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1 Introduction

Basel II (International Convergence of Capital Measurement and Capital Standards: A Revised
Framework) was published in 2004, and in it, operational risk was added as a new risk category.
The Basel Committee on Banking Supervision [2] defines operational risk as “the risk of loss
resulting from inadequate or failed internal processes, people and systems or from extemal
events. This definition includes legal risk, but excludes strategic and reputational risk” (see also
McNeil et al. [19] $)$ .

For measuring the capital charge for operational risk, banks may choose from three ap-
proaches: the basic indicator approach (BIA), the standardized approach ($SA$), and the advanced
measurement approach (AMA). While BIA and $SA$ provide explicit formulas, AMA does not
specify a model for quantifying risk amount (risk capital). Hence, banks adopting AMA must
construct their own quantitative risk models and conduct periodic verification.

Basel II states that “a bank must be able to demonstrate that its approach captures poten-
tially severe ‘tail’ loss events”, as well as that “a bank must demonstrate that its operational
risk measure meets a soundness standard comparable to a one year holding period and a 99. $9th$

percentile confidence interval” [2]. The value-at-risk $(VaR)$ with a confidence level of 0.999 is a
typical risk measure, and therefore we adopt such operational $VaR$ (abbreviated as OpVa$R$).

In this paper, we focus the following two topics:

(i) Analytical methods for calculating OpVa$R$

(ii) Asymptotic behavior of OpVa$R$

Item (i) is important from a practical rather than theoretical viewpoint. In fact, many banks
adopt the so-called loss distributional approach (LDA) and calculate OpVa$R$ by using Monte
Carlo ($MC$) simulations. However, $MC$ simulations are not optimal in terms of computation
speed and robustness. We point out the problems associated with $MC$ and introduce alternative
analytical methods for calculating OpVa$R$ in the LDA model.

Item (ii) is a theoretical issue. It is well known that distributions of operational risk amount
are characterized by fat tails. In this study, we show the asymptotic behavior of the difference
between the $VaRsVaR_{\alpha}(L+S)$ and $VaR_{\alpha}(L)$ ( $\alpha$ denotes the confidence level of $VaR$) for heavy-
tailed random variables $L$ and $S$ with $\alphaarrow 1$ ( $=$ 100%) as an application to the sensitivity analysis
of quantitative operational risk management in the framework of AMA. Here, the variable $L$

denotes the loss amount of the current risk profile, and $S$ indicates the loss amount caused by an
additional loss factor. We obtain different results depending on the magnitude relation between
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the thicknesses of the tails of $L$ and $S$ . In particular, if the tail of $S$ is sufficiently thinner

than that of $L$ , then the difference between prior and posterior risk amounts is asymptotically

equivalent to the expected loss of $S$ , i.e., $VaR_{\alpha}(L+S)-VaR_{\alpha}(L)\sim E[S],$ $\alphaarrow 1.$

2 Analytical methods for calculating OpVa$R$

2.1 LDA Model

As mentioned above, banks who adopt AMA can use an arbitrary model to estimate OpVa$R.$

In actuality, however, most banks choose the LDA, in this section, we briefly introduce the

definition of LDA.
Let $L$ be a random variable that denotes the total loss amount in one year. In the LDA

framework, the distribution of $L$ is constructed on the basis of the following two distributions:

. Loss severity distribution $\mu\in \mathcal{P}([0, \infty))$ ,

. Loss frequency distribution $\nu\in \mathcal{P}(\mathbb{Z}_{+})$ .

Here, we use $\mathcal{P}(D)$ to denote the set of all probability distributions defined on the space $D,$

where $z_{+}=\{0,1,2, \ldots\}$ . Let $N$ be a random variable distributed by $\nu$ and $(L_{k})_{k}$ be a sequence
of identically distributed random variables distributed by $\mu$ . We regard $N$ as the number of loss

events in a year and $L_{k}$ as the amount of the kth loss. Then, the total loss amount $L$ is given

by

$L= \sum_{k=1}^{N}L_{k}=L_{1}+\cdots+L_{N}$ . (2.1)

We assume that all random variables $N,$ $L_{1},$ $L_{2},$
$\ldots$ are independent.

This model is closely related to the so-called Cramer-Lundberg model, which is widely used
in actuarial science. We note that $L$ becomes the compound Poisson model when $\nu$ is the Poisson

distribution. In operational risk management, the LDA model is applied to each event type or
business line. For instance, if a bank has $M$ event types, then the total loss amount $L^{i}$ of the

ith event type is given by (2.1) with a severity distribution $\mu_{k}$ and a frequency distribution
$\nu_{k}$ . Then, the “bank-wide” total loss amount is given by the sum of $L^{1},$

$\ldots,$
$L^{M}$ . However, for

simplicity, we ignore the characteristics of different event types and business lines in this paper

since our purpose is to calculate the $VaR$ and OpVa$R$

$VaR_{\alpha}(L)=\inf\{x\in \mathbb{R} ; P(L\leq x)\geq\alpha\}$ (2.2)

of $L$ as defined in (2.1) with a confidence level $\alpha=0.999.$

A characteristic property of distributions of operational losses is a fat tail. It is well known

that operational loss distributions are strongly affected by loss events with low frequency and

substantial loss amount. Thus, we should set $\mu$ as a heavy-tailed distribution to capture such

events. Typical examples of such distributions are the $\log$-normal distribution (LND) and the
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generalized Pareto distribution (GPD):

LND $(\gamma, \sigma)((-\infty, x])$ $=$ $\int_{0}^{x}\frac{1}{\sqrt{2\pi}\sigma y}\exp(-\frac{(\log y-\gamma)^{2}}{2\sigma^{2}})dy(x\geq 0)$ , $0(x<0)$ ,

GPD $(\xi, \beta)((-\infty, x])$ $=$ $1-(1+ \frac{\xi}{\beta}x)^{-1/\xi}(x\geq 0)$ , $0(x<0)$ .

Here, $\gamma,$ $\beta>0$ are location parameters and $\sigma,$ $\xi>0$ are shape parameters. Larger values of $\sigma$

and $\xi$ yield a fatter tail of the severity distribution. In fact, GPD is a representative fat-tailed
distribution and plays an essential role in extreme value theory (EVT). For details on EVT, see
[11].

2.2 $MC$ Simulation

The most widely used method for calculating (2.2) is $MC$ simulation. The algorithm for calcu-
lating OpVa$R$ by $MC$ simulation is as follows:

1. Generate $a$ (pseudo)random variable $N$ distributed by $\nu.$

2. Generate i.i. $d$ . (pseudo)random variables $L_{1},$
$\ldots,$

$L_{N}$ distributed by $\mu.$

3. Put $L=L_{1}+\cdots+L_{N}.$

4. Repeat steps $1-3m$ times ($m$ is the number of simulation iterations). Then, we obtain $m$

independent copies of $L.$

5. Sort the variables $L^{1},$
$\ldots,$

$L^{m}$ such that $L^{(1)}\leq\cdots\leq L^{(m)}.$

6. Set $VaR_{\alpha}^{MC}(L)=L^{([m\alpha])}$ , where $[x]$ is the largest integer not greater than $x.$

The estimator $VaR_{\alpha}^{MC}(L)$ is an order statistic of $VaR_{\alpha}(L)$ . Letting $marrow\infty,$ $VaR_{\alpha}^{MC}(L)$ converges
to $VaR_{\alpha}(L)$ under some technical conditions.

