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MIXED PENTAGON EQUATION AND DOUBLE
SHUFFLE RELATION

HIDEKAZU FURUSHO

ABSTRACT. This paper is a review of the paper [F4] where a geo-
metric interpretation of the generalized (including the regulariza-
tion relation) double shuffle relation for multiple L-values is given.
In precise, it is shown that Enriquez’ mixed pentagon equation
implies the relations.

0. INTRODUCTION

Multiple L-values L(ky,- -« , km; 1, -+, (m) are the complex numbers
defined by the following series

n1 N

1) Ll kG = Y S

0<ni < <nm ny eyt
for m, ki,..., kn € N(= Zso) and (3,. ..,(m € pun(:the group of N-th
roots of unity in C). They converge if and only if (kn,,(m) # (1,1).
Multiple zeta values are regarded as a special case for N = 1. These |
values have been discussed in several papers [AK, BK, G, R] etc. Multi-
ple L-values appear as coeflicients of the cyclotomic Drinfel’d associator
&% 5 (5) in UFn41: the non-commutative formal power series ring with
N + 1 variables A and B(a) (a € Z/NZ).

The mixed pentagon equation (4) is a geometric equation: introduced
by Enriquez [E]. The series $% , satisfies the equation, which yields
non-trivial relations among multiple L-values. The generalised dou-
ble shuffle relation (the double shuffle relation and the regularization
relation) is a combinatorial relation among multiple L-values. It is for-
mulated as (6) for h = &% ;. It is Zhao’s remark [Z] that for specific N'’s
the generalized double shuffle relation does not provide all the possible
relations among multiple L-values.

Our main theorem is an implication of the generalised double shuffle
relation (6) from the mixed pentagon equation (4).
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Theorem 1. Let UFn41 be the universal enveloping algebra of the free
Lie algebra Fn41 with variables A and B(a) (a € Z/NZ). Let h be
a group-like element in UFn41 with cp)(h) = 0 satisfying the mized
pentagon equation (4) with a group-like series g € U§2. Then h also
satisfies the generalised double shuffle relation (6).

The contents of the article are as follows: We recall the mixed penta-
gon equation in §1 and the generalised double shuffle relation in §2. In
§3 we calculate the 0-th cohomologies of Chen’s reduced bar complex
for the Kummer coverings of the moduli spaces M4 and Mgys. Two
variable cyclotomic multiple polylogarithms and their associated bar
elements there are introduced in §4. By using them, we prove theorem
1 in §5.

1. MIXED PENTAGON EQUATION

This section is to recall Enriquez’ mixed pentagon equation [E].

Let us fix notations: For n > 2, the Lie algebra t, of infinitesimal
pure braids is the completed Q-Lie algebra with generators t* (i # j,
1 < 4,5 < n) and relations ¢ = t7%, [t¥, ¢%* + t7%] = 0 and [¢tY,t%] =0
for all distinct 2, 7, k, I. We note that t; is the 1-dimensional abelian Lie
algebra generated by t'2. The element 2, = 7, ; ., t is central in t,.
Put {© to be the Lie subalgebra of t, with the same generators except ¢
and the same relations as t,. Then we have t, = {3 ® Q- z,. Especially
when n = 3, £ is a free Lie algebra §» of rank 2 with generators A := t'?
and B = t®. For a partially defined map f: {1,...,m} = {1,...,n},
the Lie algebra morphism ¢, — t, : z — :c/f = A CORES A CORE T
uniquely defined by (t9)/ = 3 cs-10) jres-109 7 -

For a pair (u,g) € Q X exp §2 the pentagon equation is the following
equation in exp 3
) glABeg1234 _ 2341234123

and two hezagon equations the following two equations in exp§: =
exp t : |
(3) 9(A,B)g(B,A)=1  and

A uC B.
exp{5-19(C, 4) exp{E719(B, O) exp{E-}9(4, B) = 1
with C = —A — B. These ‘
By our notation, the equation (2) can be read as
g(t12, t23 + t24)g(t13 + t23, t34) — g(t23,l t34)g(t12 + t13, t24 + t34)g(t12, t23).
Remark 2. It is shown in [F2] that the two hexagon equations (3) are
consequences of the pentagon equation (2).
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Remark 3. The Drinfel’d associator Pxz = Pxz(A, B) € C{{(A, B))
is defined to be the quotient @xz = G1(2)~'Gy(z) where Gy and G4
are the solutions of the formal KZ equation

