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1 Introduction and Preliminaries
Nonsmooth phenomena in mathematics and optimization problem occurs naturally and frequently. The
Clarke subdifferential method has been proved to be a powerful tool in many nonsmooth optimization
problems([2], [3]). The field of multiobjective programming, has grown remarkably in different directional
in the setting of optimality conditions and duality theory since $1980s.$

Duality results of e.g. Wolfe [12] and Schechter [10] were shown to be differentiable and nondiffer-
entiable cases of the duality formulation. Some duality results of Mond and Weir [9] with generalized
convex were introduced as special cases of the previous dual formulations. In the nondifferentiable case,
Kim and Bae [5] formulated the dual problem and established duality theorems for nondifferentiable
multiobjective programs involving the support functions of a compact convex sets and linear functions.

Weir and Mond [11] have given dual problems for the convex multiobjective programming problem
and established duality without a constraint qualification. And Egudo et al. [4] have formulated dual
problems for differentiable multiobjective programming problems where a constraint qualification is not
assumed.

Recently, Kim and Schaible [7] introduced nonsmooth multiobjective programming problems involving
locally Lipschitz functions. They obtained sufficient optimality conditions and established duality rela-
tion. Based on this results, Kim and Lee [6] gave two types of optimality conditions by using generalized
convexity and certain regularity conditions and proved duality theorems.

Very recently, Nobakhtian [8] present necessary and sufficient conditions and derived duality theorems
for a class of nonsmooth multiobjective programming problems without constraint qualification. Our
aim of this paper has two viewpoints. One is to formulate mathematical models such as primal and dual
problems. Another is to establish duality theorems.

In this paper, we formulate the nonsmooth multiobjective programming involving locally Lipschitz
functions and support functions. In section 2, we formulate Wolfe type and Mond-Weir type dual problem
and establish weak and strong duality theorems under suitable generalized convexity conditions. Finally,
we give special cases of our duality results.

We consider the following multiobjective nonsmooth programming problem,

($MP$) Minimize $f(x)+s(x|D)$

subject to $g(x)\leqq 0,$

$x\in C,$

where $C$ is a convex set and $D_{i},$ $i=1,$ $\cdots,p$ is a compact convex sets of $\mathbb{R}^{n}.$ $f_{i},$
$g_{j_{}},$ $i=1,$ $\cdots$ , $p,$ $j=$

$1,$ $\cdots,$ $m$ are real valued locally Lipschitz functions defined on $C$ . The index sets are $P=\{1,2, \cdots,p\},$ $M=$

$\{1,2, \cdots, m\}$ . We denote the feasible set $\{x\in C|g_{j}(x)\leqq 0, j=1, \cdots, m\}$ by $F$ . Let $I(x^{*})=\{j\in$

$M|g_{j}(x^{*})=0\}$ denote the index set of active constraints at $x^{*}.$

The minimal index set of active constraints for $F$ is denoted by

$I^{=}=\{j\in M|x\in Farrow g_{j}(x)=0\}.$
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We also denote
$I^{<}(x^{*})=I(x^{*})-I^{=}=\{j\in I(x^{*})|x_{i}\in F$ such that $g_{j}(x)<0\}.$

For a fixed $r\in P$ and $x^{*}\in \mathbb{R}^{n}$ , we denote
$M^{r}=M\backslash \{r\},$

$F^{r}(x^{*})=\{x|f_{i}(x)+s(x|D_{i})\leqq f_{i}(x^{*})+s(x^{*}|D_{i}), i\in M^{r}\},$

$M^{r}(x^{*})=\{i\in M^{r}|f_{i}(x)+s(x|D_{i})=f_{i}(x^{*})+s(x^{*}|D_{i}), \forall x\in F^{r}(x^{*})\}.$

We denote $C^{*}=\{u\in \mathbb{R}^{n}|u^{T}x\geqq 0, \forall x\in C\}$ for the polar set of an arbitrary set $C\in \mathbb{R}^{n}.$

For a nonempty subset $C$ of $\mathbb{R}^{n}$ , we denote by $co(C),$ $cone(C)$ , and $C^{*}$ the convex hull of $C$ , the cone
generated by $C$ , and the dual cone of $C$ , respectively.

Further, $N_{C}(x^{*})$ denotes the normal cone to $C$ at $x^{*}$ defined by
$N_{C}(x^{*})=\{d\in \mathbb{R}^{n}|<d, x-x^{*}>\leq 0, \forall x\in C\},$

clearly, $(C-x^{*})^{*}=-N_{C}(x^{*})$ .
Definition 1.1 $A$ feasible solution $x^{*}$ for $(MP)$ is efficient for $(MP)$ if and only if there is no other
feasible $x$ for $(MP)$ such that

$f_{i_{0}}(x)+s(x|D_{i_{0}})<f_{i_{0}}(x^{*})+s(x^{*}|D_{i_{0}})$ for some $i_{0}\in P,$

$f_{i}(x)+s(x|D_{i})\leqq f_{i}(x^{*})+s(x^{*}|D_{i})\forall i\in P.$

Definition 1.2 Let $D$ be a compact convex set in $\mathbb{R}^{n}$ . The support function $s(x|D)$ is defined by
$s(x|D) := \max\{x^{T}y:y\in D\}$

The support function $s(x|D)$ , being convex and everywhere finite, has a subdifferential, that is, there
$ex^{i}$istsz such that

$s(y|D)\geq s(x|D)+z^{T}(y-x)$ for all $y\in D.$

Equivalently,
$z^{T}x=s(x|D)$ .

