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Abstract

In this paper, we first are looking over the demiclosedness. principles for non-
linear mappings. Next, we give the demiclosedness principle of a continuous
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1 Introduction

Let X be a real Banach space with norm || - || and let X* be the dual of X. Denote
by (-,-) the duality product. Let {z,} be a sequence in X, z € X. We denote by
x, — « the strong convergence of {r,} to z and by z, — z the weak convergence of
{zn} to z. Also, we denote by wy,(zn) the weak w-limit set of {z}, that is,

wy(zn) = {z : Jz,, — z}.

Let C be a nonempty closed convex subset of X and let T : C — C be a mapping.
Now let Fiz(T) be the fixed point set of T'; namely,

Fiz(T) ={z € C:Tz=x}.

Recall that T is a Lipschitzian mapping if, for each n > 1, there exists a constant

k, > 0 such that
IT"z — T"y|| < knllz — yl| - (1)
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for all z,y € C' (we may assume that all k, > 1). A Lipschitzian mapping T is
called uniformly k-Lipschitzian if k, = k for all n > 1, nonezpansive if k, = 1 for
all m > 1, and asymptotically nonezpansive if lim, o kn = 1, respectively. The class
of asymptotically nonexpansive mappings was introduced by Goebel and Kirk [15] as -
a generalization of the class of nonexpansive mappings. They proved that if C is a
nonempty bounded closed convex subset of a uniformly convex Banach space X, then -
every asymptotically nonexpanisve mapping T : C — C has a fixed point.

On the other hand, as the classes of non-Lipschitzian mappings, there appear in
the literature two definitions, one is due to Kirk who says that T is a mapping of
asymptotically'nonexpansive type [18] if for each z € C,

- limsup sup(IIT”x =Tyl - llz—yll) <0 (1.2)
n—oo yelC
and TV is continuous for some N > 1. The other is the stronger concept due to
Brick, Kuczumov and Reich [5]. They say that T is asymptotically none:cpanswe in
the intermediate sense if T is (umformly) continuous and
lim sup sup. (T "z =T y|| - [lz —y[) <0 (1.3)

n— oo m,ye

~ In this case, observe that if we define

On := sup (|T"z —T"y| - [l= —yl}) VO, - (L4)
z,yeC ‘
(here a Vb := max{a, b}), then 6, > 0 for all n > 1, 6, — 0 as n — oo, and thus (1.3)
immediately reduces to ‘
Tz — Ty < ||lz — yll + dn (1.5)
forallz,ye Cand n > 1.

Recently, Alber et al. [1] introduced the wider class of total asymptotically non-
expansive mappings to unify various definitions of classes of nonlinear mappings as-
sociated with the class of asymptotically nonexpansive mappings; see also Definition
1 of [9]. They say that a mapping T : C — C is said to be total asymptotically non-
ezpansive (TAN, in brief) [1] (or [9]) if there exists two nonnegative real sequences
{cn} and {d,} with ¢, d, — 0 and ¢ € T(R*) such that

1Tz = T"y|| < llz — yll + cn ¢z — 9ll) + dn, (1.6)
~ forall z, y € K and n > 1, where R* := [0,00) and
¢ € T(RT) & ¢ is strictly increasing, continuous on R* and ¢(0) = 0.
Remark 1.1. If o(t) = ¢, then (1.6) reduces to
| T = Ty < e~ yll +enllz — yll + dn

for all z, y € C and n > 1. In addition, if d,, = 0, k, = 1+ ¢, for all n > 1, then
the class of total asymptotically nonexpansive mappings coincides with the class of
asymptotically nonexpansive mappings. If ¢, = 0 and d,, = 0 for all n > 1, then (1.6)
reduces to the class of nonexpansive mappings. Also, if we take ¢, = 0 and d,, = 4,
as in (1.4), then (1.6) reduces to (1.5); see [9] for more details.
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Let C be a nonempty closed convex subset of a real Banach space X, and let
T : C — C be a nonexpansive mapping with Fiz(T) # (0. Recall that the following
Mann [21] iterative method is extensively used for solving a fixed point equation of
the form Tz = x: :
Tnt1 = (1 — an)zn + anTzn, n >0, (1.7)

where {a,} is a sequence in [0,1] and zy € C is arbitrarily chosen. In infinite-
dimensional spaces, Mann’s algorithm has generally only weak convergence. In fact,
it is known [29] that if the sequence {an} is such that ) > ; an(l — an) = oo, then
Mann'’s algorithm (1.7) converges weakly to a fixed point of T provided the underlying
space is .a Hilbert space or more general, a uniformly convex Banach space which
has a Fréchet differentiable norm or satisfies Opial’s property. Furthermore, Mann’s
algorithm (1.7) also converges weakly to a fixed point of T" if X is a uniformly convex
Banach space such that its dual X* enjoys the Kadec-Klee property (KK-property, in
brief), i.e., z, — z and ||z,]| = ||z|| = =z» — z. It is well known [12] that the duals
of reflexive Banach spaces with a Frechet differentiable norms have the KK-property.
There exists uniformly convex spaces which have neither a Fréchet differentiable norm
nor the Opial property but their duals do have the KK-property; see Example 3.1 of
(14]. ‘ ,
In this paper, we first are looking over the demiclosedness principles for nonlinear
mappings. Next, we give the demiclosedness principle of continuous TAN mappings.