2+ L6

d.
0@ =+
such that Gy(z) = 24 when z — 0 and G1(2) = (1 — 2)? when z — 1
(cf.[Dr]). The series has the following expression

111

Pxz = 1+Z 1)™¢( kl, - k) AFT1B ... ARl B (regularized terms)

and the regularised terms are explicitly calculated to be linear combi-
nations of multiple zeta values {(ky,- - ,kn) = L(ky,... kn;1,...,1)
in [F1] proposition 3.2.3 by Le-Murakami’s method [LM]. It is shown
in [Dr] that the pair (2mv/—1, §z) satisfies the pentagon equation (2)
and the hexagon equations (3).

For n > 2 and N > 1, the Lie algebra t, y is the completed Q-Lie
algebra with generators e 2<i<n),ta) (t+#372<14j5<n,
a € Z/NZ) and relations t(a)? = t(—a)’, [t(a)?, t(a+b)““-|—t( )J'“] = O
B + Y + 3 ez/nz t(©)7,8(a)] = 0, [t1,89 + 3y Nz t(e)9] =
[t*,t(a)?™] = 0 and [t(a)¥,t(b)*] = O for all a, b € Z/NZ and all
distinct 7, 7, k, 1 (2 < 4,4, k,1 < n). We note that t, is equal to t, for
n 2 2. We have a natural injection t,_; y < t, y. The Lie subalgebra
fnv of t, n generated by t'™ and t(a)™ (2<i<n—1,a € Z/NZ) is
free of rank (n — 2)N + 1 and forms an ideal of t, . Actually it shows
that t, v is a semi-direct product of f, y and ¢, . The element
Zp N = Zl<i<j<ntij with t¥ = Zan/Nzt(a)ij 2<i<j<n)is
central in t, 5. Put £ y to be the Lie subalgebra of t, x with the same
generators except t'". Then we have t, y = 3 y®Q-2, 5. Occasionally
we regard t y as the quotient t,/Q - 2, n. Especially when n = 3,
tg’ y is free Lie algebra Fn,1 of rank N + 1 with generators A := ¢12
and B(a) = t(a)?® (a € Z/N7Z).

For a partially defined map f : {1,...,m} — {1,...,n} such that

f(1) =1, the Lie algebra morphism t, y — tm y : z > zf = 2/ (Deaf ()

is uniquely defined by (t(a)”)? = 3, ¢,- )€1 0) t(a)™ (i # 3, 2

i,j < n)and (¢V) = Zj'ef—l(j) t9' + ; ZJ 1€ 1) EceZ/NZ t(c)J'J"
T Xomer1wyes-i() eeznz 1O (2 < J < n). Again for a par-
tially defined map ¢ : {2,...,m} — {1,...,n}, the Lie algebra mor-
phism t, = tny : z = 29 = 29 W97 s yniquely defined by
(7 = Tiegrresn O (17, 1 <45 <),
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For a pair (g,h) € expF2 X exp §n+1, the mized pentagon equation
means the following equation in exp ] v

(4) h1,2,34h12,3,4 — 92’3’4h1’23’4h1’2’3 )

By our notation, each term in the equation (4) can be read as
RY234 = (812 £23(0) + t24(0),t%3(1) + t#4(1),... ,tB(N — 1) +t*(N - 1)),
h12,3,4 t13 +Zt23 t34(0 t34( ) ...,t34(N— 1))’

g*** = g(t*(0), t34( ),
R34 = b2 4+ 112 43 123(0), £24(0) + £%4(0), ..., AV — 1) + £*(N — 1)),

A28 = p(t12,1%(0),8%%(1), ..., t*(N = 1)).

