uniquely defined by $(t^{ij})^f = \sum_{i' \in f^{-1}(i), j' \in f^{-1}(j)} t^{i'j'}$. For a pair $(\mu, g) \in \mathbf{Q} \times \exp \mathfrak{F}_2$ the pentagon equation is the following

equation in $\exp \mathfrak{t}_4^0$

(2)
$$g^{1,2,34}g^{12,3,4} = g^{2,3,4}g^{1,23,4}g^{1,2,3}$$

and two hexagon equations the following two equations in $\exp \mathfrak{F}_2$ $\exp \mathfrak{t}_3^0$

$$g(A,B)g(B,A)=1 \quad \text{ and }$$

$$\exp\{\frac{\mu A}{2}\}g(C,A)\exp\{\frac{\mu C}{2}\}g(B,C)\exp\{\frac{\mu B}{2}\}g(A,B)=1$$
 with $C=-A-B$. These

By our notation, the equation (2) can be read as

$$g(t^{12},t^{23}+t^{24})g(t^{13}+t^{23},t^{34})=g(t^{23},t^{34})g(t^{12}+t^{13},t^{24}+t^{34})g(t^{12},t^{23}).$$

Remark 2. It is shown in [F2] that the two hexagon equations (3) are consequences of the pentagon equation (2).

Remark 3. The Drinfel'd associator $\Phi_{KZ} = \Phi_{KZ}(A, B) \in \mathbb{C}\langle\langle A, B \rangle\rangle$ is defined to be the quotient $\Phi_{KZ} = G_1(z)^{-1}G_0(z)$ where G_0 and G_1 are the solutions of the formal KZ equation

$$\frac{d}{dz}G(z) = \left(\frac{A}{z} + \frac{B}{z-1}\right)G(z)$$

such that $G_0(z) \approx z^A$ when $z \to 0$ and $G_1(z) \approx (1-z)^B$ when $z \to 1$ (cf.[Dr]). The series has the following expression

$$\Phi_{KZ} = 1 + \sum_{m=1}^{\infty} (-1)^m \zeta(k_1, \dots, k_m) A^{k_m - 1} B \dots A^{k_1 - 1} B + (\text{regularized terms})$$

and the regularised terms are explicitly calculated to be linear combinations of multiple zeta values $\zeta(k_1, \dots, k_m) = L(k_1, \dots, k_m; 1, \dots, 1)$ in [F1] proposition 3.2.3 by Le-Murakami's method [LM]. It is shown in [Dr] that the pair $(2\pi\sqrt{-1}, \Phi_{KZ})$ satisfies the pentagon equation (2) and the hexagon equations (3).

For $n \ge 2$ and $N \ge 1$, the Lie algebra $\mathfrak{t}_{n,N}$ is the completed Q-Lie algebra with generators t^{1i} $(2 \leqslant i \leqslant n), t(a)^{ij}$ $(i \neq j, 2 \leqslant i, j \leqslant n,$ $a \in \mathbf{Z}/N\mathbf{Z}$) and relations $t(a)^{ij} = t(-a)^{ji}, [t(a)^{ij}, t(a+b)^{ik} + t(b)^{jk}] = 0,$ $[t^{1i} + t^{1j} + \sum_{c \in \mathbf{Z}/N\mathbf{Z}} t(c)^{ij}, t(a)^{ij}] = 0, [t^{1i}, t^{1j} + \sum_{c \in \mathbf{Z}/N\mathbf{Z}} t(c)^{ij}] = 0,$ $[t^{1i}, t(a)^{jk}] = 0$ and $[t(a)^{ij}, t(b)^{kl}] = 0$ for all $a, b \in \mathbb{Z}/N\mathbb{Z}$ and all distinct $i, j, k, l \ (2 \le i, j, k, l \le n)$. We note that $\mathfrak{t}_{n,1}$ is equal to \mathfrak{t}_n for $n \geq 2$. We have a natural injection $\mathfrak{t}_{n-1,N} \hookrightarrow \mathfrak{t}_{n,N}$. The Lie subalgebra $\mathfrak{f}_{n,N}$ of $\mathfrak{t}_{n,N}$ generated by t^{1n} and $t(a)^{in}$ $(2 \leqslant i \leqslant n-1, a \in \mathbf{Z}/N\mathbf{Z})$ is free of rank (n-2)N+1 and forms an ideal of $\mathfrak{t}_{n,N}$. Actually it shows that $\mathfrak{t}_{n,N}$ is a semi-direct product of $\mathfrak{f}_{n,N}$ and $\mathfrak{t}_{n-1,N}$. The element $z_{n,N} = \sum_{1 \leqslant i < j \leqslant n} t^{ij}$ with $\bar{t}^{ij} = \sum_{a \in \mathbf{Z}/N\mathbf{Z}} t(a)^{ij}$ $(2 \leqslant i < j \leqslant n)$ is central in $\mathfrak{t}_{n,N}$. Put $\mathfrak{t}_{n,N}^0$ to be the Lie subalgebra of $\mathfrak{t}_{n,N}$ with the same generators except t^{1n} . Then we have $\mathfrak{t}_{n,N} = \mathfrak{t}_{n,N}^0 \oplus \mathbf{Q} \cdot z_{n,N}$. Occasionally we regard $\mathfrak{t}_{n,N}^0$ as the quotient $\mathfrak{t}_{n,N}/\mathbf{Q} \cdot z_{n,N}$. Especially when n=3, $\mathfrak{t}_{3.N}^0$ is free Lie algebra \mathfrak{F}_{N+1} of rank N+1 with generators $A:=t^{12}$ and $B(a) = t(a)^{23} \ (a \in {\bf Z}/N{\bf Z}).$

For a partially defined map $f:\{1,\ldots,m\}\to\{1,\ldots,n\}$ such that f(1)=1, the Lie algebra morphism $\mathfrak{t}_{n,N}\to\mathfrak{t}_{m,N}:x\mapsto x^f=x^{f^{-1}(1),\ldots,f^{-1}(n)}$ is uniquely defined by $(t(a)^{ij})^f=\sum_{i'\in f^{-1}(i),j'\in f^{-1}(j)}t(a)^{i'j'}$ $(i\neq j,\,2\leqslant i,j\leqslant n)$ and $(t^{1j})^f=\sum_{j'\in f^{-1}(j)}t^{1j'}+\frac{1}{2}\sum_{j',j''\in f^{-1}(j)}\sum_{c\in \mathbf{Z}/N\mathbf{Z}}t(c)^{j'j''}+\sum_{i'\neq 1\in f^{-1}(1),j'\in f^{-1}(j)}\sum_{c\in \mathbf{Z}/N\mathbf{Z}}t(c)^{i'j'}$ $(2\leqslant j\leqslant n)$. Again for a partially defined map $g:\{2,\ldots,m\}\to\{1,\ldots,n\}$, the Lie algebra morphism $\mathfrak{t}_n\to\mathfrak{t}_{m,N}:x\mapsto x^g=x^{g^{-1}(1),\ldots,g^{-1}(n)}$ is uniquely defined by $(t^{ij})^g=\sum_{i'\in g^{-1}(i),j'\in g^{-1}(j)}t(0)^{i'j'}$ $(i\neq j,\,1\leqslant i,j\leqslant n)$.