$MC$ is an extremely useful method which is widely adopted in practice because of its ease
of implementation and wide applicability. However, it is known to suffer from several problems,
one of which is that it requires a large number of simulation iterations (i.e., $m$ should be very
large). The reason is that convergence of $VaR_{\alpha}^{MC}(L)$ is generally very slow. Another problem is
that the estimated value $VaR_{\alpha}^{MC}(L)$ is unstable for some specific distributions. In the following
subsections, we examine these problems numerically.

2.2.1 Test 1: Simulation Iterations and Computation Time

Until the end of Section 2, we adopt the Poisson distribution with an intensity $\lambda$ as the frequency
distribution $\nu$ :

$\nu(\{k\})=$ Poi $( \lambda)(\{k\})=\frac{\lambda^{k}e^{-\lambda}}{k!},$ $k\in z_{+}.$

We investigate the number of simulation iterations $m$ required for estimating OpVa$R$ with a
tolerance lower than 1%. It is difficult to obtain a strict number, so we calculate $m$ approximately
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by using the Pritsker method with a 95% confidence level. We iterate the above $MC$ algorithm

while increasing $m$ until

$\frac{VaR_{\alpha}^{MC,upper}(L)-VaR_{\alpha}^{MC,1ower}(L)}{VaR_{\alpha}^{MC}(L)}<0.01,$

is satisfied, where $VaR_{\alpha}^{M}C$ ,upper $(L)$ and $VaR_{\alpha}^{MC,1ower}(L)$ are order statistics satisfying

$P(VaR_{\alpha}^{MC}$ ’ lower $(L)\leq VaR_{\alpha}(L)<VaR_{\alpha}^{MC}$ ’ upper $(L))\simeq 0.95.$

For an explanation of how to obtain the values of $VaR_{\alpha}^{M}C$ ,upper $(L)$ and $VaR_{\alpha}^{MC,1ower}(L)$ , please

refer to [26]. Note again that the estimated value of $m$ obtained by the above procedure is

not exact. Nevertheless, it is obvious that a substantial number of simulation iterations are
necessary to obtain the estimator of OpVa$R$ with tolerable accuracy. Figure 1 gives the number

of simulation iterations in the case of $\mu=$ LND $(\gamma, \sigma)$ . We see that many iterations are necessary

when $\sigma$ is large and $\lambda$ is small. Figure 2 corresponds to the case of $\mu=$ GPD $(\xi, \beta)$ . This implies

that the number of iterations is similarly large when $\xi$ is large, but in contrast to the case of

LND, the number of iterations is unaffected by the value of $\lambda$ . This difference is caused by the

tail probability function of LND is rapidly varying while that of GPD are regularly varying (see

[4] and [11] for details). Here, we remark that the location parameters $\gamma$ and $\beta$ do not influence

the number of simulation iterations.
These results indicate that the $MC$ method requires a huge number of simulation iterations,

especially when the values of the shape parameters $\sigma$ and $\xi$ are large, that is, when $\mu$ is fat-

tailed. In this case, long computation time is required: if we conduct a calculation with $\xi=3$

and $\lambda=500$ , as in Figure 2, the computation would require more than 2 days to complete on a
typical personal computer.

$1,500,000,000$
150,000,000 $v\infty$

$\in v\infty$ $\vdash 1,000,000,000\underline{\in}$

$\underline{\underline{F\circ e}\check{\varpi}}100,0\infty,0\infty$

$\frac{\underline{\circ\epsilon}\dot{\varpi}}{3,\frac{\in}{\dot{\mathfrak{n}}}}$ 500,000,000

$\in 3$

50,000,000
$\dot{\overline{\omega}}$ $0$

$0$

$\zeta$

Figure 2: The number of simulationFigure 1: The number of simulation
iterations required for the estimationiterations required for estimating the

error of OpVa$R$ with tolerance $<1\%$ of the error of OpVa$R$ with tolerance

with $\mu=$ LND $(\gamma, \sigma)$ and $\nu=$ Poi $(\lambda)$ . $<$ 1% with $\mu=$ GPD $(\xi, \beta)$ and $\nu=$

Poi $(\lambda)$ .

Although the computation can be accelerated by employing parallel computing techniques,
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such as multithread programming and general-purpose computing on graphics processing units
(GPGPU), this entails high development cost.

2.2.2 Test 2: Accuracy for Specific Distributions

In this test, we calculate $VaR_{\alpha}^{MC}(L)$ in the case where $\mu$ is derived empirically. We generate
500 sets of dummy loss data (“virtual” realized data) and 15 sets of scenario data based on
GPD(1.2, 100, 000). Then, we set $\mu$ as the empirical distribution defined by these data. Figure
3 shows the tail probability function of the severity distribution on a log-log scale. We also take
$v=Poisson(500)$ .

We conduct 100 calculations of $VaR_{0.999}^{MC}(L)$ (with 1, 000, 000 iterations) as OpVaR. Figure
4 shows a histogram of 100 estimations of OpVaR. Clearly, the distribution of OpVaRs is bi-
polarized. This can be explained by using Theorem 3.12 in [5]: $VaR_{O.999}(L)$ is approximated
by $\hat{v}\equiv VaR_{0.9998}(L_{1})$ . Here, $\hat{v}$ is the 99. $9998th$ percentile point of $\mu$ . In fact, the empirical
distribution $\mu$ has a large point mass at the 99. $99988th$ percentile point. This is near $\hat{v}$ , and
thus the value of the simulated OpVa$R$ is sensitive to the above loss data.

This indicates that the $MC$ method may result in serious estimation error in calculating
OpVaR. Note that the severity distribution used in this numerical experiment is not far from a
standard distribution, and such a phenomenon is conceivable in practice.

$1.E+00 1.E+03 1.E+06 1.E+09 1.E+12 1.E+15$
$\sim 0. \approx\dot{\sim}\sim\dot{\sim}\infty\tilde{\dot{\infty}}\check{\dot{n}}\vee\Phi\infty 0\circ\dot{\circ}\vee\cdot\vee\vee\vee\cdot\vee\dot{\emptyset}\infty 0\sim\vee\infty\infty oX\check{\infty}$

$x$

$v\circ|ues$ of OpVoR ($/10\wedge 11)$

2 : realized loss data
$\bullet$ : scenario data

Figure 4: Histogram of 100 estima-
tions of OpVa$R.$

Figure 3: Log-log graph of the
tail probability function $\mu((x, \infty))=$

$P(L_{1}>x)$ .

2.3 Analytical Computation Methods

In Section 2.2, we point out some of the problems associated with the $MC$ method. In this
section, we introduce some alternative methods for calculating OpVa$R.$

There have been studies on probabilistic approximations for the LDA $mo$del. In particular,
a closed-form approximation (Theorem 3.12 in [5]) is well-known and widely used for rough
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calculation of OpVa$R$ :

$VaR_{\alpha}^{EVT}(L)=VaR_{1-(1-\alpha)/\lambda}(L_{1})$ .

If $\mu$ is subexponential, then $VaR_{\alpha}^{EVT}(L)$ converges to $VaR_{\alpha}(L)$ as $\alphaarrow 1$ . Thus, $VaR_{\alpha}^{EVT}(L)$

approximates $VaR_{\alpha}(L)$ when $\alpha$ is close to 1. Usually, we can calculate $VaR_{\alpha}^{EVT}(L)$ almost

instantly because we assign the explicit form of $\mu$ in most cases. This approximation method

also plays an important role in EVT, and in Section 3, we present some results for the asymptotic

behavior of OpVaRs with $\alphaarrow 1$ which shows a close correspondence to the result of [5].

Although this approximation method can provide an extremely fast way for calculating Op-

$VaR$, it is susceptible to approximation errors. Here, we give some methods for direct calculation

of OpVa$R$ without mathematical approximation by using techniques from numerical analysis.