2 Geometrical properties of X

Let X be a real Banach space with norm | - || and let X* be the dual of X. Denote
by (-,-) the duality product. When {xn} is a sequence in X, we denote the strong
convergence of {z,} to £ € X by z, — z and the weak convergence by =, — z.
We also denote the weak w-limit set of {z,} by wy(zn) = {z : 3zn;, — x}. The
normalized duality mapping J from X to X* is defined by

J(2) = {z* € X* : (z,2") = |lzl* = [|=*]|*}

forr e X.

Now we summarize some well known properties of the duality mapping J for our
further argument.

Proposition 2.1. [10, 30, 34]

(1) for each x € X, Jx is nonempty, bounded, closed and conver (hence weakly
compact). ‘ " '

(2) J(0) =0.
(3) J(\z) = AJ(z) for all x e X and real X.

(4) J is monotone, that is, (x —y,j(x) — j(y)) > 0 for all z,y € X, j(z) € J(z)
and j(y) € J(y)-
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(5) llzl® = lyll? = 26z ~ y,4(y)) for allz,y € X and j(z) € J(y); equivalently,
lz + 9ll* < fllf* + 2{y, j(z + y))
forallz,y € X and j(z+y) € J(z +y).

Remark 2.2. the that (5) in Proposition 2.1 can be quickly computed by the well
known Cauchy-Schwartz inequality:

2(z, 5) < 2ll=llyll < ll=l* + llyll*.

Recall that a Banach space X is said to be strictly convez (SC) [7] if any non-
identically zero continuous linear functional takes maximum value on the closed unit
ball at most at one point. It is also said to be uniformly convez if ||z, — yn|| — 0 for
any two sequences {zn}, {yn} in X such that ||z,|| = ||lynll = 1 and ||(zn+yn)/2|| — 1.

‘ We introduce some equivalent properties of strict convexity of X; see Proposition
2.13 in [7] for the detailed proof.

Proposition 2.3. ([7]) A linear normed space X is strzctly convez if and only if one
of the following equivalent properties holds:

(@) if ||z +y|| = |||l + lly]| and z # 0, y =tz for somet > 0;

(b) if ||z|| = lyll =1 and = # y, then ||Az+ (1 — N)y|| < 1 for all X € (0, 1), namely,
' the unit sphere (or any sphere) contains no line segment;

(© i ll=ll = llyll = 1 and x # y, then |[(z+y)/2l| < 1;
(d) the function  — ||z, z € X, is strictly conve.

Remark 2.4. From (b), note that any three points «,y, z satisfying ||z — z|| + |jy —

z|| = |lz — y|| must lie on a line; specially, if ||z — z|| = 71, ||ly — 2|| = 72, and
lz — yll = r = r1 4 ro, then z = o 4+ Z2y; see [15] for more details. Indeed, taking
ui= T2 v =28 we see ||uf| = Hv” =1 and

™
Au+ (1= Mol =iz - y)/rll =1
for some A = 2+ € (0,1). Therefore, by (b), it must be u =v & z="Tz+ 2y

Let S(X):={z € X : ||z]| = 1} be the unit sphere of X. Then the Banach space
X is said to be smooth provided :

t —
Nz gl o]

t—0 t (2‘1)

exists for each z, y € S(X). In this case, the norm of X is said to be Gateaux
differentiable. The space X is said to be a uniformly Gateauz differentiable norm if
for each y € S(X), the limit (2.1) is attained uniformly for z € S(X). the norm of
X is said to be Fréchet differentiable if for each x € S(X), the limit (2.1) is attained
uniformly for y € S(X). The norm of X said to be uniformly Fréchet differentiable
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(or X is said to be uniformly smooth) if the limit in (2.1) is attained uniformly for
z,y € S(X). '

A Banach space X is said to have the Kadec-Klee property if a sequence {z,} of
X satisfying that z, — « € X and ||zn| — ||z||, then z, — z. It is known that if
X is uniformly convex, then X has the Kadec-Klee property; see [10, 34] for more
details.