For a pair $(g,h) \in \exp \mathfrak{F}_2 \times \exp \mathfrak{F}_{N+1}$, the mixed pentagon equation means the following equation in $\exp \mathfrak{t}_{4,N}^0$

(4)
$$h^{1,2,34}h^{12,3,4} = g^{2,3,4}h^{1,23,4}h^{1,2,3}.$$

By our notation, each term in the equation (4) can be read as

$$\begin{split} h^{1,2,34} &= h(t^{12},t^{23}(0)+t^{24}(0),t^{23}(1)+t^{24}(1),\dots,t^{23}(N-1)+t^{24}(N-1)),\\ h^{12,3,4} &= h(t^{13}+\sum_{c}t^{23}(c),t^{34}(0),t^{34}(1),\dots,t^{34}(N-1)),\\ g^{2,3,4} &= g(t^{23}(0),t^{34}(0)),\\ h^{1,23,4} &= h(t^{12}+t^{13}+\sum_{c}t^{23}(c),t^{24}(0)+t^{34}(0),\dots,t^{24}(N-1)+t^{34}(N-1)),\\ h^{1,2,3} &= h(t^{12},t^{23}(0),t^{23}(1),\dots,t^{23}(N-1)). \end{split}$$

Remark 4. In [E], the cyclotomic analogue $\Phi_{KZ}^N \in \exp \mathfrak{F}_{N+1}(\mathbf{C})$ of the Drinfel'd associator is introduced to be the renormalised holonomy from 0 to 1 of the KZ-like differential equation

$$\frac{d}{dz}H(z) = \left(\frac{A}{z} + \sum_{a \in \mathbf{Z}/N\dot{\mathbf{Z}}} \frac{B(a)}{z - \zeta_N^a}\right)H(z)$$

with $\zeta_N = \exp\{\frac{2\pi\sqrt{-1}}{N}\}$, i.e., $\Phi_{KZ}^N = H_1^{-1}H_0$ where H_0 and H_1 are the solutions such that $H_0(z) \approx z^A$ when $z \to 0$ and $H_1(z) \approx (1-z)^{B(0)}$ when $z \to 1$ (cf.[E]). There appear multiple *L*-values (1) in each of its coefficient;

(5)
$$\Phi_{KZ}^{N} = 1 + \sum_{m=1}^{\infty} (-1)^{m} L(k_{1}, \dots, k_{m}; \xi_{1}, \dots, \xi_{m}) A^{k_{m}-1} B(a_{m}) \dots A^{k_{1}-1} B(a_{1}) + (\text{regularized terms})$$

with $\xi_1 = \zeta_N^{a_2-a_1}, \ldots, \xi_{m-1} = \zeta_N^{a_m-a_{m-1}}$ and $\xi_m = \zeta_N^{-a_m}$, where the regularised terms can be explicitly calculated to combinations of multiple L-values by the method of Le-Murakami [LM]. In [E] it is shown that the triple $(2\pi\sqrt{-1}, \Phi_{KZ}, \Phi_{KZ}^N)$ satisfies the mixed pentagon equation (4). This is achieved by considering monodromy in the pentagon formed by the divisors y = 0, x = 1, the exceptional divisor of the blowing-up at (1,1), y = 1 and x = 0 in $\mathcal{M}_{0,5}^{(N)}$ (see §3).

Remark 5. In [EF] it is proved that the mixed pentagon equation (4) implies the distribution relation for a specific case and that the octagon equation follows from the mixed pentagon equation and the special action condition for N=2.

2. Double shuffle relation

This section is to recall the generalised double shuffle relation in Racinet's setting [R].

Let us fix notations: Let \mathfrak{F}_{Y_N} be the completed graded Lie \mathbf{Q} -algebra generated by $Y_{n,a}$ $(n \geqslant 1 \text{ and } a \in \mathbf{Z}/N\mathbf{Z})$ with deg $Y_{n,a} = n$. Put $U\mathfrak{F}_{Y_N}$ its universal enveloping algebra: the non-commutative formal series ring with free variables $Y_{n,a}$ $(n \geqslant 1 \text{ and } a \in \mathbf{Z}/N\mathbf{Z})$. Let $\pi_Y : U\mathfrak{F}_{N+1} \to U\mathfrak{F}_{Y_N}$ be the \mathbf{Q} -linear map between non-commutative formal power series rings that sends all the words ending in A to zero and the word $A^{n_m-1}B(a_m) \cdots A^{n_1-1}B(a_1)$ $(n_1,\ldots,n_m\geqslant 1 \text{ and } a_1,\ldots,a_m\in \mathbf{Z}/N\mathbf{Z})$ to

$$(-1)^m Y_{n_m,-a_m} Y_{n_{m-1},a_m-a_{m-1}} \cdots Y_{n_1,a_2-a_1}.$$

Define the coproduct Δ_* of $U\mathfrak{F}_{Y_N}$ by $\Delta_*Y_{n,a} = \sum_{k+l=n,b+c=a} Y_{k,b} \otimes Y_{l,c}$ $(n \ge 0 \text{ and } a \in \mathbf{Z}/N\mathbf{Z}) \text{ with } Y_{0,a} := 1 \text{ if } a = 0 \text{ and } 0 \text{ if } a \ne 0.$ For $h = \sum_{W:\text{word}} c_W(h)W \in U\mathfrak{F}_{N+1}$, define the series shuffle regularization $h_* = h_{\text{corr}} \cdot \pi_Y(h)$ with the correction term

$$h_{\text{corr}} = \exp\left(\sum_{n=1}^{\infty} \frac{(-1)^n}{n} c_{A^{n-1}B(0)}(h) Y_{1,0}^n\right).$$

For a series $h \in \exp \mathfrak{F}_{N+1}$ the generalised double shuffle relation stands for the following relation in $U\mathfrak{F}_{Y_N}$

$$\Delta_*(h_*) = h_* \widehat{\otimes} h_*.$$

Remark 6. The series Φ_{KZ}^{N} (5) satisfies the generalised double shuffle relation (6) because regularised multiple L-values satisfy the double shuffle relation.

3. Bar constructions

This section gives a review of the notion of the reduced bar construction and calculates it for $\mathcal{M}_{0.4}^{(N)}$ and $\mathcal{M}_{0.5}^{(N)}$.