Although there still remain numerical errors, we use direct evaluation methods to avoid theo-

retical approximation errors.

2.3.1 Direct Approach

Let us recall the definition of the total loss amount $L(2.1)$ . Since we assume that $(L_{k})_{k}$ and $N$

are mutually independent and that $\nu=$ Poi(A) for some $\lambda>0$ , Kae’s theorem implies that the

characteristic function $\varphi_{L}$ can be written as

$\varphi_{L}(\xi)=E[e^{\sqrt{-1}\xi L}]=\exp(\lambda(\varphi(\xi)-1))$,

where $\varphi$ is the characteristic function of $\mu$ . Moreover, using L\’evy’s inversion formula, we obtain

$P(a<L<b)+ \frac{1}{2}P(L=a or L=b)=\lim_{Tarrow\infty}\frac{1}{2\pi}\int_{-T}^{T}\frac{\exp(-ia\xi)-\exp(-ib\xi)}{i\xi}\varphi_{L}(\xi)d\xi$

for each $a<b$ . Since $L$ is non-negative, by substituting $a=-x$ and $b=x$ into the above

equality, we obtain the following Fourier inversion formula

$F_{L}(x)= \frac{2}{\pi}\int_{0}^{\infty}\frac{{\rm Re}\varphi_{L}(\xi)}{\xi}\sin(x\xi)d\xi+\frac{1}{2}P(L=x) , x\geq 0$ . (2.3)

If $\mu$ has no point mass, then the second term on the right-hand side of (2.3) vanishes. Otherwise
$(e.g., in case \mu is an$ empirical distribution) , we adopt an approximation such as $P(L=x)\simeq$

$P$ (a single event with a loss amount of $x occurs). Using (2.3), we can calculate OpVa$R$ $(=$

$VaR_{0.999}(L))$ by solving the root-finding problem $F_{L}$ (OpVa$R$) $-0.999=0$. In our numerical

experiments presented in the next section, we search for a solution of this problem on the interval
$[0.3\cross VaR_{0999}^{E.VT},3\cross VaR_{0999}^{E.VT}]$ by using Brent’s method (if $VaR_{0.999}(L)$ is not in this interval, we

expand the search interval).

Then, our main task here is to calculate the first term on the right-hand side of (2.3). This

is an oscillatory integral, where the integrand $\xi$ oscillates near $0$ . Now, we present a method to

avoid the difficulties associated with calculating this integral.

We rewrite the integral in (2.3) as

$\frac{2}{\pi}\int_{0}^{\infty}\frac{{\rm Re}\varphi_{L}(t/x)}{t}\sin tdt=\sum_{k=0}^{\infty}(-1)^{k}a_{k}$ , (2.4)
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where

$a_{k}= \frac{2}{\pi}\int_{0}^{\pi}\frac{{\rm Re}\varphi_{L}((k\pi+t)/x)}{k\pi+t}\sin tdt$ . (2.5)

If we know the values of $(a_{k})_{k}$ , then we can calculate $F_{L}(x)$ by summing the terms. Let us
denote by $c(\xi)$ (resp. $d(\xi)$ ) the real part (resp. the imaginary part) of $\varphi(\xi)$ . Then we can
rewrite (2.5) as

$a_{k}= \frac{2}{\pi}\int_{0}^{\pi}\frac{\exp(\lambda(c(k\pi+t)-1))\cos(\lambda d(k\pi+t))}{k\pi+t}\sin tdt$ . (2.6)

We can calculate this integral quickly by using the Takahashi-Mori double exponential ($DE$)
formula ([28], [29]) when $c(\xi)$ and $d(\xi)$ are known and analytic on $(0, \pi)$ . For the case of $k=0,$
we omit the integration on $(0,10^{-8})$ because the integrand is unstable near $t=0.$

If the severity function $\mu$ has a density function $f$ , then we can write $c(\zeta)$ and $d(\zeta)$ as

$c( \xi)=\int_{0}^{\infty}f(t)\cos(t\xi)dt, d(\xi)=\int_{0}^{\infty}f(t)\sin(t\xi)dt.$

We can calculate these oscillatory integrals numerically by using the Ooura-Mori $DE$ formula
([23], [24]).

Note that we can also calculate $a_{k}$ numerically when $\mu$ is an empirical distribution such as

$\mu=\sum_{k=1}^{n}p_{k}\delta_{c_{k}}$ , (2.7)

where $\delta_{x}$ denotes the Dirac measure. Indeed, we have

$c( \xi)=\sum_{k=1}^{n}p_{k}\exp(\cos(\xi c_{k})) , d(\xi)=\sum_{k=1}^{n}p_{k}\exp(\sin(\xi c_{k}))$ .

Upon substituting these terms into (2.6), we can apply the Takahashi-Mori $DE$ formula.
Moreover, in evaluating the right-hand side of (2.4), we apply Wynn’s $\epsilon$-algorithm to accel-

erate the convergence of the sum. We define the double-indexed sequence $(\epsilon_{r,k})_{k\geq 0,r\geq-1}$ by

$\epsilon_{-1,k}=0, \epsilon_{0,k}=\sum_{l=0}^{k}(-1)^{l}a_{l}, \epsilon_{r+1,k}=\epsilon_{r-1,k+1}+\frac{1}{\epsilon_{r,k+1}-\epsilon_{r,k}}$.

Then, for a fixed even number $r$ , the convergence of $(\epsilon_{r,k})_{k}$ becomes faster than the original
series $(\epsilon_{0,k})_{k}$ . Please refer to [31] for more details. We stop updating of the sequence $(\epsilon_{r,k})_{k}$

when $|\epsilon_{r,k}-\epsilon_{r,k-1}|<\delta$ for a small constant $\delta>0.$

2.3.2 Other Methods

In Section 2.3.1, we introduced an analytical computation method using the inverse Fourier
transform. Similarly, Luo and Shevchenko [18] developed an inverse Fourier transform approach
known as direct numerical integration (DNI).

On the other hand, there have been studies on other calculation methods based on the
discrete Fourier transform. Some of the most representative methods using this approach are
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the Panjer recursion and Fast Fourier hansform (FFT) with tilting. Algorithms for these

methods can be found in [10] and [27].

Ishitani and Sato [20] have constructed another computation method using wavelet trans-

form, which is similar to the method in Section 2.3.1 and also uses the $DE$ formula proposed by

Ooura and Mori [23] and the $\epsilon$-algorithm proposed by Wynn [31].

When $\mu$ is an empirical distribution, such as that in (2.7), we can calculate the distribution

function $F_{L}(x)=P(L\leq x)=F^{(n)}(x)$ by a simple convolution method:

$F_{L}^{(0)}(x) = 1_{(0,\infty)}(x)$ ,

$F_{L}^{(k)}(x) = \sum_{j=0}^{\infty}F_{L}^{(k-1)}(x-jc_{k})\cross\frac{e^{-\lambda p_{k}}(\lambda p_{k})^{j}}{j!}, k=1, \ldots, n$ . (2.8)

This inductive calculation easily gives the value of OpVa$R.$

There have also been studies on the use of the importance sampling ($IS$ ) method for acceler-

ating the convergence speed in $MC$ simulations. Although a certain amount of skill is required

for the effective implementation of $IS$ , it is certainly a promising option.

2.3.3 Numerical Experiments: Comparison of Accuracy and Computation Time

Recently, a comparison of the precisions of DNI, the Panjer recursion and FFT was studied by

Shevchenko [27]. The results indicated that FFT is fast and accurate for relatively small $\lambda$ , and

that DNI is effective for large $\lambda$ . Similarly to [27], in this section we examine the accuracies and

computation times of the analytical methods introduced above.