Again, we introduce some well known properties of the duality mapping J relating!
to geometrical properties of X.

Proposition 2.5. ([10, 30, 34])

(1) X is smooth if and only if J is single valued. In this case, J is norm-to-weak™
continuous; '

(2) if X is strictly convez, then J is one to one (or injective), i.e.,

c#y = JrnNJy=90.

(3) X is strictly convez if and only if J is a strictly monotone operator, i.e.,
T#Y, Je €Jx, jy€Jy = (T—Y,jz —Jy) > 0.

(4) if X is reflexive, then J is a mapping of X onto X*.

(5) if X* is strictly convez (resp., smooth), then X is smooth (resp., strictly convez).
Further, the converse is satisfied if X is reflexive.

(6) if X has a Fréchet differentiable norm, then J is norm-to-norm continuous.

(7) if X has a uniformly Géteaus differentiable norm, then J is norm-to-weak®
uniformly continuous on each bounded subset of X.

(8) if X is uniformly smooth, then J is norm-to-norm uniformly continuous on each
bounded subset of X .

Finally, we shall add the well-known properties between X and its dual X*.
(9) X is uniformly convex if and only if X* is uniformly smooth.
(10) X is reflexive, strictly convex, and has the Kadec-Klee property if and only if
X™* has a Fréchet differentiable norm.
3 Demiclosedness for nonlinear mappings

Recall that a Banach space X is said to satisfy Opial’s condition [25] if whenever a
sequence {z,} in X converges weakly to xp, then

lirlrxiir.}f lzn — zo|| < linn_1+£2f lzrn — |, (x # xp).
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It is well known [16] that LP spaces, p # 2, do not satisfy Opial’s condition while
all the 7 spaces do (1 < p < 00). Thus Opial’s condition is independent of uniform
convexity.

Spaces which satisfy Opial’s condition have another nice property related to fixed
point theory. Also, a function f: D ¢ X — X is demiclosed at w if

z, |f(zn) —w]| =0 = ze€D, f(z)=w.

The following theorem was well known; for an example, see Theorem 10.3 in [16].

Theorem 3.1. ([16]) Let C be a nonempty closed convex subset of a reflexive Banach
space X satisfying Opial’s condition and let T : C — X be nonezpansive. Then
f=1-T is demiclosed on C.

For the demiclosedness principle on uniformly convex spaces, We need the follow-
ing useful lemmas, see Proposition 10.2 in [16].

Lemma 3.2. ([16]) Let C be a bounded closed convez subset of a uniformly convez
space X, and let T : K — X be nonexpansive such that inf{||z — Tz| : x € K} =0.
Then F(T) # 0.

Lemma 3.2 is a crucial tool to prove the folloWing well known demiclosedness

principle for nonexpansive mappings on un1formly convex Banach spaces; see Theorem
10.4 in [16] or [6]

Theorem 3.3. (Demiclosedness Principle; see [16] or [6]) Let C' be a nonempty closed
convez subset of a uniformly conver space X and let T : K — X be nonexpansive.
Then f =1 —T is demiclosed on C.

We need the following notations.
= () 20, T a1

and ¢ € T if and only 1f ¢ € T(RT) and ¢ is convex. .
Recall that T : C — X is said to be of type (v) [3] if v € T'; and

ATz + QA = )Ty = T(ex+ 1 -cyl) < llz —yl| - Tz - Tyl  (3.1)

for all z,y € C and c € [0, 1].

Remark 3.4. (a) Every type (y) mapping is nonexpansive, and every affine nonex-
pansive mapping is of type (7); but not every nonexpansive mapping is of type (y)
because F'(T') is obviously convex by (3.1) if T: C — X is of type (7).

(b) Note that if T is nonexpansive, F(T) is generally not convex; let us recall an
example due to DeMarr [11]. Let X be the space of all ordered pairs (a,b) of real
numbers. Define |[z|| = max{lal,|b|} for z = (a,b) € X. For C = {x : ||z|| < 1},
define T': C — C by

Tx = (|b|,b) Vz=(a,b)cC.
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Then T is nohexpansive because
1Tz — Tyl = 11(18],b) - (|d], )| = |b - d| < max{la —c|,|b—d|} = ||z -y

for all = (a,b) and y = (c,d) in C. However, note that z = (1,1) <y = (1,-1) €
F(T) but 3(z+y) =(1,0) ¢ F(T).

(c) If X is uniformly convex and C is a bounded closed convex subset of X, there
exists 4 € I'c such that every nonexpansive mapping is of type (y); moreover, v can
be chosen to depend only on diam(C) and not on T'; see Lemma 1.1 in (3].

(d) If T : C — X is of type (7), then f = I — T is demiclosed on C; see Lemma
1.3 in [3]. | - | |

Now recall the following subsequent results due to Bruck [4]; see Lemma 2.1 of [4]
for the second lemma.