We recall the notion of Chen's reduced bar construction [C]. Let $(A^{\bullet} = \bigoplus_{q=0}^{\infty} A^{q}, d)$ be a differential graded algebra (DGA). The reduced bar complex $\bar{B}^{\bullet}(A)$ is the tensor algebra $\bigoplus_{r=0}^{\infty} (\bar{A}^{\bullet})^{\otimes r}$ with $\bar{A}^{\bullet} = \bigoplus_{i=0}^{\infty} \bar{A}^{i}$ where $\bar{A}^{0} = A^{1}/dA^{0}$ and $\bar{A}^{i} = A^{i+1}$ (i > 0). We denote $a_{1} \otimes \cdots \otimes a_{r}$ $(a_{i} \in \bar{A}^{\bullet})$ by $[a_{1}|\cdots|a_{r}]$. The degree of elements in $\bar{B}^{\bullet}(A)$ is given by the total degree of \bar{A}^{\bullet} . Put $Ja = (-1)^{p-1}a$ for $a \in \bar{A}^{p}$. Define

$$d'[a_1|\cdots|a_k] = \sum_{i=1}^k (-1)^i [Ja_1|\cdots|Ja_{i-1}|da_i|a_{i+1}|\cdots|a_k]$$

and

$$d''[a_1|\cdots|a_k] = \sum_{i=1}^k (-1)^{i-1} [Ja_1|\cdots|Ja_{i-1}|Ja_i\cdot a_{i+1}|a_{i+2}|\cdots|a_k].$$

Then d'+d'' forms a differential. The differential and the shuffle product (loc.cit.) give $\bar{B}^{\bullet}(A)$ a structure of commutative DGA. Actually it also forms a Hopf algebra, whose coproduct Δ is given by

$$\Delta([a_1|\cdots|a_r]) = \sum_{s=0}^r [a_1|\cdots|a_s] \otimes [a_{s+1}|\cdots|a_r].$$

For a smooth complex manifold \mathcal{M} , $\Omega^{\bullet}(\mathcal{M})$ means the de Rham complex of smooth differential forms on \mathcal{M} with values in \mathbf{C} . We denote the 0-th cohomology of the reduced bar complex $\bar{B}^{\bullet}(\Omega(\mathcal{M}))$ with respect to the differential by $H^0\bar{B}(\mathcal{M})$.

Let $\overline{\mathcal{M}}_{0,4}$ be the moduli space $\{(x_1, \cdots, x_4) \in (\mathbf{P}^1_{\mathbf{C}})^4 | x_i \neq x_j (i \neq j) \}/PGL_2(\mathbf{C})$ of 4 different points in \mathbf{P}^1 . It is identified with $\{z \in \mathbf{P}^1_{\mathbf{C}} | z \neq 0, 1, \infty\}$ by sending $[(0, z, 1, \infty)]$ to z. Denote its Kummer N-covering

$$\mathbf{G}_m \backslash \mu_N = \{ z \in \mathbf{P}^1_{\mathbf{C}} | z^N \neq 0, 1, \infty \}$$

by $\mathcal{M}_{0.4}^{(N)}$. The space $H^0\bar{B}(\mathcal{M}_{0.4}^{(N)})$ is generated by

$$\omega_0 := d \log(z) \text{ and } \omega_\zeta := d \log(z - \zeta) \quad (\zeta \in \mu_N).$$

We have an identification $H^0\bar{B}(\mathcal{M}_{0,4}^{(N)})$ with the graded C-linear dual of $U\mathfrak{F}_{N+1}$,

$$H^0\bar{B}(\mathcal{M}_{0.4}^{(N)})\simeq U\mathfrak{F}_{N+1}^*\otimes \mathbf{C},$$

by $\operatorname{Exp} \Omega_4^{(N)} := \sum X_{i_m} \cdots X_{i_1} \otimes [\omega_{i_m}| \cdots |\omega_{i_1}] \in U\mathfrak{F}_{N+1} \widehat{\otimes}_{\mathbf{Q}} H^0 \bar{B}(\mathcal{M}_{0,4}^{(N)}).$ Here the sum is taken over $m \geqslant 0$ and $i_1, \cdots, i_m \in \{0\} \cup \mu_N$ and $X_0 = A$ and $X_\zeta = B(a)$ when $\zeta = \zeta_N^a$. It is easy to see that the identification is compatible with Hopf algebra structures. We note that the product $l_1 \cdot l_2 \in H^0 \bar{B}(\mathcal{M}_{0,4}^{(N)})$ for $l_1, l_2 \in H^0 \bar{B}(\mathcal{M}_{0,4}^{(N)})$ is given by $l_1 \cdot l_2(f) := \sum_i l_1(f_1^{(i)}) l_2(f_2^{(i)})$ for $f \in U\mathfrak{F}_{N+1} \otimes \mathbf{C}$ with $\Delta(f) = \sum_i f_1^{(i)} \otimes f_2^{(i)}$. Occasionally we regard $H^0 \bar{B}(\mathcal{M}_{0,4}^{(N)})$ as the regular function ring of $F_{N+1}(\mathbf{C}) = \{g \in U\mathfrak{F}_{N+1} \otimes \mathbf{C} | g : \text{group-like}\} = \{g \in U\mathfrak{F}_{N+1} \otimes \mathbf{C} | g(0) = 1, \Delta(g) = g \otimes g\}.$

Let $\mathcal{M}_{0,5}$ be the moduli space $\{(x_1, \dots, x_5) \in (\mathbf{P}^1_{\mathbf{C}})^5 | x_i \neq x_j (i \neq j)\}/PGL_2(\mathbf{C})$ of 5 different points in \mathbf{P}^1 . It is identified with $\{(x,y) \in \mathbf{G}^2_m | x \neq 1, y \neq 1, xy \neq 1\}$ by sending $[(0, xy, y, 1, \infty)]$ to (x, y). Denote its Kummer N^2 -covering

$$\{(x,y) \in \mathbf{G}_m^2 | x^N \neq 1, y^N \neq 1, (xy)^N \neq 1\}$$

by $\mathcal{M}_{0,5}^{(N)}$. It is identified with W_N/\mathbb{C}^{\times} by $(x,y)\mapsto (xy,y,1)$ where

$$W_N = \{(z_2, z_3, z_4) \in \mathbf{G}_m | z_i^N \neq z_j^N (i \neq j) \}.$$

The space $H^0\bar{B}(\mathcal{M}_{0,5}^{(N)})$ is a subspace of the tensor coalgebra generated by

$$\omega_{1,i} := d \log z_i \text{ and } \omega_{i,j}(a) := d \log(z_i - \zeta_N^a z_j) \quad (2 \leqslant i, j \leqslant 4, a \in \mathbf{Z}/N).$$

Proposition 7. We have an identification

$$H^0\bar{B}(\mathcal{M}_{0,5}^{(N)}) \simeq (U\mathbf{t}_{4,N}^0)^* \otimes \mathbf{C}.$$

Proof. By [K], $H^0\bar{B}(W_N)$ can be calculated to be the 0-th cohomology $H^0\bar{B}^{\bullet}(S)$ of the reduced bar complex of the Orlik-Solomon algebra S^{\bullet} . The algebra S^{\bullet} is the (trivial-)differential graded C-algebra $S^{\bullet} = \bigoplus_{q=0}^{\infty} S^q$ defined by generators

 $\omega_{1,i} = d \log z_i$ and $\omega_{i,j}(a) = d \log(z_i - \zeta_N^a z_j)$ $(2 \le i, j \le 4, a \in \mathbf{Z}/N\mathbf{Z})$ in degree 1 and relations

$$\omega_{i,j}(a) = \omega_{j,i}(-a), \qquad \omega_{ij}(a) \wedge \{\omega_{ik}(a+b) + \omega_{jk}(b)\} = 0,$$

$$\{\omega_{1i} + \omega_{1j} + \sum_{c \in \mathbf{Z}/N\mathbf{Z}} \omega(c)_{ij}\} \wedge \omega(a)_{ij} = 0,$$

$$\omega_{1i} \wedge \{\omega_{1j} + \sum_{c \in \mathbf{Z}/N\mathbf{Z}} \omega(c)_{ij}\} = 0,$$

$$\omega_{1i} \wedge \omega(a)_{jk} = 0$$
 and $\omega(a)_{ij} \wedge \omega(b)_{kl} = 0$

for all $a, b \in \mathbf{Z}/N\mathbf{Z}$ and all distinct $i, j, k, l \ (2 \le i, j, k, l \le n)$. By direct calculation, the element

$$\sum_{i=2}^{4} t_{1i} \otimes \omega_{1i} + \sum_{2 \leqslant i < j \leqslant 4, a \in \mathbf{Z}/N\mathbf{Z}} t_{ij}(a) \otimes \omega_{ij}(a) \in (\mathbf{t}_{4,N})^{\text{deg}=1} \otimes S^{1}$$

yields a Hopf algebra identification of $H^0\bar{B}(W_N)$ with $(U\mathbf{t}_{4,N})^*\otimes \mathbf{C}$ since both are quadratic.