Remark 4. In [E], the cyclotomic analogue oY, € expFn+1(C) of
the Drinfel’d associator is introduced to be the renormalised holonomy
from O to 1 of the KZ-like differential equation

Lhe=2+ Y 2ne)

.2 — (%
a€Z/NZ N

with (y = exp{Z"‘/_} ie. q5KZ = H;'H, where H, and H; are the

solutions such that Ho(z) = z# when z — 0 and H;(2) =~ (1 — z)5©
when z — 1 (cf.[E]). There appear multiple L-values (1) in each of its
coefficient;

(5)
QS%Z =1+ Z(;l)mL(kl, ey km; 517 st 7§m)Akm—lB(a’m) T Akl—lB(al)
+ (regularized terms)

with & = (274, ..., €nor = (7" and &, = (", where the
regularised terms can be explicitly calculated to combinations of mul-
tiple L-values by the method of Le-Murakami [LM]. In [E] it is shown
that the triple (27v/—1, Pk z, DX ;) satisfies the mixed pentagon equa-
tion (4). This is achieved by considering monodromy in the pentagon
formed by the divisors y = 0, x = 1, the exceptlonal d1v1sor of the

blowing-up at (1,1),y=1and z =01in M ) (see §3).

Remark 5. In [EF] it is proved that the mixed pentagon equation
(4) implies the distribution relation for a specific case and that the
octagon equation follows from the mixed pentagon. equatlon and the
special action condition for N = 2.
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2. DOUBLE SHUFFLE RELATION

This section is to recall the generalised double shuffle relation in
Racinet’s setting [R].

Let us fix notations: Let Fy, be the completed graded Lie Q-algebra
generated by Y, , (n > 1 and a € Z/NZ) with deg Y., , = n. Put UGy,
its universal enveloping algebra: the non-commutative formal series
ring with free variables Y, , (n > 1and a € Z/NZ). Let ny : USn41 —
USyy be the Q-linear map between non-commutative formal power
series rings that sends all the words ending in A to zero and the word
A" B(am) - A" B(ay) (n1,...,nm = 1 and ay, ... ,a, € Z/NZ)
to

(_1)my:n Y, T Ynl,az—al'

my—Qam = Mm—1,8m —Qm—1
Define the coproduct A, of Uy, by AYn. =Y, H=nbioma Vb ® Vie
(n > 0and a € Z/NZ) with Yy, := 1 if a = 0 and 0 if ¢ # 0. For
h =3 wwora cw(R)W € Uny1, define the series shuffle regularization
hy« = Reorr + Ty (R) with the correction term

o 1)
hcorr = €xp (Z ( n) CA"“lB(O)(h))/l??O> .

n=1

For a series h € exp§ny1 the generalised double shuffle relation
stands for the following relation in Ugy,

Remark 6. The series #¥, (5) satisfies the generalised double shuffle
relation (6) because regularised multiple L-values satisfy the double
shuffle relation.

3. BAR CONSTRUCTIONS

This section gives a review of the notion of the reduced bar construc-
tion and calculates it for M((ﬁ) and Mg{g).

We recall the notion of Chen’s reduced bar construction [C]. Let
(A* = ©32,AY, d) be a differential graded algebra (DGA). The reduced
bar complex B*(A) is the tensor algebra ©%,(A*)®" with A* = @2, A’
where A° = A1/dA® and A = A**! (i > 0). We denote 0; ® - - ® a,
(a; € A®) by [a1] -+ |a,]. The degree of elements in B*(A) is given by
the total degree of A®. Put Ja = (—1)?~'a for a € AP. Define

k
d'lar] - |ag] = Y (=1)'[Jaa| - | Jas-1]das]aira] - - o]

=1
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and
k

d'lag] -+ lax] = D (1) [Jaa| -+ |Jaima] Jai - aigal@isel - - Jax]
=1
Then d'+d" forms a differential. The differential and the shuffle product
(loc.cit.) give B*(A) a structure of commutative DGA. Actually it also
forms a Hopf algebra, whose coproduct A is given by

Ao+ lar]) = Y Jlaal -+ |as] ® [a4a] - fa].
s=0

For a smooth complex manifold M, Q°(M) means the de Rham
complex of smooth differential forms on M with values in C. We
denote the 0-th cohomology of the reduced bar complex B*(f(M))
with respect to the differential by H°B(M).