Lemma 3.5. ([4]) Let C be a nonempty bounded closed convex subset of a uniformly
convexr X. Then there exists v € I'; such that

173" Nz = S ATl < Ly~ max (llas — 25l - L7 Tas — Tasl)) - (3:2)
=1 =1

1<i,j<n

for any Lipschitzian mapping T : C — X with its Lipschitz constant L > 1, A =
(A1, ..., 2n) €A™ and x4, ...z, € C.

Lemma 3.6. ([4]) Let C be a nonempty bounded closed conver subset of a uniformly
convex X, vy €T, and let T : C — X be of type (). Then there exists v, € T'c such
that

U TS M) - AT < max (e - 3l - [T~ T
for x=(M1,..., ) € AP L and zq,...,2p, € C.

Using Lemma 3.5 (Bruck), Xu [36] also established the following subsequent results
for asymptotically nonexpansive mappings; see Theorem 2 of [36], Lemma 2.3 of [32],
respectively.

Theorem 3.7. ([36]) Let C be a nonempty bounded closed convez subset of a uni-
formly convez space X and let T : C — C ne a asymptotically nonexpansive mapping.
Then f =1 — T is demiclosed at zero. .

Theorem 3.8. ([32]) Let C be a nonempty bounded closed convexr subset of a uni-
formly convez space X and let T : C — C ne a asymptotically nonezpansive mapping.
Then f = I — T 1is demiclosed at zero in the sense that whenever T, — x and

lim sup lim sup ||z, — T*z,|| =0
k—oo n—00

it follows that x = Tzx.

In 2001, Chang et all (8] removed the assumption of boundedness of C in Theorem
3.7; see Theorem 1 of [8].
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Theorem 3.9. ([8]) Let C be a nonempty closed convez subset of a uniformly conver
space X and let T : C — C ne a asymptotically nonexpansive mapping. Then f=
I —T is demiclosed at zero.

More generally, we easily observe the following demiclosedness principle for asymp-
totically nonexpansive mappings.

Theorem 3.10. Let C be a nonempty closed convex subset of a uniformly convex
space X and let T : C — C be an asymptotically nonexpansive mapping. Then
f=1—T is demiclosed at zero in the sense that whenever x, — = and

lim sup lim sup ||z, — Tk.wnH =0 (3.3)

k—o0 n—00
1t follows that x = T'x.

Proof. Let z, — z and limsupy_, limsup,_,. [|Zn — 7%, || = 0. Then, since {z,}
is bounded, 3 r > 0 such that {z,} C K := C N B,, where B, denotes the closed
ball of X with center 0 and radius r. Then K is a nonempty bounded closed convex
subset in C'. For arbitrary ¢ > 0, choose ko such that

limsup ||z — T*zn|| <€, k> ko (3.4)
n—00 ‘ . ,

by (3.15). Since x € €o({zn}), for each n > 1, we can also choose a convex combihation

m(n)

im 3 M, A = 0 A ) € A

‘ m(n)
i=1

si;ch that ) .
lvn —all < = (35)

Now for any (fixed) k > ko, using (3.4), we can choose ng such that
l&n — T*znll <€, n > mo. (3.6)

Since T* : K — X is AN (hence Lipschitzian with its Lipschitz constants Lg := 1+4cy
), use to Bruck’s Lemma 3.5 (with d :=diam K) to derive

m(n)
1Ty = 3~ AT i)
. =1
< Lyy” l( max  ([|Zitn — Tjinl — Li~ IHkaU@-l-n =T $J+nl|))
1<i.j<m(n) ’

< Liy (| max oo lttn = T2l + ll234n = Tl
+(1 = Le )T 340 = Tojpall))

< L 2+ (1 - Ly Y)d) by (36).
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Also, for k > kg and n > ny, it follows that

”Tkyn - yn"
m(n) m(n)
< ATy = > N Treiinll + 3 NI Tikn — il
i=1 ' i=1

< Ly '(2e+(1- Ly ')d) +€e by (3.6) again.
Taking limsup,,_,, firstly on both sides, we have

lim sup ||Tkyn —ynll < Lk'y"l (26 +(1- Lk_l)d) +e€ ‘ (3.7)

n—0o0

for all £ > ko. Therefore, for k > ko,

ITFe —z|| < || T* — Trynl| + | T yn — ynll + llyn — 2|
< (1 + Lk)“yn - 17” + “Tkyn - yn”

By virtue of (3.7) and ||yn —\x|| = 0, we see
IT* - ol < Liy™ (26 + (1 - Lk‘l)d) +em0

as k — 0o and € -+ 0. This shows z = limg_,co T*z. Hence Tz = z by continuity of
T. The proof is complete. ' : - 0O

Recall that X is said to satisfy the uniform Opial property [28] if for each ¢ > 0,
37 > 0 such that
1+r< lif{gg)x.}f |z + x| (3.8)

for each £ € X with ||z|| > ¢ and each weakly null sequence {z,} in X with
liminf,, 0 ||Zn] > 1.