By the long exact sequence of cohomologies induced from the \mathbf{G}_{m} -bundle $W_N \to \mathcal{M}_{0,5}^{(N)} = W_N/\mathbf{C}^{\times}$, we get

$$0 \to H^1(\mathcal{M}_{0,5}^{(N)}) \to H^1(W_N) \to H^1(\mathbf{G}_m) \to 0$$

and

$$H^i(\mathcal{M}_{0,5}^{(N)}) \simeq H^i(W_N) \qquad (i \geqslant 2).$$

It yields the identification of the subspace $H^0\bar{B}(\mathcal{M}_{0,5}^{(N)})$ of $H^0\bar{B}(W_N)$ with $(U\mathbf{t}_{4,N}^0)^*\otimes \mathbf{C}$.

The above identification is induced from

$$\operatorname{Exp} \, \Omega_5^{(N)} := \sum t_{J_m} \cdots t_{J_1} \otimes [\omega_{J_m}| \cdots |\omega_{J_1}] \in U\mathbf{t}_{4,N}^0 \widehat{\otimes}_{\mathbf{Q}} H^0 \bar{B}(\mathcal{M}_{0,5}^{(N)})$$

where the sum is taken over $m \ge 0$ and $J_1, \dots, J_m \in \{(1, i) | 2 \le i \le 4\} \cup \{(i, j, a) | 2 \le i < j \le 4, a \in \mathbf{Z}/N\mathbf{Z}\}.$

Especially the identification between degree 1 terms is given by

$$\Omega_5^{(N)} = \sum_{i=2}^4 t_{1i} d \log z_i + \sum_{2 \le i < j \le 4} \sum_{a \in \mathbf{Z}/N\mathbf{Z}} t_{i,j}(a) d \log(z_i - \zeta_N^a z_j) \\
\in \mathfrak{t}_{4,N}^0 \otimes H^1_{DR}(\mathcal{M}_{0,5}^{(N)}).$$

In terms of the coordinate (x, y),

$$\begin{split} \Omega_5^{(N)} &= t_{12} d \log(xy) + t_{13} d \log y + \sum_a t_{23}(a) d \log y (x - \zeta_N^a) \\ &+ \sum_a t_{24}(a) d \log(xy - \zeta_N^a) + \sum_a t_{34}(a) d \log(y - \zeta_N^a) \\ &= t_{12} d \log x + \sum_a t_{23}(a) d \log(x - \zeta_N^a) + (t_{12} + t_{13} + t_{23}) d \log y \\ &+ \sum_a t_{34}(a) d \log(y - \zeta_N^a) + \sum_a t_{24}(a) d \log(xy - \zeta_N^a). \end{split}$$

It is easy to see that the identification is compatible with Hopf algebra structures. We note again that the product $l_1 \cdot l_2 \in H^0 \bar{B}(\mathcal{M}_{0,5}^{(N)})$ for $l_1, l_2 \in H^0 \bar{B}(\mathcal{M}_{0,5}^{(N)})$ is given by $l_1 \cdot l_2(f) := \sum_i l_1(f_1^{(i)}) l_2(f_2^{(i)})$ for $f \in U\mathbf{t}_{4,N}^0 \otimes \mathbf{C}$ with $\Delta(f) = \sum_i f_1^{(i)} \otimes f_2^{(i)}$ (Δ : the coproduct of $U\mathbf{t}_{4,N}^0$). Occasionally we also regard $H^0 \bar{B}(\mathcal{M}_{0,5}^{(N)})$ as the regular function ring of $K_4^N(\mathbf{C}) = \{g \in U\mathbf{t}_{4,N}^0 \otimes \mathbf{C} | g : \text{group-like}\}$.

By a generalization of Chen's theory [C] to the case of tangential basepoints, especially for $\mathcal{M} = \mathcal{M}_{0,4}^{(N)}$ or $\mathcal{M}_{0,5}^{(N)}$, we have an isomorphism

$$\rho: H^0\bar{B}(\mathcal{M}) \simeq I_o(\mathcal{M})$$

as algebras over \mathbf{C} which sends $\sum_{I=(i_m,\cdots,i_1)} c_I[\omega_{i_m}|\cdots|\omega_{i_1}]$ $(c_I \in \mathbf{C})$ to $\sum_I c_I \mathrm{It} \int_o \omega_{i_m} \circ \cdots \circ \omega_{i_1}$. Here $\sum_I c_I \mathrm{It} \int_o \omega_{i_m} \circ \cdots \circ \omega_{i_1}$ means the iterated integral defined by

(7)
$$\sum_{I} c_{I} \int_{0 < t_{1} < \cdots < t_{m-1} < t_{m} < 1} \omega_{i_{m}}(\gamma(t_{m})) \cdot \omega_{i_{m-1}}(\gamma(t_{m-1})) \cdot \cdots \cdot \omega_{i_{1}}(\gamma(t_{1}))$$

for all analytic paths $\gamma:(0,1)\to\mathcal{M}(\mathbf{C})$ starting from the tangential basepoint o (defined by $\frac{d}{dz}$ for $\mathcal{M}=\mathcal{M}_{0,4}^{(N)}$ and defined by $\frac{d}{dx}$ and $\frac{d}{dy}$ for $\mathcal{M}=\mathcal{M}_{0,5}^{(N)}$) at the origin in \mathcal{M} (for its treatment see also [De]§15)

and $I_o(\mathcal{M})$ stands for the C-algebra generated by all such homotopy invariant iterated integrals with $m \ge 1$ and $\omega_{i_1}, \ldots, \omega_{i_m} \in H^1_{DR}(\mathcal{M})$.

4. Two variable cyclotomic multiple polylogarithms

We introduce cyclotomic multiple polylogarithms, $Li_{\mathbf{a}}(\bar{\zeta}(z))$ and $Li_{\mathbf{a},\mathbf{b}}(\bar{\zeta}(x),\bar{\eta}(y))$, and their associated bar elements, $l_{\mathbf{a}}^{\bar{\zeta}}$ and $l_{\mathbf{a},\mathbf{b}}^{\bar{\zeta}(x),\bar{\eta}(y)}$, which play important roles to prove our main theorems.