As a measure of the accuracy of the methods, we compute the relative error ($RE$) defined as

$RE=\frac{\overline{OpVa}R-OpVaR}{OpVaR},$

where OpVa$R$ denotes the actual value $ofVaR_{O.999}(L)$ and OpVa$R$ denotes the estimated value

of OpVa$R$ calculated by the method under test. Since it is difficult to obtain an exact value

for OpVa$R$ , we use $VaR_{0.999}^{MC}(L)$ with 10 billion simulation iterations $(m=10^{10})$ as OpVa$R.$

Note here that $10^{10}$ iterations are not sufficient for estimating OpVa$R$ with an error that is

negligible compared with the approximation errors of analytical methods, especially in the case
of $\mu=$ GPD. However, conducting $MC$ simulations with larger $m$ on a standard personal

computer is unrealistic.
Our parameter settings are introduced below. We always assume that the frequency dis-

tribution $\nu$ is the Poisson distribution. The intensity parameter $\lambda$ is set to be in the interval
$[1, 10^{4}]$ . For the severity distribution $\mu$ , we test the following four pattems:

LND $\mu=$ LND(5, 2)

GPD $\mu=$ GPD(2, 10)

EMP $\mu$ is the empirical distribution used in Test 2 in Section 2.2.2
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LIN-EMP A linearly interpolated version of EMP: $\mu((-\infty, x])=\sum_{l=1}^{k}p_{l}+\frac{x-c_{k}}{c_{k+1}-c_{k}}\cross p_{k+1}$ for
$x\geq 0$ , where $k$ is the largest integer such that $\sum_{l=1}^{k}c_{l}\leq x$ , and $(c_{k},p_{k})$ is the kth pair of
the loss data (loss amount and frequency) used in Test 2 in Section 2.2.2

We verify the accuracies and computation times of the following methods:

Direct The direct approach introduced in Section 2.3.1 with a tolerance of $10^{-8}$ as used in the
$DE$ formulas and Brent’s method, and with $r=8$ and $\delta=10^{-8}$ for the $\epsilon$-algorithm.

Panjer The Panjer recursion given in [10] with a number of partitions $M=2^{17}$ and a step
size $h=VaR_{0999}^{E.VT}/(3M)$

FFT An FFT-based method given in [10] with the same $M,$ $h$ combination as in Panjer and a
tilting parameter $\theta=20/M$ , as suggested in [10]

In the case of EMP, we examine the following additional method:

Convol The convolution method as introduced in (2.8)

In the following numerical calculations, computation times are quoted for a standard personal
computer with a 3.33-GHz $Intel$ Cor$e^{TM}$ i7 X980 CPU and 6.00 $GB$ of RAM.

Figures 5-8 show the REs for each method. We can see that the REs for most methods
are less than 0.2%. Here, the REs in Figure 6 are rather similar. This implies that there are
non-negligible simulation errors in the OpVaRs themselves because of the fat tail property of
GPD. Therefore, the accuracies of Direct, FFT and Panjer are higher than the ones shown in
Figure 6.

$0 100 200 300 400 500 0 100 200 300 400 500$A A

Figure 5: Relative error in the case of Figure 6: Relative error in the case of
LND. GPD.

Table 1 presents the computation times for each method. We can see that FFT is rather
fast in each case. On the other hand, Direct is sufficiently fast in the cases of LND and GPD,
whereas its computation speed is somewhat lower in the case of LIN-EMP and even lower in the
case of EMP.

$\mathbb{R}om$ the above results, we see that FFT is one of the most adaptive methods for calculating
OpVaR. As an additional experiment, we investigate the accuracies of the methods with large
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$0$ 100 200 300 400 500A
$0$ $1\infty$ $2\infty$ $3\infty$

A
$4\infty$

Figure 7: Relative error in the case of Figure 8: Relative error in the case of

EMP. LIN-EMP.

$\lambda$ . We set $\nu=$ Poi(A) with $\lambda=1,10^{3},10^{4}$ and GPD(1, 1). Here, we also perform a comparison

with the wavelet transform approach (abbreviated as Wavelet) presented in [20].

The results are shown in Tables 2-3. We can see that the accuracies of FFT and Panjer

are somewhat lower when $\lambda$ is large, whereas the errors for Direct and Wavelet are still less

than 0.1% even when $\lambda=10^{4}$ . This phenomenon is consistent with the results presented in

[27]. Obviously, the accuracies of FFT and Panjer can be improved by increasing the number

of partitions $M$ , which entails a longer computation time. Figure 9 shows a comparison of the

REs and computation times for Direct, FFT and Wavelet, where the number of partitions $M$

for FFT is varied between $2^{17}$ and $2^{24}$ . We can see that Direct is the fastest and most accurate

method in this case.

2.4 Concluding Remarks

As we have seen in Section 2.2, the $MC$ method is slow and not robust in the calculation of

Vaffi of fat-tailed distributions, such as OpVaRs. The numerical results in the preceding section

imply that FFT is fast and highly accurate in many cases (including many realistic situations)

but becomes slower when $\lambda$ is large, in which case Direct is more effective than FFT.
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Table 2: Relative error in the case of
$\mu=$ GPD(1, 1) and $\nu=$ Poi $(\lambda)$ .

Table 3: Computation times (s) in the
case of $\mu=$ GPD(1, 1) and $\nu=$ Poi $(\lambda)$ .

Computation Time (sec.)

$-0-$ FFT $\Diamond$ Direct A Wavelet

Figure 9: Comparison of relative errors and computation times in the case of $\mu=$ GPD(1, 1)
and $v=Poi(10,000)$ . Here, $M$ is taken as $2^{17},2^{18},$

$\ldots,$
$2^{24}.$

On the other hand, to our knowledge, $MC$ is still the de facto standard method in banks,
especially in Japan. Although it is true that the estimated value $VaR_{\alpha}^{MC}(L)$ converges to the
actual value of OpVa$R$ with increasing the number of simulation iterations, the cost of increasing
the accuracy of the $MC$ method without any theoretical improvements, such as $IS$ , is rather high.
Although we could not find the most adaptive method for all cases in practice, the methods
introduced in this paper are sufficiently fast and accurate, and appear to be more reliable than
the simple $MC$ method. Thus, it might be of use to study the improvement of analytical methods
and the application of the $IS$ method in calculating OpVaRs.

3 Asymptotic behavior of OpVa$R$ and Sensitivity Analysis

In the above section, we considered some methods for calculation of OpVaRs. Another notable
issue for banks adopting AMA is the verification of their own models since AMA requires not
only the calculation of OpVa$R$ , but also the verification of the adequacy and robustness of the
$mo$del used.

As pointed out in McNeil et al. [19], whereas everyone agrees on the importance of under-
standing operational risk, it is a controversial issue how far one should (or can) quantify such
risks. Since empirical studies find that the distribution of operational loss has a fat tail (see
Moscadelli [22], $)$ this requires capturing the tail of the loss distribution. Meanwhile, estimating
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the tail of an operational loss distribution is often difficult due to the fact that the accumu-
lated historical data are insufficient, there are various kind of factors of operational loss, and so

on. Thus we need sufficient verification for the appropriateness and robustness of the model in

quantitative operational risk management.
One of the verification approaches for a risk model is sensitivity analysis (or behaviour

analysis). There are a few interpretations for the word “sensitivity analysis”. In this paper,

we use this word to mean the relevance of a change of the risk amount with changing input

information (for instance, added/deleted loss data or changing model parameters). There is also

an advantage in using sensitivity analysis not only to validate the accuracy of a risk model but

also to decide on the most effective pohcy with regard to the variable factors. This examination of

how the variation in the output of a model can be apportioned to different sources of variations

of risk will give an incentive to business improvement. Moreover, sensitivity analysis is also

meaningful for a scenario analysis. Basel II claims not only to use historical internal/extemal

data and BEICFs (Business Environment and Intemal Control Factors) as input information,

but also to use scenario analyses to evaluate low frequency and high severity loss events which

cannot be captured by empirical data. As noted above, to quantify operational risk we need

to estimate the tail of the loss distribution, so it is important to recognize the impact of our
scenarios on the risk amount.