Let Mo be the moduli space {(z1,---,s) € (Pg)* lx, # z;(i #
7)}/PGLy(C) of 4 different points in P!. It is identified with {2 €
PL|z # 0,1,00} by sending [(0,2,1,00)] to 2. Denote its Kummer
N-covering

m\,U,N—{ZGP |Z #071700}
by M(N) The space H°B (M0,4 ) is generated by
wo = dlog(z) and w, = dlog(z —¢) (¢ € pun)-

We have an identification H°B (M(N)) with the graded C-linear dual
Of USN.*.]_, '
H°BM)) ~ Uy, ®C,

by Bxp 01" = sz-m o Xyl -] € Uys BQHOB(MEY),

Here the sum is taken over m > 0 and 41, -+ ,im € {0} U uy and
Xo = A and X; = B(a) when { = (}. It is easy to see that the
identification is compatible with Hopf algebra structures. We note that

the product ly - Iy € HOB(MSY) for Ly, Iy € HOB(MSY) is given by

b la(f) = 2 h Nia(f37) for f € USnsa @C with A(f) = T e
79 Occasionally we regard H 0B(.M0 ")) as the regular function ring of
Fni1(C)={g € U§n1®Clg: group-hke} {9 € Ugn+1®Clg(0) =
1,A(9) =g ® g}
Let Mys be the moduli space {(z1, - ,z5) € (Pg)°|z:i # z;(1 #

7)}/PGL4y(C) of 5 different points in PL. It is identified with {(z,y) €
G2 |z # 1,y # 1,7y # 1} by sending [(0, 2y, y, 1, 00)] to (z,y). Denote
its Kummer N 2—covering

{(z,y) € GL |z #1,y" # 1, (zy)" # 1}
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by M(()‘:\;). It is identified with W /C* by (z,y) — (zy,y, 1) where
Wi ={(22, 23, 21) € Gp|7 # ZJN(Z #J)}
The space H OB(M%}) is a subspace of the tensor coalgebra generated
by
wy := dlog z; and w;j(a) == dlog(z — (y2;) (2<4,j<4,a €Z/N).
Proposition 7. We have an identification
HOBMSY) ~ (Ut y)* ® C.

Proof . By [K], H°B(Wy) can be calculated to be the 0-th cohomology
H°B*(S) of the reduced bar complex of the Orlik-Solomon algebra.
S°®. The algebra S°® is the (trivial-)differential graded C-algebra S*® =
9057 defined by generators ;
wi; = dlog z; and w; j(a) = dlog(z; — (Rzj) (2<4i,7<4,a€ Z/NZ)
in degree 1 and relations
wij(a) = wji(=a),  wij(a) A{wi(a+b) +w(b)} =0,

{wli + Wij + Z w(c),-j} VAN w(a),] = 0,
- c€Z/NZ
ZTA {wﬁ + z w(c)ij} =0,
c€EZ/NZ
wy; N\ w(a)jk =0 and w(a),-j AN W(b)kl =0
for all a, b € Z/NZ and all distinct ¢, j, k, [ (2 < 4,5,k,0 < n). By
direct calculation, the element

4
Z b @ Wi + Z tij(a) ® wij(a) € (ban)*F @ S*

i=2 2<i<j<4,a€Z/NZ

yields a Hopf algebra identification of HOB(Wy) with (Utyn)* ® C
since both are quadratic.
By the long exact sequence of cohomologies induced from the G,,-

bundle Wy — M = Wy/CX, we get
0 — HY(MD) = H' (Wy) = HY(Gp) =0

and ‘ .
HWMD) =~ HWy)  (i>2).

It yields the identification of the subspace H OB(MS{\Q ) of H'B(Wx)
with (Ut v)* ® C. 0

115



116
HIDEKAZU FURUSHO

The above identification is induced from
Exp Q( )= thm ity ®win| - |lwa] € Ut? N®QH0 (M(N))
where the sum is taken over m > 0 and Ji,--- ,Jn € {(1,9)[2 < ¢ <

4} U{(3,5,a)|2<i<j <4, aEZ/NZ}
Especially the 1dent1ﬁcat10n between degree 1 terms is given by

Q(N) Zthdlogzz—}— Z Z i (a)dlog(z; — (z;)

2<i<j<4a€Z/NZ
N
Etiy® HDR(M( ))
In terms of the coordinate (z,y),

QéN) = todlog(zy) + ti13dlogy + Z t23(a)dlog y(z — (R)
+ ) ta(a)dlog(zy — i) + ) tas(a)dlog(y — ()
= t1pdlogz + Et23(a)dlog(m —(N) + (tiz + ti3 + taz)dlogy