- Remark 3.11. (a) It suffices to take the weakly null sequence {x,} with ||z,| =1 for
all n > 1 instead of asking that liminf, ,o [|Zn]| > 1in (3.8).
(b) We can substitute both liminf by limsup in (3.8).

Proof. (a) Let x € X with ||z| > ¢ and liminf, ||z,|| > 1. Assume liminf, ||z +
zn|| = limpy, ||z + z.,|| for some subsequence {m} of {n}. Also, assume without
loss of generality that liminf,, ||z || = limg ||Zm, || = 1; put yk := Zm, /||Tm,|| for all
sufficient large k > ko (otherwise, i.e., if d := liminf,, ||zm|| > 1, consider zp, := zm/d;
put ¥k = Zm,/l|zm.ll = xmk/“mmkll) Since {yx} is a weakly null sequence with
llykll = 1 for all k > ko, it follows from assumption that

1+7r < hmmf”x-i— i ||
k—oo

1im inf H(x+ :vm,c) — (1 - m)wmk

IA

hm mf |z + zm, || + hmsup ll -

| mk” ” mk”

= klggo llw+xmkll —,,}gnoo Ilw+wm|l = liminf ||z + z.||.
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Hence (3.8) is required.

(b) Given ¢ > 0, 37 > 0 such that the mequahty (3.8) replaced with lim sup,, is
satisfied. Let x € X with [z > c and [|@,|| = 1 for all n > 1. Assume liminf, ||z +
Tn| = limg ||z 4 2p, || for some subsequence {n;} of {n}. Then it follows from (a)
(with yx, := z,,) and hypothesis that

1+r < limsup ||z + yxl|
k—o0 )
= lim ||z + zp, || = liminf ||z + z,||.
k—oo0 n—00 ‘
Hence (3.8) is satisfied with lim inf,,. O

" Recall also that X satisfies the liminf-locally uniform Opial condition (in brief,
lim inf-LUO) [19] if for any weakly null sequence {x,} in X with hm inf, 00 flzn]| > 1
and any ¢ > 0, 3r > 0 such that

1+ 7 < liminf |z + ]| | (3.9)
n—r00

for all z € X with [|z]| > c.

Definition 3.12. ([13]) A Banach space X has the limsup-LUO if for any Wea,kly
null sequence {z,} in X with limsup,,_,., [|z,|| > 1 and any ¢ > 0, 37 > 0 such that :
(3.8) replaced with limsup,, holds for all z € X with ||z| > e.

Remark 3.13. Note that (UO) = (liminf-LUO) = (limsup-LUO). But the converse
implications don’t remain true in general. Consider X = (3.%° 2¥4i),,- Then X =
(limsup-LUO) but it lacks (UO); see [37]. Also, by [13], X # (hmmf—LUO) If we
take X = (322, 4),, , it has liminf-LUO but not (UO); see [13]. ‘

For the,following lemma, see Lemma 2.3 of Oka [23] or Lemma 1.5 of [38].
Lemma 3.14. Let C be a nonempty bounded closed convex subset of a uniformly
convez space X and letT : C — C be asymptotically nonezpansive in the intermediate

sense. For eache >0, 3K, > 0 and §. > 0 such that if k > K., 21, 2 €C M >2)
and zfllzz—zJH—HT’“zZ T*2;| < 6. f0r1<2]<n then

“Tk(z tiz{) — ZtiTkzz' <e
=1 i=1 -

forallt = (ty,...,t,) € A™1,

Using Lemma 3. 14, Yang, Xie, Peng and Hu [38] recently proved the following
demiclosedness principle of I — T for a mapping T which is asymptotically nonexpan-
sive in the intermediate sense.

‘Theorem 3.15. ([38]) Let C' be a nonempty closed conver subset of a uniformly
convez space X and letT : C — C be asymptotically nonexpansive in the intermediate
. sense. Then I — T is demiclosed at zero in the sense that whenever z, — x and

lim sup lim sup |xn — T™zn|| =0
m—ro0 n—

it follows that x = Tz.
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Remark 3.16. Note that Theorem 3.15 is the slight modification of Lemma 2.5 in [23].

Here we give an easy example of an asymptotically nonexpansive mapping which
is not nonexpansive.