In this large section we study the sensitivity analysis for the operational risk model from a
theoretical viewpoint. In particular, we mainly consider the case of adding loss factors. Let $L$

be a random variable which represents the loss amount with respect to the present risk profile

and let $S$ be a random variable of the loss amount caused by an additional loss factor found by a
minute investigation or brought about by expanded business operation. In a practical sensitivity

analysis it is also important to consider the statistical effect (the estimation error of parameters,

etc.) for validating an actual risk model, but such an effect should be treated separately. We

focus on the change from a prior risk amount $\rho(L)$ to a posterior risk amount $\rho(L+S)$ , where

$\rho$ is a risk measure.
We mainly treat the case where the tails of the loss distributions are regularly varying. We

use $VaR$ at the confidence level $\alpha$ as our risk measure $\rho$ and we study the asymptotic behaviour of
$VaR$ as $\alphaarrow 1$ . Our framework is mathematically similar to the study of B\"ocker and Kl\"uppelberg

[6]. They regard $L$ and $S$ as loss amount variables of separate categories (cells) and study the
asymptotic behaviour of an aggregated loss amount $VaR_{\alpha}(L+S)$ as $\alphaarrow 1$ (in addition, a similar
study, adopting an expected shortfall (or conditional $VaR$), is found in Biagini and Ulmer [3] $)$ . In

contrast, our purpose is to estimate a more precise difference between $VaR_{\alpha}(L)$ and $VaR_{\alpha}(L+S)$

and we obtain different results according to the magnitude relationship of the thicknesses of the

tails of $L$ and $S.$

The rest of this large section is organized as follows. In Section 3.1 we introduce the frame-

work of our model and some notation. In Section 3.2 we give rough estimations of the asymptotic

behaviour of the risk amount $VaR_{\alpha}(L+S)$ . Our main results are in Section 3.3 and we present

a finer estimation of the difference between $VaR_{\alpha}(L)$ and $VaR_{\alpha}(L+S)$ . Section 3.3.1 treats

the case where $L$ and $S$ are independent. Section 3.3.2 includes a tiny generalization of the
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results in Section 3.3.1 and we give some results when $L$ and $S$ are not independent. One of
these results is related to the study of risk capital decomposition and we study these relations
in Section 3.6. In Section 3.4 we present numerical examples of our results. Section 3.5 presents
some conclusions. For the proofs of our results, see [17].

3.1 Settings

We always study a given probability space $(\Omega, \mathcal{F}, P)$ . We recall the definition of the $\alpha$-quantile
(Value at Risk): for a random variable $X$ and $\alpha\in(0,1)$ , put

$VaR_{\alpha}(X)=\inf\{x\in \mathbb{R} ; F_{X}(x)\geq\alpha\},$

where $F_{X}(x)=P(X\leq x)$ is the distribution function of $X.$

We denote by $\mathcal{R}_{k}$ the set of regularly varying functions with index $k\in \mathbb{R}$ , that is, $f\in \mathcal{R}_{k}$

if and only if $\lim_{xarrow\infty}f(tx)/f(x)=t^{k}$ for any $t>0$ . When $k=0$ , a function $f\in \mathcal{R}_{0}$ is called
slowly varying. For the details of regular variation and slow variation, see Bingham et al. [4] and
Embrechts et al. [11]. For a random variable $X$ , we also say $X\in \mathcal{R}_{k}$ when the tail probability
function $\overline{F}_{X}(x)=1-F_{X}(x)=P(X>x)$ is in $\mathcal{R}_{k}$ . We mainly treat the case of $k<0$ . In
this case, the mth moment of $X\in \mathcal{R}_{k}$ is infinite for $m>-k$ . As examples of heavy-tailed
distributions which have regularly varying tails, the generalized Pareto distribution (GPD) and
the g-h distribution (see Degen et al. [7], Dutta and Perry [9]) are well-known and are widely
used in quantitative operational risk management. In particular, GPD plays an important role
in extreme value theory (EVT), and it can approximate the excess distributions over a high
threshold of all the commonly used continuous distributions. See Embrechts et al. [11] and
McNeil et al. [19] for details.

Let $L$ and $S$ be non-negative random variables and assume $L\in \mathcal{R}_{-\beta}$ and $S\in \mathcal{R}_{-\gamma}$ for some
$\beta,$ $\gamma>0$ . We call $\beta$ $($respectively, $\gamma)$ the tail index of $L$ $($ respectively, $S)$ . $A$ tail index represents
the thickness of a tail probability. For example, the relation $\beta<\gamma$ means that the tail of $L$ is
fatter than $S.$

We regard $L$ as the total loss amount of a present risk profile. In the framework of LDA, $L$

is given as (2.1). If we consider a multivariate $mo$del, $L$ is given by $L= \sum_{k=1}^{d}L_{k}$ , where $L_{k}$ is
the loss amount variable of the kth operational risk cell $(k=1, \ldots, d)$ . We are aware of such
formulations, but we do not limit ourselves to such situations in our settings.

The random variable $S$ means an additional loss amount. We will consider the total loss
amount variable $L+S$ as a new risk profile. As mentioned above, our interest is in how a prior
risk amount $VaR_{\alpha}(L)$ changes to a posterior one $VaR_{\alpha}(L+S)$ .

3.2 Basic Results of Asymptotic Behaviour of $VaR_{\alpha}(L+S)$

First we give a rough estimations of $VaR_{\alpha}(L+S)$ . We introduce the following condition.

[A] $A$ joint distribution of $(L, S)$ satisfies the negligible joint tail condition when

$\frac{P(L>x,S>x)}{\overline{F}_{L}(x)+\overline{F}_{S}(x)}arrow 0, xarrow\infty$. (3.1)
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Then we have the following proposition.

Proposition 1 Under condition $[A]$ it holds that

(i) If $\beta<\gamma$ , then $VaR_{\alpha}(L+S)\sim VaR_{\alpha}(L)$ ,

(ii) If $\beta=\gamma$ , then $VaR_{\alpha}(L+S)\sim VaR_{1-(1-\alpha)/2}(U)$ ,

(iii) If $\beta>\gamma$ , then $VaR_{\alpha}(L+S)\sim VaR_{\alpha}(S)$

as $\alphaarrow 1$ , where the notation $f(x)\sim g(x)$ , $xarrow a$ denotes $\lim_{xarrow a}f(x)/g(x)=1$ and $U$ is a

random variable whose distribution function is given by $F_{U}(x)=(F_{X}(x)+F_{Y}(x))/2.$

These results are easily obtained and not novel. In particular, when $L$ and $S$ are independent,

this proposition is a special case of Theorem 3.12 in B\"ocker and Kl\"uppelberg [6] (in the framework

of LDA).
In contrast with Theorem 3.12 in B\"ocker and Kl\"uppelberg [6], which implies an estimate

for $VaR_{\alpha}(L+S)$ as “an aggregation of $L$ and $S$”, we review the implications of Proposition 1
from the viewpoint of sensitivity analysis. Proposition 1 implies that when $\alpha$ is close to 1, the
posterior risk amount is determined nearly equally by either risk amount of $L$ or $S$ showing fatter

tail. On the other hand, when the thicknesses of the tails is the same $(i.e., \beta=\gamma,)$ the posterior

risk amount $VaR_{\alpha}(L+S)$ is given by the $VaR$ of the random variable $U$ and is influenced by

both $L$ and $S$ even if $\alpha$ is close to 1. The random variable $U$ is the variable determined by a
fair coin flipping. The risk amount of $U$ is alternated by the toss of coin (head-$L$ and tail- $S$).