+ z ts4(a)dlog(y — () + Z tos(a)dlog(zy — (x)-

It is easy to see that the identification is compatlble with Hopf algebra
structures. We note again that the product l; - l; € H OB(M(N) ) for
b, Iy € HOB(MY)) is given by U - b(f) == 3 h(F)la(f)) for f €
Ut y ® C with A(f) = ¥, A7 ® fi? (A: the coproduct of Ut y).
Occasionally we also regard H 0B(./\/I(()fg)) as the regular function ring
of K}(C) = {g € Ut] y ® C|g : group-like}.

By a generalization of Chen’s theory [C] to the case of tangential
basepoints, especially for M = M(N) or MO s , we have an isomorphism

p: H'B(M) ~ I, (M)
as algebras over C which sends >°,_ . . crlwin| " |wi] (cr € C)

to Yoyerlt f wi, o owy. Here )5 crlt [, Wi, © - -+ 0 w;, means the
iterated integral defined by

O Ner[ ) (1) ()

for all analytic paths + : (0 1) —» M(C) startmg from the tangential
basepoint o (defined by & for M = M04 and defined by £ and %

for M = M(N)) at the origin in M (for its treatment see also [De]§15)
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and I,(M) stands for the C-algebra generated by all such homotopy
invariant iterated integrals with m > 1 and Wigy -+ oy Wiy, € HL R (M).

4. TWO VARIABLE CYCLOTOMIC MULTIPLE POLYLOGARITHMS

We introduce cyclotomic multiple polylogarithms, Li,((2)) and

Liap((z),7(y)), and their associated bar elements, I$ and lC(w)’"(y) :
which play important roles to prove our main theorems

For a pair (a,() with a = (a;,--- ,az) € Z';O and ¢ = ((1,...,C)
with ¢; € py: the group of roots of unity in C (1 < i < k), its
weight and its depth are defined to be wt(a,{) = a; + --- + a; and
dp(a, ) = k respectively. Put ¢(z) = (¢1,. .., k1, (kT). Put z€C
with |z| < 1. Consider the following complex analytic function, one
variable cyclotomic multiple polylogarithm

)= Y 1 Gt (Ge2) k.

a1 Qp—1
myt -yt mk

0<my <---<my,

It satisfies the following differential equation

TLigy, ap_1,0—1)(C(2)) if a # 1,
— Lia(((2)) = ﬁ:;lli(al,-.‘,ak_n(ﬁ, o Comny Chm12) ifap =1,k #1,
z
1 : — —
—T—Cl— — 1fak—-1,k—1.
It gives an iterated integral starting from o, which lies on I, (M(N))
Actually by the ma,p p it corresponds to an element of the Q-structure

US4 of V(MO v) denoted by 1. It is expressed as

lg = (=1)*[wo| - - - jwo |w<k-1| wol + -+ |we Iwc’-c—l(k—_11|wo| ------ |w0|w<k—1...¢1—1]-
ar—1 arp-1—1

By the standard identification y ~ Z/NZ sending {x = exp{ 27TV/_—} —
1, for a series ¢ = Y ,,. . cw (@)W it is calculated by

lg.((p) = (—l)kcA“k‘1B(—'ek)Aa’°—1—lB(—ek—ek—l)“'Aal_IB(_ek—'“"el)((p)
with ¢ = (3 (e; € Z/NZ). B
For a = (ala"' 7a‘k) € ZI;D: b = (bl7"' abl) € Zl>0> C: (Clw‘-ka),
7= (m,...,m) with {;,n; € un and z,y € C with |z| < 1 and |y| <
1, consider the following complex function, the two variables multiple
polylogarithm

- my mk I(C x)mk n, ”l—l( )™
. _ 1 k Ui M- \MY
LZa,b(C(x)>77(y)) = Z a1 by bi—1_b
0<my <---<my myt - mt mk LT L

<ni<---<ny
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It satisfies the following differential equations.