For a pair $(\mathbf{a}, \overline{\zeta})$ with $\mathbf{a} = (a_1, \dots, a_k) \in \mathbf{Z}_{>0}^k$ and $\overline{\zeta} = (\zeta_1, \dots, \zeta_k)$ with $\zeta_i \in \mu_N$: the group of roots of unity in \mathbf{C} $(1 \leq i \leq k)$, its weight and its depth are defined to be $wt(\mathbf{a}, \overline{\zeta}) = a_1 + \dots + a_k$ and $dp(\mathbf{a}, \overline{\zeta}) = k$ respectively. Put $\overline{\zeta}(x) = (\zeta_1, \dots, \zeta_{k-1}, \zeta_k x)$. Put $z \in \mathbf{C}$ with |z| < 1. Consider the following complex analytic function, one variable cyclotomic multiple polylogarithm

$$Li_{\mathbf{a}}(\bar{\zeta}(z)) := \sum_{0 < m_1 < \dots < m_k} \frac{\zeta_1^{m_1} \cdots \zeta_{k-1}^{m_{k-1}} (\zeta_k z)^{m_k}}{m_1^{a_1} \cdots m_{k-1}^{a_{k-1}} m_k^{a_k}}.$$

It satisfies the following differential equation

$$\frac{d}{dz}Li_{\mathbf{a}}(\bar{\zeta}(z)) = \begin{cases}
\frac{1}{z}Li_{(a_{1},\cdots,a_{k-1},a_{k}-1)}(\bar{\zeta}(z)) & \text{if } a_{k} \neq 1, \\
\frac{1}{\zeta_{k}^{-1}-z}Li_{(a_{1},\cdots,a_{k-1})}(\zeta_{1},\ldots,\zeta_{k-2},\zeta_{k-1}z) & \text{if } a_{k} = 1, k \neq 1, \\
\frac{1}{\zeta_{1}^{-1}-z} & \text{if } a_{k} = 1, k = 1.
\end{cases}$$

It gives an iterated integral starting from o, which lies on $I_o(\mathcal{M}_{0,4}^{(N)})$. Actually by the map ρ it corresponds to an element of the **Q**-structure $U\mathfrak{F}_{N+1}^*$ of $V(\mathcal{M}_{0,4}^{(N)})$ denoted by $l_{\mathbf{a}}^{\bar{\zeta}}$. It is expressed as

$$l_{\mathbf{a}}^{\bar{\zeta}} = (-1)^{k} [\underbrace{\omega_{0} | \cdots | \omega_{0}}_{a_{k}-1} | \underbrace{\omega_{0} | \cdots | \omega_{0}}_{a_{k-1}-1} | \omega_{0} | \cdots | \omega_{0} | \omega_{\zeta_{k}^{-1} \zeta_{k-1}^{-1}} | \omega_{0} | \cdots | \omega_{0} | \omega_{\zeta_{k}^{-1} \cdots \zeta_{1}^{-1}}].$$

By the standard identification $\mu \simeq \mathbf{Z}/N\mathbf{Z}$ sending $\zeta_N = \exp\{\frac{2\pi\sqrt{-1}}{N}\} \mapsto 1$, for a series $\varphi = \sum_{W:\text{word}} c_W(\varphi)W$ it is calculated by

$$l_{\mathbf{a}}^{\bar{\zeta}}(\varphi) = (-1)^k c_{A^{a_k-1}B(-e_k)A^{a_{k-1}-1}B(-e_k-e_{k-1})\cdots A^{a_1-1}B(-e_k-\cdots-e_1)}(\varphi)$$

with $\zeta_i = \zeta_N^{e_i} \ (e_i \in \mathbf{Z}/N\mathbf{Z}).$

For $\mathbf{a} = (a_1, \dots, a_k) \in \mathbf{Z}_{>0}^k$, $\mathbf{b} = (b_1, \dots, b_l) \in \mathbf{Z}_{>0}^l$, $\bar{\zeta} = (\zeta_1, \dots, \zeta_k)$, $\bar{\eta} = (\eta_1, \dots, \eta_l)$ with $\zeta_i, \eta_j \in \mu_N$ and $x, y \in \mathbf{C}$ with |x| < 1 and |y| < 1, consider the following complex function, the two variables multiple polylogarithm

$$Li_{\mathbf{a},\mathbf{b}}(\bar{\zeta}(x),\bar{\eta}(y)) := \sum_{\substack{0 < m_1 < \dots < m_k \\ < n_1 < \dots < n_l}} \frac{\zeta_1^{m_1} \cdots \zeta_{k-1}^{m_{k-1}} (\zeta_k x)^{m_k} \cdot \eta_1^{n_1} \cdots \eta_{l-1}^{n_{l-1}} (\eta_l y)^{n_l}}{m_1^{a_1} \cdots m_{k-1}^{a_{k-1}} m_k^{a_k} \cdot n_1^{b_1} \cdots n_{l-1}^{b_{l-1}} n_l^{b_l}}.$$

It satisfies the following differential equations.

$$\frac{d}{dx} Li_{\mathbf{a},\mathbf{b}}(\overline{\zeta}(x), \overline{\eta}(y))$$

$$= \begin{cases} \frac{1}{x} Li_{(a_{1},\cdots,a_{k-1},a_{k}-1),\mathbf{b}}(\overline{\zeta}(x), \overline{\eta}(y)) & \text{if } a_{k} \neq 1, \\ \frac{1}{\zeta_{k}^{-1}-x} Li_{(a_{1},\cdots,a_{k-1}),\mathbf{b}}(\zeta_{1},\ldots,\zeta_{k-2},\zeta_{k-1}x, \overline{\eta}(y)) - \left(\frac{1}{x} + \frac{1}{\zeta_{k}^{-1}-x}\right) \cdot \\ Li_{(a_{1},\cdots,a_{k-1},b_{1}),(b_{2},\cdots,b_{l})}(\zeta_{1},\ldots,\zeta_{k-1},\zeta_{k}\eta_{1}x,\eta_{2},\ldots,\eta_{l-1},\eta_{l}y) \\ & \text{if } a_{k} = 1, k \neq 1, l \neq 1, \end{cases}$$

$$= \begin{cases} \frac{1}{\zeta_{1}^{-1}-x} Li_{\mathbf{b}}(\eta(y)) - \left(\frac{1}{x} + \frac{1}{\zeta_{1}^{-1}-x}\right) Li_{(b_{1}),(b_{2},\cdots,b_{l})}(\zeta_{1}\eta_{1}x,\eta_{2},\ldots,\eta_{l-1},\eta_{l}y) \\ & \text{if } a_{k} = 1, k = 1, l \neq 1, \end{cases}$$

$$= \begin{cases} \frac{1}{\zeta_{1}^{-1}-x} Li_{(a_{1},\cdots,a_{k-1}),b_{1}}(\zeta_{1},\ldots,\zeta_{k-1}x,\eta_{1}y) - \left(\frac{1}{x} + \frac{1}{\zeta_{k}^{-1}-x}\right) \cdot \\ Li_{(a_{1},\cdots,a_{k-1},b_{1})}(\zeta_{1},\ldots,\zeta_{k-1},\zeta_{k}\eta_{1}xy) & \text{if } a_{k} = 1, k \neq 1, l = 1, \end{cases}$$