3.3 Main Results

3.3.1 Independent Case

In this section we present a finer estimation of the difference between $VaR_{\alpha}(L+S)$ and $VaR_{\alpha}(L)$

than Proposition 1 when $L$ and $S$ are independent. The assumption of independence implies

the loss events are caused independently by the factors $L$ or $S$ . In this case condition $[A]$ is

satisfied. We prepare additional conditions.

[B] There is some $x_{0}>0$ such that $F_{L}$ has a positive, non-increasing density function $f_{L}$ on
$[x_{0}, \infty)$ , i.e., $F_{L}(x)=F_{L}(x_{0})+ \int_{x_{0}}^{x}f_{L}(y)dy,$ $x\geq x_{0}.$

[C] The function $x^{\gamma-\beta}\overline{F}_{S}(x)/\overline{F}_{L}(x)$ converges to some real number $k$ as $xarrow\infty.$

[D] The same assertion of $[B]$ holds by replacing $L$ with $S.$

We remark that condition $[B]$ $($respectively, $[D])$ and the monotone density theorem (Theo-

rem 1.7.2 in Bingham et al. [4] $)$ imply $f_{L}\in \mathcal{R}_{-\beta-1}$ $($ respectively, $fs\in \mathcal{R}_{-\gamma-1})$ .
The condition $[C]$ seems a little strict: this implies that $\mathcal{L}_{L}$ and (a constant multiple of)

$\mathcal{L}_{S}$ are asymptotically equivalent, where $\mathcal{L}_{L}(x)=x^{\beta}\overline{F}_{L}(x)$ and $\mathcal{L}_{S}(x)=x^{\gamma}\overline{F}_{S}(x)$ are slowly

varying functions. However, since the Pickands-Balkema de Haan theorem (see [1] and [25])
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imples that $\overline{F}_{L}$ and $\overline{F}_{S}$ are approximated by GPD, the asymptotic equivalence of $\mathcal{L}_{L}$ and $\mathcal{L}_{S}$

“approximately” holds.
Our main theorem is the following.

Theorem 1 The following assertions hold as $\alphaarrow 1.$

(i) If $\beta+1<\gamma$ , then $VaR_{\alpha}(L+S)-VaR_{\alpha}(L)\sim E[S]$ under $[B].$

(ii) If $\beta<\gamma\leq\beta+1$ , then $VaR_{\alpha}(L+S)-VaR_{\alpha}(L)\sim\frac{k}{\beta}VaR_{\alpha}(L)^{\beta+1-\gamma}$ under $[B]$ and $[C].$

(iii) If $\beta=\gamma$ , then $VaR_{\alpha}(L+S)\sim(1+k)^{1/\beta}VaR_{\alpha}(L)$ under $[C].$

(iv) If $\gamma<\beta\leq\gamma+1$ , then $VaR_{\alpha}(L+S)-VaR_{\alpha}(S)$ $\sim$ $\frac{1}{k\gamma}VaR_{\alpha}(S)^{\gamma+1-\beta}$ under $[C]$ and
$[D].$

(v) If $\gamma+1<\beta$ , then $VaR_{\alpha}(L+S)-VaR_{\alpha}(S)\sim E[L]$ under $[C]$ and $[D].$

The assertions of Theorem 1 are divided into five cases according to the magnitude rela-
tionship between $\beta$ and $\gamma$ . In particular, when $\beta<\gamma$ , we get different results depending on
whether $\gamma$ is greater than $\beta+1$ or not. The assertion (i) implies that if the tail probability of
$S$ is sufficiently thinner than that of $L$ , then the effect of a supplement of $S$ is limited to the
expected loss ($EL$) of $S$ . In fact, we can also get a similar result to the assertion (i), which we
introduce in Section 3.6, when the moment of $S$ is very small. These results indicate that if an
additional loss amount $S$ is not so large, we may not have to be nervous about the effect of a
tail event which is raised by $S.$

The assertion (ii) implies that when $\gamma\leq\beta+1$ , the difference of a risk amount cannot be
approximated by $EL$ even if $\gamma>1$ . Let $l>0$ and $p\in(0,1)$ be such that $P(S>l)=p$ and $l$ is
large enough $(or,$ equivalently, $p is$ small enough) that $VaR_{1-p}(L)\geq VaR_{1-p}(S)=l$ . Then we
can interpret the assertion (ii) formally as

$VaR_{\alpha}(L+S)-VaR_{\alpha}(L)\approx\frac{1}{\beta}(\frac{l}{VaR_{1-p}(L)})^{\gamma}VaR_{\alpha}(L)\leq\frac{1}{\beta}(\frac{l}{VaR_{1-p}(L)})^{\beta}VaR_{\alpha}(L)$. (3.2)

Thus it is enough to provide an amount of the right hand side of (3.2) for an additional risk
capital. So, in this case, the information of the pair $(l,p)$ (and detailed information about the
tail of $L$) enables us to estimate the difference conservatively.

When the tail of $S$ has the same thickness as that of $L$ , we have the assertion (iii). In this
case we see that by a supplement of $S$ , the risk amount is multiplied by $(1+k)^{1/\beta}$ . The slower
is the decay speed of $\overline{F}_{S}(x)$ , which means the fatter the tail amount variable becomes with an
additional loss, the larger is the multiplier $(1+k)^{1/\beta}$ . Moreover, if $k$ is small, we have the
following approximation,

$VaR_{\alpha}(L+S)-VaR_{\alpha}(L)\sim\frac{k+o(k)}{\beta}VaR_{\alpha}(L)$ , (3.3)

where $o(\cdot)$ is the Landau symbol (little o): $\lim_{karrow 0}o(k)/k=0$ . The relation (3.3) has the same
form as assertion (ii), and in this case we have a similar implication as (3.2) by letting $\alpha=1-p$

and $k=(l/VaR_{1-p}(L))^{\beta}.$
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The assertions (iv)$-(v)$ are restated consequences of the assertions $(i)-$ (ii). In these cases,
$VaR_{\alpha}(L)$ is too much smaller than $VaR_{\alpha}(L+S)$ and $VaR_{\alpha}(S)$ , so we need to compare $VaR_{\alpha}(L+$

$S)$ with $VaR_{\alpha}(S)$ . In estimating the posterior risk amount $VaR_{\alpha}(L+S)$ , the effect of the tail

index $\gamma$ of $S$ is significant. We remark that we can replace $VaR_{\alpha}(S)$ with $k^{1/\gamma}aR_{\alpha}(L)^{\beta/\gamma}$ when

either $x^{\beta}F_{L}(x)$ or $x^{\gamma}F_{S}(x)$ converges to some positive number (see [17]).

By Theorem 1, we see that the smaller is the tail index $\gamma$ , the more precise is the information

which we need about the tail of $S.$

3.3.2 Consideration of Dependency Structure

In the previous section we assumed that $L$ and $S$ were independent, since they were caused
by different loss factors. However, huge losses often happen due to multiple simultaneous loss

events. Thus it is important to prepare a risk capital considering a dependency structure be-

tween loss factors. Basel II states that “scenario analysis should be used to assess the impact of
deviations from the correlation assumptions embedded in the bank’s operational risk measure-
ment framework, in particular, to evaluate potential losses arising from multiple simultaneous
operational risk loss events” in paragraph 675 of Basel Committee on Banking Supervision [2].