Example 3.17. Let X =R, C =[0,1], and 1/2 < k < 1. For each x € C, define

kx, if0<z<1/2;
Tr=1{ si(z—k), if1/2<z<k;
0, ifk<z<l.

Then T : C — C 1is asymptotically nonexpansive but not nonezpansive.

Now we shall give the demiclosedness ,prinéiple of I — T for a TAN mapping T
We first begin with following slight modification of Lemma 2.1 in [38].

Lemma 3.18. Let C be a nonempty closed conver subset of a uniformly conver X
and let T : C — C be a TAN miapping and let K a nonempty bounded closed convex
subset of C. Then, for each e > 0, AN, > 1 and dz with 0 < 03 < € such that if
k> N, z1,z2 € K and if |1 — z2| — |T*z) — T*zs|| < 02, then

“T’“(Am + o) — MT* ey — /\2Tkx2“ <e

for all A = (A1, A2) € AL,

Proof. We employ the method of the proof in [23]. Since X is uniformly convex, the
modulus of convexity § is a continuous and strictly increasing function on [0, 2] (see
[16] for more details). Then the function F : R* — R™ defined by

NN if0<x<2
F(@)—{ ;(wo‘_Q)-f-F(Q), if z > 2.

is clearly strictly increasing, continuous and convex on R*. Obviously, since F(x) <
8(z) (0 < z < 2), the uniform convexity of X implies that

2002 F (lz — yll) < 1 - [|Az + Ayl (3.10)

for A = (M1, A2) € AL, ||z|| € 1and |ly|| < 1. If either A; or Az is 1 or 0, our conclusion
is clearly satisfied. So assume that 0 < A1, A2 < 1 and let € > 0 be arbitrary given.
Set :

- M :=diam K V sup ¢(||lz —y||) < oc.

z,yeK

(Note that sup, ,cx ¢(/lz — yl|) < #(diam K) because ¢ is strictly increasing.)
_ Choose d¢ > 0 such that Y F-1 (%) < € and put 6 = min {¢, d, M3, For
b2 = min{Ada¢ : 1 = 1,2} > 0, since ¢,, dn — 0, there exists an integer N, >
1 (depending on the set K) such that if k > N,

cr < SZ,E/QM and di < 32,5/2.
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Then, by (1.6 ), we have -

< =yl + e o(llz — yll) + di
<l —yll+ e M+ dy
< o =yl + 6, | (3.11)

| T*z — Ty||

forall k> N, z,y € K. Now let k£ > N, and let x1, zo € K with lz1 ;xgjl _ | Tk —
T*z5|| < 9. On letting

k _ Tk
and y = T*(Mxy + Aexe) — TFxy

- Tk:L‘Q — Tk()\ll"l + /\2182)
M(llzr = z2|| + b2,) T Xl -2l + b))

T =

we have ||z|| < 1, |Jy|| < 1 by with help of (3.11) and

Tkmg - T’“xl
”:L'l - 5132” -+ (52,5 .

AT+ Ay =
From these facts, on letting

2 21 M
O0<t:= ——)\1A2(”331 — .’172” -+ 52’5) < Z (M + "—) <1,

M M 4
we have 0 g
M[l)\lT’“ml + XoT*zy — T*(Mz1 4 Aoxo)|| =tz — y|| | (3.12) -
and o
1 o 21 — | — || T*zy — T*za|| + 62.c
—— (1= Mz + A = .
2)\1)\2( H 1 221”) 2)\1)\2(”181 - 1‘2“ + (52,5)
252 € :
< S 1
i (3.13)
Using (3.10), (3.12), (3.13) and the convexity of F with F(0) = 0, we have
| 2
F ('M”/\lTkxl + /\ngxg — T’“()\lxl + )xgiEg)H)
= F(tlz—yll) = F(t|z - yll + (1 - t)0)
< tF(llz = yl)) + (1 - £)F(0)
t 202 _ 2d,

= ——(1- < =< —

and so we have -
M 2d.\
”)quxl + /\QT’C:EQ - Tk()\ll'l + )\ng)u < TF—l (—ﬁ) <e€

from the choice of d, and the proof is complete. , O

Now on mimicking Lemma 2.2 and 2.3 in Oka [23] we have the following result.
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Lemma 3.19. Let C be a nonempty closed convez subset of a uniformly convez
Banach space X. ‘Let T : C — C be a TAN mapping and let K a bounded closed
convez subset of C. Then, for ¢ > 0 there erists an integers Ne > 1 and 6. with
0 < 6. < € such thatk > N, T1, T2, - ,Zn € K and if ||z; — ;|| — | T*z; — T*z;|| < 6
for1<1i,5 <n, then ‘

<E€

Tk (i )\.ixi) — En: )\iTkxi

i=1 =1
for all A= (A1, Mg, -+, Ap) € AL

As a direct applica,tion\ of Lemma 3.19, we have the following demiclosedness
principle for continuous TAN mapping.