$$= \begin{cases} \frac{1}{\zeta_{1}^{-1}-x} Li_{b_{1}}(\eta_{1}y) - \left(\frac{1}{x} + \frac{1}{\zeta_{1}^{-1}-x}\right) Li_{b_{1}}(\zeta_{1}\eta_{1}xy) & \text{if } a_{k} = 1, k \neq 1, l = 1, \end{cases}$$

$$\frac{d}{dy}Li_{\mathbf{a},\mathbf{b}}(\bar{\zeta}(x),\bar{\eta}(y))
= \begin{cases}
\frac{1}{y}Li_{\mathbf{a},(b_{1},\cdots,b_{l-1},b_{l}-1)}(\bar{\zeta}(x),\bar{\eta}(y)) & \text{if } b_{l} \neq 1, \\
\frac{1}{\eta_{l}^{-1}-y}Li_{\mathbf{a},(b_{1},\cdots,b_{l-1})}(\bar{\zeta}(x),\eta_{1},\ldots,\eta_{l-2},\eta_{l-1}y) & \text{if } b_{l} = 1, l \neq 1, \\
\frac{1}{\eta_{l}^{-1}-y}Li_{\mathbf{a}}(\bar{\zeta}(\eta_{1}xy)) & \text{if } b_{l} = 1, l = 1.
\end{cases}$$

By analytic continuation, the functions $Li_{\mathbf{a},\mathbf{b}}(\bar{\zeta}(x),\bar{\eta}(y)), Li_{\mathbf{b},\mathbf{a}}(\bar{\eta}(y),\bar{\zeta}(x)),$ $Li_{\mathbf{a}}(\bar{\zeta}(x)), Li_{\mathbf{a}}(\bar{\zeta}(y))$ and $Li_{\mathbf{a}}(\bar{\zeta}(xy))$ give iterated integrals starting from o, which lie on $I_o(\mathcal{M}_{0,5}^{(N)})$. They correspond to elements of the Q-structure $(U\mathfrak{t}_{4,N}^0)^*$ of $V(\mathcal{M}_{0,5}^{(N)})$ by the map ρ denoted by $l_{\mathbf{a},\mathbf{b}}^{\bar{\zeta}(x),\bar{\eta}(y)},$ $l_{\mathbf{b},\mathbf{a}}^{\bar{\eta}(y),\bar{\zeta}(x)}, l_{\mathbf{a}}^{\bar{\zeta}(x)}, l_{\mathbf{a}}^{\bar{\eta}(y)}$ and $l_{\mathbf{a}}^{\bar{\zeta}(xy)}$ respectively. Note that they are expressed as

$$\sum_{I=(i_m,\cdots,i_1)} c_I[\omega_{i_m}|\cdots|\omega_{i_1}]$$

for some $m \in \mathbf{N}$ with $c_I \in \mathbf{Q}$ and $\omega_{i_j} \in \{\frac{dx}{x}, \frac{dx}{\zeta - x}, \frac{dy}{y}, \frac{dy}{\zeta - y}, \frac{xdy + ydx}{\zeta - xy}(\zeta \in \mu_N)\}$.

5. Proof of main theorems

This section gives a proof of theorem 1.

Proof of theorem 1. Let $\mathbf{a} = (a_1, \ldots, a_k) \in \mathbf{Z}_{>0}^k$, $\mathbf{b} = (b_1, \ldots, b_l) \in \mathbf{Z}_{>0}^l$, $\bar{\zeta} = (\zeta_1, \ldots, \zeta_k)$ and $\bar{\eta} = (\eta_1, \ldots, \eta_l)$ with $\zeta_i, \eta_j \in \mu_N \subset \mathbf{C}$ $(1 \leq i \leq k \text{ and } 1 \leq j \leq l)$. Put $\bar{\zeta}(x) = (\zeta_1, \ldots, \zeta_{k-1}, \zeta_k x)$ and

 $\bar{\eta}(y) = (\eta_1, \dots, \eta_{l-1}, \eta_l y)$. Recall that multiple polylogarithms satisfy the following analytic identity, the series shuffle formula in $I_o(\mathcal{M}_{0.5}^{(N)})$:

$$Li_{\mathbf{a}}(\bar{\zeta}(x)) \cdot Li_{\mathbf{b}}(\bar{\eta}(y)) = \sum_{\sigma \in Sh^{\leqslant}(k,l)} Li_{\sigma(\mathbf{a},\mathbf{b})}^{\sigma(\bar{\zeta}(x),\bar{\eta}(y))}.$$

Here $Sh^{\leq}(k,l) := \bigcup_{N=1}^{\infty} \{\sigma : \{1,\cdots,k+l\} \rightarrow \{1,\cdots,N\} | \sigma \text{ is onto, } \sigma(1) < \cdots < \sigma(k), \sigma(k+1) < \cdots < \sigma(k+l)\}, \ \sigma(\mathbf{a},\mathbf{b}) := (c_1,\cdots,c_N) \text{ with}$

$$c_{i} = \begin{cases} a_{s} + b_{t-k} & \text{if } \sigma^{-1}(i) = \{s, t\} \text{ with } s < t, \\ a_{s} & \text{if } \sigma^{-1}(i) = \{s\} & \text{with } s \leq k, \\ b_{s-k} & \text{if } \sigma^{-1}(i) = \{s\} & \text{with } s > k, \end{cases}$$

and $\sigma(\bar{\zeta}(x), \bar{\eta}(y)) := (z_1, \dots, z_N)$ with

$$z_{i} = \begin{cases} x_{s}y_{t-k} & \text{if } \sigma^{-1}(i) = \{s, t\} \text{ with } s < t, \\ x_{s} & \text{if } \sigma^{-1}(i) = \{s\} & \text{with } s \leq k, \\ y_{s-k} & \text{if } \sigma^{-1}(i) = \{s\} & \text{with } s > k, \end{cases}$$

for $x_i = \zeta_i$ $(i \neq k)$, $\zeta_k x$ (i = k) and $y_j = \eta_j$ $(j \neq l)$, $\eta_j y$ (j = l). Since ρ is an embedding of algebras, the above analytic identity immediately implies the algebraic identity, the series shuffle formula in the **Q**-structure $(U\mathfrak{t}_{4,N}^0)^*$ of $V(\mathcal{M}_{0,5}^{(N)})$

(8)
$$l_{\mathbf{a}}^{\bar{\zeta}(x)} \cdot l_{\mathbf{b}}^{\bar{\eta}(y)} = \sum_{\sigma \in Sh^{\leq}(k,l)} l_{\sigma(\mathbf{a},\mathbf{b})}^{\sigma(\bar{\zeta}(x),\bar{\eta}(y))}.$$

Let (g,h) be a pair in theorem 1. By the group-likeness of h, i.e. $h \in \exp \mathfrak{F}_{N+1}$, the product $h^{1,23,4}h^{1,2,3}$ is group-like, i.e. belongs to $\exp \mathfrak{t}^0_{4,N}$. Hence $\Delta(h^{1,23,4}h^{1,2,3}) = (h^{1,23,4}h^{1,2,3}) \widehat{\otimes} (h^{1,23,4}h^{1,2,3})$, where Δ is the standard coproduct of $U\mathfrak{t}^0_{4,N}$. Therefore

$$\begin{split} l_{\mathbf{a}}^{\bar{\zeta}(x)} \cdot l_{\mathbf{b}}^{\bar{\eta}(y)}(h^{1,23,4}h^{1,2,3}) &= (l_{\mathbf{a}}^{\bar{\zeta}(x)} \widehat{\otimes} l_{\mathbf{b}}^{\bar{\eta}(y)}) (\Delta(h^{1,23,4}h^{1,2,3})) \\ &= l_{\mathbf{a}}^{\bar{\zeta}(x)}(h^{1,23,4}h^{1,2,3}) \cdot l_{\mathbf{b}}^{\bar{\eta}(y)}(h^{1,23,4}h^{1,2,3}). \end{split}$$