2 Liag(C(2),7(0)
(1 Liay, apr,ae-1)b(C(2), () if ax, # 1,
- Zf‘l—_x.Li(“l»""“k-l)'b(Cl’ ooy G2, G125 () — (% + 511':;) '
Litag, - apvb1) s o) (C1r - - - Com1, GeT, M5 - - -, M1, MY)
far=1,k#1,1#1,
={ = Lin(n(y)) - (% + glr_—x) L), by ) (G112, M2, - 5 M1, MY)
fa=1k=1,1#1,
E%T___;Li(aly'“aak_l),bl(cld ey Ckm1T,Y) — (-}c + Zk:%—_—x) :
Liay, ax_1.00) Gty - -+ Ch—1, Gk TY) ifay=1,k#1,l=1,
| s Ly (my) — (2 + g7 Lin (Gmay) i o= 1Lk =1,1=1,
S Lian(C(@). 7))
%Lia,(bl,"wbz—nbz—l)(E(x)yﬁ(y)) if b #1,
= fllj;Lia,(bl,---,bl_l)A(E(x),771, oMo, my) b =11#1,
E}:;Lia(g_(nlxy)) ifo,=1,1=1.

By analytic continuation, the functions Liap(C(2),7(y)), Liva(i(y), {(2)),
Lia(C(x)), Lia((y)) and Lin({(xy)) give iterated integrals starting

from o, which lie on IO(M((_,{; ). They correspond to elements of the
Q-structure (UL )* of V(MY) by the map p denoted by 155",
<-structure {(Uty y) of 0,5 ab

lgfg)*“”‘), 5@ 11 and 15®¥) respectively. Note that they are expressed

as
Z crlwin |+ - Jwi]

I=(im,"' :il)

. de dov dy dy zdytyds
for some m € N with ¢; € Q and wy; € { €, 2, %, 72, 2L~ (C €

pn)}-

5. PROOF OF MAIN THEOREMS

This section gives a proof of theorem 1.

Proof of theorem 1. Let a = (ay,...,ax) € Zt,, b= (b,...,b) €
Zl>07 C = (Cl""7C’C) and n = (7717"_'77”) with Q‘ﬂ?j € un C C
(1<i<kandl < j <) Put ((z) = (1., Ck—1,Ckx) and
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7(y) = (m,...,m-1,my). Recall that multiple polylogarithms satisfy
the following analytic identity, the series shuffle formula in 7, (M(N))

Lia(((2)) - Lin(A(y) = Y L%éfﬁ) W)
o€ShS (k1)

Here ShS(k,1) := UR_{o : {1,--- ,k+I} = {1,--- ,N}|o is onto, o (1) <
- <o(k),o(k+1) < <o(k+1D)}, o(a,b) := (c1, - ,cn) with
| as +bix if o7 (3) = {s,t} with s < ¢,
¢ = { ag if o71(z) = {s} with s <k,
bs_k if 071(i) = {s} with s > k,

and o({(z),7(y)) := (z,...,2n) with
Zsyi—r if 071(3) = {s,t} with s < ¢,
2z = T, if 071(3) = {s} with s <k,
| Ys—k L o7Hi) = {s} with s>k,
forz; = G (¢ # k), Gz (1 = k) and g5 = n; (5 # 1), my (5 =

l). Since p is an embedding of algebras, the above analytic identity
immediately implies the algebraic identity, the series shuffle formula in

the Q-structure (Ut y)* of V(M(N))
(8) lg(x) . lg(y) _ Z lggg(g M)
c€ShS (k1)

Let (g,h) be a pair in theorem 1. By the group-likeness of A, i.e.
h € exp&n+1, the product hb24h123 is group-like, i.e. belongs to
expt) . Hence A(RU34p123) = (RL234R123)R (R1234R123) where A
is the standard coproduct of Ut} y. Therefore

lg(x)-_ lz(y)(h1’23’4h1’2’3) _ (lg‘(x)@lz(y))(A(h1,23,4h1,2,3))
_ lZ(m)( h1,23,4h1,2,3) . lz(y) (h1,23,4 h1’2’3).

Evaluation of the equation (8) at the group-like element hl234p123
gives the series shuffle formula

9) HORUOEIED DRI

T€ShS (k)
for admissible pairs ! (a,{) and (b,7) by the results in [F4] because
the group-likeness and (4) for A implies ¢y(h) = 1 and ca(h) = 0.