In this section we consider the case where $L$ and $S$ are not necessarily independent, and
present generalizations of Theorem 1 $(i)-$ (ii). Let $L\in \mathcal{R}_{-\beta}$ and $S\in \mathcal{R}_{-\gamma}$ be random variables
for some $\beta,$ $\gamma>0$ . We only consider the case of $\beta<\gamma$ . By using the fact that $(\mathbb{R}^{2}, \mathcal{B}(\mathbb{R}^{2}))$ is

a standard Borel space and Theorem 5.3.19 in Karatzas and Shreve [16], we see that there is a
regular conditional probability distribution $p$ (respectively, q) : $[0, \infty)\cross\Omegaarrow[0,1]$ with respect

to $\sigma(L, S)$ given $S$ $($respectively, $L)$ . We define the function $F_{L}(x|S=s)$ by $F_{L}(x|S=s)=$

$p(s, \{L\leq x\})$ . We see that the function $F_{L}(x|S=s)$ satisfies

$\int_{B}F_{L}(x|S=s)F_{S}(ds)=P(L\leq x, S\in B)$

for each Borel subset $B\subset[0, \infty)$ .
We prepare the following conditions.

[E] There is some $x_{0}>0$ such that $F_{L}(\cdot|S=s)$ has a positive, non-increasing and continuous
density function $f_{L}(\cdot|S=s)$ on $[x_{0}, \infty)$ for $P(S\in\cdot)$ -almost all $s.$

[F] It holds that

$ess\sup_{s\geq 0}\sup_{t\in K}|\frac{f_{L}(tx|S=s)}{f_{L}(x|S=s)}-t^{-\beta-1}|arrow 0, xarrow\infty$ (3.4)

for any compact set $K\subset(0,1]$ and

$\int_{[0,\infty)}s^{\eta}\frac{f_{L}(x|S=s)}{f_{L}(x)}F_{S}(ds)\leq C, x\geq x_{0}$ (3.5)

for some constants $C>0$ and $\eta>\gamma-\beta$ , where ess sup is the $L^{\infty}$-norm under the measure
$P(S\in\cdot)$ .
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We notice that the condition $[E]$ includes the condition $[B]$ . Under these conditions we have
$P(L>x, S>x)\leq Cx^{-\eta}\overline{F}_{L}(x)$ and then the condition $[A]$ is also satisfied.

Let $E[\cdot|L=x]$ be the expectation under the probability measure $q(x, \cdot)$ . Under the condition
[E], we see that for each $\varphi\in L^{1}([0, \infty), P(S\in\cdot))$

$E[\varphi(S)|L=x]=\int_{[0,\infty)}\varphi(s)\frac{f_{L}(x|S=s)}{f_{L}(x)}F_{S}(ds)$ (3.6)

for $P(L\in\cdot)$-almost all $x\geq x_{0}$ . We do not distinguish the left hand side and the right hand side
of (3.6). The left hand side of (3.5) is regarded as $E[S^{\eta}|L=x].$

The conditions [E] and [F] seem to be a little strong, but we can construct a non-trivial
example. Please refer to [17] for details.

Now we present the following theorem.

Theorem 2 Assume $[E]$ and $[F]$ . If $\beta+1<\gamma$ , then

$VaR_{\alpha}(L+S)-VaR_{\alpha}(L) \sim E[S|L=VaR_{\alpha}(L)], \alphaarrow 1$. (3.7)

The relation (3.7) gives a similar indication of (5.12) in Tasche [30]. The right hand side of
(3.7) has the same form as the so-called component $VaR$:

$E[S|L+S=VaR_{\alpha}(L+S)]=\frac{\partial}{\partial\epsilon}VaR_{\alpha}(L+\epsilon S)|_{\epsilon=1}$ (3.8)

under some suitable mathematical assumptions. In Section 3.6 we study the details. We can
replace the right hand side of (3.7) with (3.8) by a few $mo$difications of our assumptions:

$[E‘]$ The same condition as $[E]$ holds by replacing $L$ with $L+S.$

$[F’]$ The relations (3.4) and (3.5) hold by replacing $L$ with $L+S$ and by setting $K=[a, \infty)$

for any $a>0.$

Indeed, our proof also works upon replacing $(L+S, L)$ with $(L, L+S)$ .

3.4 Numerical Examples

In this section we confirm numerically our main results for typical examples in the standard
LDA framework. Let $L$ and $S$ be given by the following compound Poisson variables: $L=$
$L^{1}+\cdots+L^{N},$ $S=S^{1}+\cdots+S^{\tilde{N}}$ , where $(L^{i})_{i},$ $(S^{i})_{i},$ $N,\tilde{N}$ are independent random variables
and $(L^{i})_{i},$ $(S^{i})_{i}$ are each identically distributed. The variables $N$ and $\tilde{N}$ mean the frequency of
loss events, and the variables $(L^{i})_{i}$ and $(S^{i})_{i}$ mean the severity of each loss event. We assume
that $N\sim$ Poi $(\lambda_{L})$ and $\tilde{N}\sim$ Poi $(\lambda_{S})$ for some $\lambda_{L},$ $\lambda_{S}>0$ . For severity, we assume that $L^{i}$

follows GPD $(\xi_{L}, \sigma_{L})$ with $\xi_{L}=2,$ $\sigma L=10,000$ and set $\lambda_{L}=10$ . We also assume that $S^{i}$ follows
GPD $(\xi_{S}, \sigma s)$ and $\lambda_{S}=10$ . We set the parameters $\xi s$ and $\sigma_{S}$ in each cases appropriately. We
remark that $L\in \mathcal{R}_{-\beta}$ and $S\in \mathcal{R}_{-\gamma}$ , where $\beta=1/\xi_{L}$ and $\gamma=1/\xi s$ . Moreover the condition $[C]$

is satisfied with

$k= \frac{\lambda_{S}}{\lambda_{L}}(\sigma s/\xi_{S})^{1/\xi_{S}}(\sigma_{L}/\xi_{L})^{-1/\xi_{L}}$ . (3.9)
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Here we apply the direct approach introduced in Section 2.3.1 to calculate $VaRs$ numerically.

Unless otherwise noted, we set $\alpha=0.999$ . Then the value of the prior risk amount $VaR_{\alpha}(L)$ is

5.01 $\cross 10^{11}.$

3.4.1 The Case of $\beta+1<\gamma$

First we consider the case of Theorem 1 (i). We set $\sigma s=10,000$ . The result is given in Table 4,

where

$\Delta VaR=VaR_{\alpha}(L+S)-VaR_{\alpha}(L)$ , Error $= \frac{Approx}{\Delta VaR}-1$ (3.10)

and Approx $=E[S].$

Although the absolute value of the error becomes a little large when $\gamma-\beta$ is near 1, the

difference between the $VaRs$ is accurately approximated by $E[S].$

Table 4: The case of $\beta+1<\gamma$ . Table 5: The case of $\beta<\gamma\leq\beta+1.$

Table 6: The case of $\beta=\gamma.$

3.4.2 The Case of $\beta<\gamma\leq\beta+1$

This case corresponds to Theorem 1 (ii). As in Section 3.4.1, we also set $\sigma_{S}=10,000$ . The result
is given as Table 5, where Approx $=kVaR_{\alpha}(L)^{\beta+1-\gamma}/\beta$ and the error is the same as (3.10). We

see that the accuracy is lower when $\gamma-\beta$ is close to 1 or $0$ . Even in these cases, the error
approaches $0$ by letting $\alphaarrow\infty$ (see [17]).