Evaluation of the equation (8) at the group-like element $h^{1,23,4}h^{1,2,3}$ gives the series shuffle formula

(9)
$$l_{\mathbf{a}}^{\bar{\zeta}}(h) \cdot l_{\mathbf{b}}^{\bar{\eta}}(h) = \sum_{\sigma \in Sh^{\leq}(k,l)} l_{\sigma(\mathbf{a},\mathbf{b})}^{\sigma(\bar{\zeta},\bar{\eta})}(h)$$

for admissible pairs 1 $(\mathbf{a}, \bar{\zeta})$ and $(\mathbf{b}, \bar{\eta})$ by the results in [F4] because the group-likeness and (4) for h implies $c_0(h) = 1$ and $c_A(h) = 0$.

¹A pair $(\mathbf{a}, \bar{\zeta})$ with $\mathbf{a} = (a_1, \dots, a_k)$ and $\bar{\zeta} = (\zeta_1, \dots, \zeta_k)$ is called *admissible* if $(a_k, \zeta_k) \neq (1, 1)$.

By putting $l_1^{1,S}(h) := -T$ and $l_{\mathbf{a}}^{\bar{\zeta},S}(h) := l_{\mathbf{a}}^{\bar{\zeta}}(h)$ for all admissible pairs $(\mathbf{a},\bar{\zeta})$, the series regularized value $l_{\mathbf{a}}^{\bar{\zeta},S}(h)$ in $\mathbf{Q}[T]$ (T): a parameter which stands for $\log z$, cf. [R]) for a non-admissible pair $(\mathbf{a},\bar{\zeta})$ is uniquely determined in such a way (cf.[AK]) that the above series shuffle formulae remain valid for $l_{\mathbf{a}}^{\bar{\zeta},S}(h)$ with all pairs $(\mathbf{a},\bar{\zeta})$.

Define the integral regularized value $l_{\bf a}^{\bar\zeta,I}(h)$ in ${\bf Q}[T]$ for all pairs $({\bf a},\bar\zeta)$ by $l_{\bf a}^{\bar\zeta,I}(h)=l_{\bf a}^{\bar\zeta}(e^{TB(0)}h)$. Equivalently $l_{\bf a}^{\bar\zeta,I}(h)$ for any pair $({\bf a},\bar\zeta)$ can be uniquely defined in such a way that the iterated integral shuffle formulae (loc.cit) remain valid for all pairs $({\bf a},\bar\zeta)$ with $l_1^{1,I}(h):=-T$ and $l_{\bf a}^{\bar\zeta,I}(h):=l_{\bf a}^{\bar\zeta}(h)$ for all admissible pairs $({\bf a},\bar\zeta)$ because they hold for admissible pairs by the group-likeness of h (cf. loc.cit).

Let \mathbb{L} be the **Q**-linear map from $\mathbb{Q}[T]$ to itself defined via the generating function:

$$\mathbb{L}(\exp Tu) = \sum_{n=0}^{\infty} \mathbb{L}(T^n) \frac{u^n}{n!} = \exp\left\{-\sum_{n=1}^{\infty} l_n^{1,I}(h) \frac{u^n}{n}\right\}.$$

Proposition 8. Let h be an element as in theorem 1. Then the regularization relation holds, i.e. $l_{\mathbf{a}}^{\bar{\zeta},S}(h) = \mathbb{L}(l_{\mathbf{a}}^{\bar{\zeta},I}(h))$ for all pairs $(\mathbf{a},\bar{\zeta})$.

Proof. We may assume that $(\mathbf{a}, \overline{\zeta})$ is non-admissible because the proposition is trivial if it is admissible. Put $1^n = (\underbrace{1, 1, \cdots, 1}_n)$. When

 $\mathbf{a} = 1^n$ and $\bar{\zeta} = \bar{1}^n$, the proof is given by the same argument to [F3] as follows: By the series shuffle formulae,

$$\sum_{k=0}^{m} (-1)^k l_{k+1}^{\bar{1},S}(h) \cdot l_{1^{m-k}}^{\bar{1}^{m-k},S}(h) = (m+1) l_{1^{m+1}}^{\bar{1}^{m+1},S}(h)$$

for $m \geqslant 0$. Here we put $l_{\emptyset}^{\emptyset,S}(h) = 1$. This means

$$\sum_{k,l\geqslant 0} (-1)^k l_{k+1}^{\bar{1},S}(h) \cdot l_{1l}^{\bar{1}^l,S}(h) u^{k+l} = \sum_{m\geqslant 0} (m+1) l_{1m+1}^{\bar{1}^{m+1},S}(h) u^m.$$

Put $f(u) = \sum_{n \geq 0} l_{1n}^{\bar{1}^n, S}(h) u^n$. Then the above equality can be read as

$$\sum_{k \geqslant 0} (-1)^k l_{k+1}^{\bar{1},S}(h) u^k = \frac{d}{du} \log f(u).$$

Integrating and adjusting constant terms gives

$$\sum_{n\geqslant 0} l_{1^n}^{\bar{1}^n,S}(h)u^n = \exp\left\{-\sum_{n\geqslant 1} (-1)^n l_n^{\bar{1},S}(h) \frac{u^n}{n}\right\} = \exp\left\{-\sum_{n\geqslant 1} (-1)^n l_n^{\bar{1},I}(h) \frac{u^n}{n}\right\}$$

because $l_n^{\bar{1},S}(h) = l_n^{\bar{1},I}(h) = l_n^1(h)$ for n > 1 and $l_1^{\bar{1},S}(h) = l_1^{\bar{1},I}(h) = -T$. Since $l_{1m}^{\bar{1}^m,I}(h) = \frac{(-T)^m}{m!}$, we get $l_{1m}^{\bar{1}^m,S}(h) = \mathbb{L}(l_{1m}^{\bar{1}^m,I}(h))$.