Theorem 3.20. Let C be a nonempty closed conver subset of a uniformly convex
Banach space X. Let T : C — C be a continuous TAN mapping. Then I — T 1is
demiclosed at zero in the sense that whenever {z,} is a sequence in C such that
T, — z (€ C) and it satisfies (8.15), namely, ‘

limsup limsup ||z, — T*z,| = 0.
k—oco n—00

Then x € F(T).

Proof. First, we claim that limg_,o0 T*z = z. For this end, since {x,} is bounded in
C, take the bounded set K in Lemma 3.19 by the closed convex hull of {z, : n > 1}.
For € > 0, take N, > 1 and J, with 0 < J, < € as in Lemma 3.19. From (3.15), there
exists an integer ko (> N,) such that

limsup ||z, — TFzall < 6/2 (k> ko).

n—00

‘ Also, we can choose an integer ng (> ko) such that
Man — TFzal| < 6/2  (kyn > o). (3.14).

Since z, -z and r € to{x; : i > n} for each n > 1, we can choose for eachn >1a
convex combination "

m(n) ‘ -
o= MVeiin, where AW = (A", AV, A ) € Am)-1
i=1

such that ||y, — z|| = 0. Let k,n > np. Then it follows from (3.14) that, for
1<4, j <m(n),

|Zi+n — Tjnll — ||Tk33i+nf_ Tkwj+n“
|_l$i+n ~ Trz;nll + Zj+n — Tkxj+n||
0e/2 + 6¢/2 = b
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and so applying Lemma 3.19 yields

m(n)
“T"yn — Z /\Z(.n)Tkan | <e€
=1

and hence

m(n) . m(n)
”Tk?/n - yn” < HTkyn - Z )‘gn)Tkzi+nH + ” Z )\Z(n) (Tkx'H—n = CEH—“) “
» =1 =1 ‘

< €+06:/2<(3/2)¢
for k,n > ng. Since § = {T, : C — C} is TAN on C, this implies that, for k,n > ny,
IT*2 — Tyl + 1T g = gl + llyn — ||

1z = ynll + c& ¢(llz = ynll) + di + (3/2)e + |l — 2
20lyn — 2l + ek (Il — yall) + dic + (3/2)e. (3.15)

IT*z ~ zf| <
<

Taking the limsup as n — oo at first and next the lim sup as k — oo in both sides
of (3.15), we have limsup,_,. ||T%z — z|| < (3/2)e and since ¢ is arbitrary given,
T*z — z. Therefore € F(T) by continuity of 7. The proof is complete. a

References

[1] Ya. L Alber,- C. E. Chidume and H. Zegeye, Approximating fixed points of to-
tal asymptotically nonexpansive mappings, Fized Point Theory and Appl., 2006
(2006), article ID 10673, 20 pages.

" [2] V. Barbu and Th. Precupanu, Convezity and Optimization in Banach spaces,
Editura Academiei, Romania, 1986.

[3] R. E. Bruck, A simple proof of the mean ergodic theorem for nonlinear contrac-
tions in Banach spaces, Israel J. Math. 32 (1979), 107-116.

[4] R. E. Bruck, On the convex approximation property and the asymptotic behavior
of nonlinear contractions in Banach spaces, Israel J. Math. 38 (1981), 304-314.

[5] R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptoti-
cally nonexpansive mappings in Banach spaces with the uniform Opial property,
Collog. Math., 65 (1993), 169-179. '

[6] F. E. Browder, Nonlinear operators and nonlinear equations of evolution in Ba-
nach spaces, in Proc. Symp. Pure Math., Vol. 18, Part 2, Amer. Math. Soc.
Providence, RI, 1976.

[7] F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear
mappings in Hilbert spaces, em J. Math. Anal. Appl. 20 (1967), 197-228.



Demiclosedness and Robustness , 104

[8] S. S. Chang, Y. J. Cho and H. Zhou, Demi-closedness principle and weak con-
vergence problems for asymptotically nonexpansive mappings, J. Korean Math.
Soc. 38 (2001), 1245-1260. :

[9] C. E. Chidume and E. U. Ofoedu, Approximation of common fixed points for -
finite families of total asymptotically nonexpansive mappings, J. Math. Anal.
Appl., 333 (2007), 128-141. '

[10] 1. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear
Problems, Kluwer Academic Publishers, Dordrecht, 1990.

[11] R. DeMarr, Common fixed points for commuting contraction mappings, Pacific
J. Math. 13 (1963), 1139-1141.