3.4.3 The Case of $\beta=\gamma$

In this section we set $\xi_{S}=2(=\xi_{L})$ . We apply Theorem 1 (iii). We compare the values of $\Delta VaR$

and Approx $=((1+k)^{\xi_{L}}-1)VaR_{\alpha}(L)$ in Table 6, where the error is the the same as (3.10). We
see that they are very close.
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3.4.4 The Case of $\beta>\gamma$

Finally we treat the case of Theorem 1 (iv). We set $\sigma s=100$ . In this case $VaR_{\alpha}(L)$ is too much
smaller than $VaR_{\alpha}(L+S)$ , so we compare the values of $VaR_{\alpha}(L+S)$ and

Approx $= VaR_{\alpha}(S)+\frac{1}{k\gamma}VaR_{\alpha}(S)^{\gamma+1-\beta}.$

The result is in Table 7. We see that the error $(=$ Approx$/VaR_{\alpha}(L+S)-1)$ tends to become
smaller when $\xi_{S}$ is large.

Table 7 also indicates that the supplement of $S$ has a quite significant effect on the risk
amount when the distribution of $S$ has a fat tail. For example, when $\xi s=3.0$ , the value of
$VaR_{\alpha}(L+S)$ is more than 90 times $VaR_{\alpha}(L)$ and is heavily influenced by the tail of $S$ . We see
that a little change of $\xi_{S}$ may cause a huge impact on the risk model.

In our example we do not treat the case of Theorem 1(v), however we also have a similar
implication in this case.

3.5 Concluding Remarks

We introduced the theoretical framework of sensitivity analysis for quantitative operational
risk management. Concretely speaking, we investigated the impact on the risk amount $(VaR)$

arising from adding the loss amount variable $S$ to the present loss amount variable $L$ when the
tail probabilites of $L$ and $S$ are regularly varying $(L\in \mathcal{R}_{-\beta}, S\in \mathcal{R}_{-\gamma} for some \beta, \gamma>0)$ . The
result depends on the magnitude relationship of $\beta$ and $\gamma$ . One of these implications is that we
must pay more attention to the form of the tail of $S$ when $S$ has the fatter tail. Moreover, when
$\gamma>\beta+1$ , the difference between the prior $VaR$ and the posterior $VaR$ is approximated by the
component $VaR$ of $S$ (in particular by $EL$ of $S$ if $L$ and $S$ are independent).

We have mainly treated the case where $L$ and $S$ are independent except for a few cases in
Section 3.3.2. As related study for dependent case, B\"ocker and Kl\"uppelberg [5] invokes a L\’evy
copula to describe the dependency and gives an asymptotic estimate of Fr\’echet bounds of total
$VaR$ . To deepen and enhance our study in more general cases when $L$ and $S$ have a dependency
structure is one of the directions of our future work.

3.6 Appendix; The Effect of a Supplement of Small Loss Amount

In this section we treat another version of Theorem 1 (i) and Theorem 2(i). We do not assume
that the random variables are regularly varying but that the additional loss amount variable
is very small. Let $L,\tilde{S}$ be non-negative random variables and let $\epsilon>0$ . We define a random
variable $S_{\epsilon}$ by $S_{\epsilon}=\epsilon\tilde{S}$ . We regard $L$ $($ respectively, $L+S_{\epsilon})$ as the prior (respectively, posterior)
loss amount variable and consider the limit of the difference between the prior and posterior $VaR$

by taking $\epsilonarrow 0$ . Instead of making assumptions of regular variation, we make “Assumption
$(S)$ ” in Tasche [30]. Then Lemma 5.3 and Remark 5.4 in Tasche [30] imply

$\lim_{\epsilonarrow 0}\frac{VaR_{\alpha}(L+S_{\epsilon})-VaR_{\alpha}(L)}{\epsilon}=\frac{\partial}{\partial\epsilon}VaR_{\alpha}(L+\epsilon\tilde{S})|_{\epsilon=0}=E[\tilde{S}|L=VaR_{\alpha}(L)]$. (3.11)

109



By (3.11), we have

$VaR_{\alpha}(L+S)-VaR_{\alpha}(L)=E[S|L=VaR_{\alpha}(L)]+o(\epsilon)$, (3.12)

where we simply put $S=S_{\epsilon}$ . In particular, if $L$ and $S$ are independent, then

$VaR_{\alpha}(L+S)-VaR_{\alpha}(L)=E[S]+o(\epsilon)$ .

Thus the effect of a supplement of the additional loss amount variable $S$ is approximated by its

component $VaR$ or $EL$ . So the assertions of Theorem 1(i) and Theorem 2(i) also hold in this

case.
The concept of the component $VaR$ is related to the theory of risk capital decomposition

(or risk capital allocation). Let us consider the case where $L$ and $S$ are loss amount variables
and where the total loss amount variable is given by $T(w_{1}, w_{2})=w_{1}L+w_{2}S$ with a portfolio
$(w_{1}, w_{2})\in \mathbb{R}^{2}$ such that $w_{1}+w_{2}=1$ . We try to calculate the risk contributions for the total

risk capital $\rho(T(w_{1}, w_{2}))$ , where $\rho$ is a risk measure.
One of the ideas is to apply Euler’s relation

$\rho(T(w_{1}, w_{2}))=w_{1}\frac{\partial}{\partial w_{1}}\rho(T(w_{1}, w_{2}))+w_{2}\frac{\partial}{\partial w_{2}}\rho(T(w_{1}, w_{2}))$

when $\rho$ is linear homogeneous and $\rho(T(w_{1}, w_{2}))$ is differentiable with respect to $w_{1}$ and $w_{2}$ . In

particular we have

$\rho(L+S)=\frac{\partial}{\partial u}\rho(uL+S)|_{u=1}+\frac{\partial}{\partial u}\rho(L+uS)|_{u=1}$ (3.13)

and the second term in the right hand side of (3.13) is regarded as the risk contribution of $S.$

As in early studies in the case of $\rho=VaR_{\alpha}$ , the same decomposition as (3.13) is obtained in

Garman [12] and Hallerbach [13] and the risk contribution of $S$ is called the component $VaR.$

The consistency of the decomposition of (3.13) has been studied from several points of views

(Denault [8], Kalkbrener [15], Tasche [30], and so on). In particular, Theorem 4.4 in Tasche [30]

implies that the decomposition of (3.13) is “suitable for performance measurement” (Definition

4.2 of Tasche [30] $)$ . Although many studies assume that $\rho$ is a coherent risk measure, the result
of Tasche [30] also applies to the case of $\rho=VaR_{\alpha}.$

Another approach towards calculating the risk contribution of $S$ is to estimate the difference

of the risk amounts $\rho(L+S)-\rho(L)$ , which is called the marginal risk capital–see Merton

and Perold [21]. $(When \rho=VaR_{\alpha}, it is$ called $a$ marginal $VaR.)$ This is intuitively intelligible,
whereas an aggregation of marginal risk capitals is not equal to the total risk amount $\rho(L+S)$ .

The relation (3.12) gives the equivalence between the marginal $VaR$ and the component $VaR$

when $S(=\epsilon\tilde{S})$ is very small. Theorem 2(i) implies that the marginal $VaR$ and the component
$VaR$ are also (asymptotically) equivalent when $L$ and $S$ have regulary varying tails and the tail

of $S$ is sufficiently thinner than that of $L.$
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