1A pair (a,{) with a = (a1,--- ,ax) and { = ({3,..., k) is called admissible if
'(ak,Ck) 7é (1) 1)‘ )
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By putting {°(k) := —T and I$5(h) := I§(h) for all admissible pairs
(a, (), the series regularized value lc $(h) in Q[T] (T a parameter which
stands for log 2, cf. [R]) for a non—admissible pair (a, () is uniquely de-
termined in such a way (cf.[AK]) that the above series shuffle formulae
remain valid for 1$5(h) ‘with all pairs (a, ().

Define the integral regularized value 151 (h '(h) in Q[T'] for all pairs (a, ¢ 9
by I1$1(h) = I$(eTBOh). Equivalently l“ (k) for any pair (a,{) can
be umquely defined in such a way that the iterated integral shuffle
formulae (loc.cit) remain valid for all pairs (a, {) with IM(h) := —-T
and 1$7(h) := I§(h) for all admissible pairs (a, ) because they hold for
admissible pairs by the group-likeness of h (cf. loc.cit).

Let L be the Q-linear map from Q[T to itself defined via the gen-
erating function:

o0

L(exp Tu) Z L(T")— =exp {— f: l,ll”(h)zil—n} .

n=0

Proposition 8. Let h be an element as in theorem 1. Then the regu-
larization relation holds, i.e. 1$5(h) = I[J(lC A(h)) for all pairs (a, {).

Proof . We may assume that (a,() is non-admissible because the
proposition is trivial if it is admissible. Put 1 = (1,1,---,1). When

a = 1" and ¢ = I", the proof is given by the same argument to [F3] as
follows: By the series shuffle formulae,

S (=ML (B) - S () = (m+ D)l (R)
k=0

for m > 0. Here we put lw (h) = 1. This means

S (—DRES (R) - B (Rut =3 (m+ DS (R

k >0 m>0
Put f(u) =Y .50 l}:’s (h)u™. Then the above equality can be read as
4
1,5
S 1S, (= - log £(u).

k>0

Integrating and adjusting constant terms gives

n=>0 n=1

S S (hyur = exp{ z<_1>nz};5(h>1§} = exp {—Z(~1)"l£"(h>‘;—n

120
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because 125(h) = [LI(h) = ll(h) for n. > 1 and IX5(R) = I (h) = —T.
Since lim I(h) = ¢ 3;) we get L2 (h) = L(1 i I(h))

When (a,() is of the form (a’1%,{'1!) with (a’,{") admissible, the
proof is given by the following induction on I. By (8),

1z {1 (' (x).1
li/( )(h') i liz(y)(h’,) _ Z lagl(ll))l (y))(h/)
ogeShs(k,l)

for b/ = TP O+ 048340} 12345123 with k = dp(a’). The group-
likeness and (4) for h implies ¢y(h) = 1 and c4(h) = 0 and the group-
likeness and our assumption cp()(h) = 0 implies cgy(h) = 0 for
n € Zso. Hence by the results in [F4]

1 il 0» 1 11
lc (h) - 1% (B) = Z dg L;I(h)

o€Shs (k,l)

Then by our induction assumption, taking the image by the map L
gives

7 1 7 l e '/’—l ,
) LS =L )+ Y 2GR w).
oAidESRS (k1)

Since lg’s(h) and lll (h) satisty the series shuffle formula, ]L( h))
must be equal to lgs (h), which concludes proposition 8.

Embed Ugy, into U§n,1 by sending Yo to =A™ !B(—a). Then
by the above proposition,

15 () = LU () = L(E(e™"Oh)

= lS(exp{ Zl” h)B(O)

; (-1
= I$(exp {—TYLO +>Z -
n=1

for all (a, {) because li(h) = 0. As for the third equality we use (L ®q
id) o (id®qls) = (id®qls) o (L®qid) on Q[T] ®q U1 ALLISE(h)’s
satisfy the series shuffle formulae (9), so the §(e=T*°h,)’s do also.
By putting T = 0, we get that I$(h«)’s also satisfy the series shuffle
formulae for all a. Therefore A, (hy) = h,Qh,. This completes the
proof of theorem 1. O

18 (L(e™BOmy (h)))

-7y (h))

N—r
:\_\,__/”

CAn—lB(O)(h)Wfo} -y (h)) = I§(e”T¥oh,)
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