When $(\mathbf{a}, \bar{\zeta})$ is of the form $(\mathbf{a}'1^l, \bar{\zeta}'1^{\bar{l}})$ with $(\mathbf{a}', \bar{\zeta}')$ admissible, the proof is given by the following induction on l. By (8),

$$l_{\mathbf{a}'}^{\bar{\zeta}'(x)}(h') \cdot l_{1^l}^{\bar{1}^l(y)}(h') = \sum_{\sigma \in Sh^{\leqslant}(k,l)} l_{\sigma(\mathbf{a}',1^l)}^{\sigma(\bar{\zeta}'(x),\bar{1}^l(y))}(h')$$

for $h' = e^{T\{t^{23}(0)+t^{24}(0)+t^{34}(0)\}}h^{1,23,4}h^{1,2,3}$ with $k = dp(\mathbf{a}')$. The group-likeness and (4) for h implies $c_0(h) = 1$ and $c_A(h) = 0$ and the group-likeness and our assumption $c_{B(0)}(h) = 0$ implies $c_{B(0)^n}(h) = 0$ for $n \in \mathbb{Z}_{>0}$. Hence by the results in [F4]

$$l_{\mathbf{a}'}^{\bar{\zeta'}}(h) \cdot l_{1^l}^{\bar{1}^l,I}(h) = \sum_{\sigma \in Sh^{\leqslant}(k,l)} l_{\sigma(\mathbf{a}',1^l)}^{\sigma(\bar{\zeta'},\bar{1}^l),I}(h).$$

Then by our induction assumption, taking the image by the map \mathbb{L} gives

$$l_{\mathbf{a}'}^{\bar{\zeta'}}(h) \cdot l_{1^l}^{\bar{1}^l,S}(h) = \mathbb{L}\left(l_{\mathbf{a}'1^l}^{\bar{\zeta'}\bar{1}^l,I}(h)\right) + \sum_{\sigma \neq id \in Sh^{\leqslant}(k,l)} l_{\sigma(\mathbf{a}',1^l)}^{\sigma(\bar{\zeta'},\bar{1}^l),S}(h).$$

Since $l_{\mathbf{a}'}^{\bar{\zeta}',S}(h)$ and $l_{1^{l}}^{\bar{1}^{l},S}(h)$ satisfy the series shuffle formula, $\mathbb{L}(l_{\mathbf{a}}^{\bar{\zeta},I}(h))$ must be equal to $l_{\mathbf{a}}^{\bar{\zeta},S}(h)$, which concludes proposition 8.

Embed $U\mathfrak{F}_{Y_N}$ into $U\mathfrak{F}_{N+1}$ by sending $Y_{m,a}$ to $-A^{m-1}B(-a)$. Then by the above proposition,

$$\begin{split} l_{\mathbf{a}}^{\bar{\zeta},S}(h) &= \mathbb{L}(l_{\mathbf{a}}^{\bar{\zeta},I}(h)) = \mathbb{L}(l_{\mathbf{a}}^{\bar{\zeta}}(e^{TB(0)}h)) = l_{\mathbf{a}}^{\bar{\zeta}} \left(\mathbb{L}(e^{TB(0)}\pi_{Y}(h)) \right) \\ &= l_{\mathbf{a}}^{\bar{\zeta}}(\exp\left\{ -\sum_{n=1}^{\infty} l_{n}^{1,I}(h) \frac{B(0)^{n}}{n} \right\} \cdot \pi_{Y}(h)) \\ &= l_{\mathbf{a}}^{\bar{\zeta}}(\exp\left\{ -TY_{1,0} + \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} c_{A^{n-1}B(0)}(h) Y_{1,0}^{n} \right\} \cdot \pi_{Y}(h)) = l_{\mathbf{a}}^{\bar{\zeta}}(e^{-TY_{1,0}}h_{*}) \end{split}$$

for all $(\mathbf{a}, \overline{\zeta})$ because $l_1^1(h) = 0$. As for the third equality we use $(\mathbb{L} \otimes_{\mathbf{Q}} id) \circ (id \otimes_{\mathbf{Q}} l_{\mathbf{a}}^{\overline{\zeta}}) = (id \otimes_{\mathbf{Q}} l_{\mathbf{a}}^{\overline{\zeta}}) \circ (\mathbb{L} \otimes_{\mathbf{Q}} id)$ on $\mathbf{Q}[T] \otimes_{\mathbf{Q}} U \mathfrak{F}_{N+1}$. All $l_{\mathbf{a}}^{\overline{\zeta},S}(h)$'s satisfy the series shuffle formulae (9), so the $l_{\mathbf{a}}^{\overline{\zeta}}(e^{-TY_{1,0}}h_*)$'s do also. By putting T = 0, we get that $l_{\mathbf{a}}^{\overline{\zeta}}(h_*)$'s also satisfy the series shuffle formulae for all \mathbf{a} . Therefore $\Delta_*(h_*) = h_* \widehat{\otimes} h_*$. This completes the proof of theorem 1.

REFERENCES

- [AK] Arakawa, T., Kaneko, M., On multiple L-values, J. Math. Soc. Japan 56 (2004), no.4, 967-991.
- [BK] Broadhurst, D.J., Kreimer, D., Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops, Physics Letters B, Vol 393, Issues 3-4, 1997, 403-412.
- [B] Brown, F., Multiple zeta values and periods of moduli spaces $\mathfrak{M}_{0,n}$, Ann. Sci. Ec. Norm. Super. (4) 42 (2009), no.3, 371–489.
- [C] Chen, K. T., Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831–879.
- [De] Deligne, P., Le groupe fondamental de la droite projective moins trois points, Galois groups over Q (Berkeley, CA, 1987), 79–297, Math. S. Res. Inst. Publ., 16, Springer, New York-Berlin, 1989.
- [Dr] Drinfel'd, V. G., On quasitriangular quasi-Hopf algebras and a group closely connected with $Gal(\overline{Q}/Q)$, Leningrad Math. J. 2 (1991), no. 4, 829–860.
- [E] Enriquez, B., Quasi-reflection algebras and cyclotomic associators, Selecta Math. (N.S.) 13 (2007), no. 3, 391-463.
- [EF] _____, Furusho, H., Mixed Pentagon, octagon and Broadhurst duality equation, Journal of Pure and Applied Algebra, Vol 216, Issue 4, (2012), 982-995.
- [F1] Furusho, H., The multiple zeta value algebra and the stable derivation algebra, Publ. Res. Inst. Math. Sci. Vol 39. no 4. (2003). 695-720.
- [F2] _____, Pentagon and hexagon equations, Annals of Mathematics, Vol. 171 (2010), No. 1, 545-556.
- [F3] _____, Double shuffle relation for associators, Annals of Mathematics, Vol. 174 (2011), No. 1, 341-360.
- [F4] _____, Geometric interpretation of double shuffle relations for multiple L-values, to appear in Proceedings of Kyoto 2010 "Galois-Teichmüller theory and Arithmetic Geometry".
- [G] Goncharov, A. B., The dihedral Lie algebras and Galois symmetries of $\pi_1^{(l)}(\mathbb{P}^1 (\{0,\infty\} \cup \mu_N))$, Duke Math. J. 110 (2001), no. 3, 397–487.
- [K] Kohno, T., Bar complex of the Orlik-Solomon algebra, Arrangements in Boston: a Conference on Hyperplane Arrangements (1999), Topology Appl. 118 (2002), no. 1-2, 147-157.
- [LM] Le, T.T.Q., Murakami, J.; Kontsevich's integral for the Kauffman polynomial, Nagoya Math. J. 142 (1996), 39-65.
- [R] Racinet, G., Doubles melanges des polylogarithmes multiples aux racines de l'unite, Publ. Math. Inst. Hautes Etudes Sci. No. 95 (2002), 185–231.
- [Z] Zhao, Jianqiang., Multiple polylogarithm values at roots of unity, C. R. Math. Acad. Sci. Paris 346 (2008), no. 19-20, 1029-1032.

Graduate School of Mathematics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602, Japan

E-mail address: furusho@math.nagoya-u.ac.jp