[12] J. Diestel, Geometry of Banach spaces -Selected Topics, Lecture Notes in Math-
ematics,, vol. 485, Springer, New York, 1975.

[13] H. Fetter and Berta Gamboa de Bluen, Locally uniform Opial conditions, Non- |
linear Anal. 53 (2003), 743-750.

[14] J. Garcia Falset, W. Kaczor, T. Kuczumov and S. Reich, Weak convergence
theorems for asymptotically nonexpansive mappings and semlgroups, Nonlinear
Anal., 43 (2001), 377-401.

[15] K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpan-
sive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.

[16] K. Geobel and W. A. Kirk, Topics in metric fixed point theory, Cambridge
University Press, New York, NY, 1990.

[17] T. H. Kim and H. K. Xu, Convergence of the modified Mann’s iteration method
for asymptotically strict pseudo-contractions, Nonlinear Anal., 68 (2008), 2828—
2836.

[18] W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptoti-
cally nonexpansive type, Israel J. Math., 17 (1974), 339-346.

[19] P. K. Lin, K. K. Tan and H. K. Xu, Demiclosedness principle and asymptotic
behavior for asymptotically nonexpanswe mappings, Nonlinear Anal 24 (1995),
929-946.

[20] G Lopez Acedo and H. K. Xu, Iterative methods for strict pseudo-contractions
in Hilbert spaces, em Nonlinear Anal. 256 (2001), 431-445.

[21] W. R. Mann, Mean value methods in iteration, Proc.. Amer. Math. Soc., 4 (1953),
506-510.

[22] G. Marino and H. K. Xu, Weak and strong convergence theorems for strict
pseudo-contractions in Hilbert spaces, em J. Math. Anal. Appl. 329 (2007),
336-346.



T. H. Kim and D. H. Kird 05

[23] H. Oka, An ergodic theorem for asymptotically nonexpansive mappings in the
intermediate sense, Proc. Amer. Math. Soc., 125 (1997), 1693-1703.

- [24] L. Qihou, Convergence theorems of the sequence of iterates for asymptotically‘
demicontractive and hemicontractive mappings, Nonlznear Anal., (1996),
1835-1842.

[25] Z. Opial, Weak convergence of the sequence of successive approximatiens for
nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591-597.

[26] M. O. Osilike and A. Udomene, Demiclosedness principle and convergence the-
orems for strictly pseudocontractive mappings of Browder-Petryshn type, em J.
Math. Anal Appl. 256 (2001), 431—445

[27] M. O. Osilike, A. Udomene, D. I Igbokwe and B. G. Akuchu, Demiclosedness
principle and convergence theorems for k-strictly asymptotically pseudocontrac-
tive maps,em J. Math. Anal. Appl. 326 (2007) 1334-1345. '

[28] S. Prus, Banach spaces with the uniform Oplal property, Nonlinear Anal. 18
1(1992), 697-704. |

[29] S. Reich, Weak convergence theorems for nonexpansive mappmgs in Banach
spaces, J. Math. Anal. Appl., 67 (1979), 274-276.

[30] S. Reich, Review of Geometry of Banach Spaces, Duality Mappings and Nonlinear
Problems, Kluwer Academic Publishers, Dordrecht, 1990, Bull. Amer. Math.
Soc., 26 (1992), 367-370.

[31] D. R. Sahu, H. K. Xu, J. C. Yao, Asymptotically strict pseudocontractive map-
t  pings in the intermediate sense, Nonlinear Anal., 70 (2009) 3502-3511.

[32] K. K. Tan and H. K. Xu, The nonlinear ergodic theorem for asymptotically
nonexpansive mappmgs in Banach spaces, Proc. Amer. Math. Soc. 114 (1992),
399-404.

[33]A Y. Takahashi, K. Hashimoto, and M. Kato, On sharp uniform convexity, smooth-
ness, and strong type, cotype inequalities, J. Nonlinear Conver Anal., 3 (2002),
267-281.

[34] W. Takahashi, Nonlinear Functional Analysis, Yokohama, Pubhshers, Yokohama
2000.

[35] H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16
(1991), 1127-1138.

[36] H. K. Xu, Existence and convergence for fixed points of mappings of asymptoti-
cally nonexpansive type, Nonlinear Anal. 16 (1991), 1139-1146.

[37] HK Xu and G. Marino, Uniform property (K) and its related propertles Bull.
Austral. Math. Soc. 57 (1998) 93-107.



Demiclosedness and Robustness 106

[38] L. P. Yang, X. S. Xie, S. Peng and G. Hu, Demiclosedness princ_iple and con-
vergence for modified three step iterative process with errors of non-Lipschitzian
mappings, J. Comput. Applied Math. (2009), doi:10.1016/j.cam.2009.01.022.