The subdifferential of $s(x|D)$ is given by

$\partial s(x|D):=\{z\in D:z^{T}x=s(x|D)\}.$

Definition 1.3 [2, $3J$ Let $X$ be an open subset of $\mathbb{R}^{n}$ . The genemlized Clarke directional derivative of a
locally Lipschitz function $f$ at $x$ in the direction $d$ is defined by

$f^{c}(x;d)= \lim\sup_{yarrow x,tarrow 0+}\frac{f(y+td)-f(y)}{t}.$

The Clarke generalized subgradient of a locally Lipschitz function $f$ at $x$ is defined by
$\partial_{c}f(x):=\{\xi\in \mathbb{R}^{n}|f^{c}(x;d)\geq<\xi, d>, \forall d\in \mathbb{R}^{n}\}.$

Lemma 1.1 Let $f$ be a locally Lipschitz function and $x\in domf$ . Then for all $d\in \mathbb{R}^{n},$

$f^{c}(x;d)= \max\{<\xi, d>|\xi\in\partial_{c}f(x)\}$

and $\partial_{c}f(x)$ is a nonempty, convex and compact set.
Definition 1.4 Let $f:\mathbb{R}^{n}arrow \mathbb{R}$ be a locally Lipschitz function. Then
(i) it is said to be generalized convex at $x$ if for any $y$

$f(y)-f(x)\geqq<\xi, y-x>, \forall\xi\in\partial_{c}f(x)$ ,
(ii) it is said to be generalized quasiconvex at $x$ if for any $y$ such that $f(y)\leqq f(x)$ ,

$<\xi, y-x>\leqq 0, \forall\xi\in\partial_{c}f(x)$ ,

(iii) it is said to be 9eneralized strictly quasiconvex at $x$ if for any $y$ such that $f(y)\leqq f(x)$ ,
$<\xi, y-x><0, \forall\xi\in\partial_{c}f(x)$ .

137



2 Duality Theorems
We introduce Wolfe type and Mond-Weir type dual programming problems and establish weak and

strong duality theorems.

($WD$ ) Maximize $f(u)+u^{T}z+(\mu^{T}g(u))e$

subject to $0 \in\sum_{i\in P}\lambda_{i}(\partial_{c}f_{i}(u)+z_{i})+\sum_{j\in M}\mu_{j}\partial_{c}g_{j}(u)+N_{C}(u)$
, (1)

$g_{j}(u)=0, j\in I^{=}$ , (2)

$\lambda_{i}>0, i=1, \cdots,p,\sum_{i\in P}\lambda_{i}=1$
, (3)

$\mu_{j}\geqq 0,j=1, \cdots, m$ . (4)

Here $F_{WD}$ denotes the set of feasible solutions to ($WD$ ) and $g_{I}=(\cdot)$ for $g_{j}(\cdot),$ $j\in I^{=}.$

Theorem 2.1 (Weak Duality) Suppose that $x\in F$ and $(u, z, \lambda, \mu)\in F_{WD}$ . If $f_{i}(\cdot),$ $i\in P,$ $g_{j}(\cdot),$ $j\in$

$M$, are genemlized convex functions at $u$ . Then the following cannot hold:

$f_{io}(x)+s(x|D_{i_{0}})<f_{1_{o}}(u)+u^{T}z_{i_{0}}+ \sum_{j=1}^{m}\mu_{j}g_{j}(u)$ , for some $i_{0}\in P$, (5)

$f_{i}(x)+s(x|D_{i}) \leqq f_{i}(u)+u^{T}z_{i}+\sum_{j=1}^{m}\mu_{j}g_{j}(u), \forall i\in P$. (6)

Proof. Let $x$ be feasible solution for ($MP$) and let $(u, z, \lambda, \mu)$ be feasible solution for ($WD$ ). Suppose
contrary to the result that (5) and (6) hold. Then

$\sum_{i\in P}\lambda_{i}(f_{i}(x)+s(x|D_{t}))<\sum_{i\in P}\lambda_{i}(f_{l}(u)+u^{T}z_{i})+\sum_{j=1}^{m}\mu_{j}g_{j}(u)\sum_{i\in P}\lambda_{t}$. (7)

Since $x^{T}z_{i}\leqq s(x|D_{i}),$ $i\in P$ and $\sum_{i\in P}\lambda_{i}=1,$ (7) yields

$\sum_{i\in P}\lambda_{i}(f_{i}(x)+x^{T}z_{i})<\sum_{i\in P}\lambda_{i}(f_{t}(u)+u^{T}z_{i})+\sum_{j=1}^{m}\mu jg_{j}(u)$. (8)

By feasibility of $(u, z, \lambda, \mu)$ , there exist $\xi_{i}+z_{i}\in\partial_{c}f_{i}(u)+z_{i},$ $i\in P,$ $\eta_{j}\in\partial_{c}g_{j}(u),$ $j\in M$ and $d\in-N_{C}(u)$

such that

$\sum_{i\in P}\lambda_{i}(\xi_{t}+z_{i})+\sum_{j\in M}\mu_{j}\eta_{j}=d.$
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Then

$\sum_{i\in P}\lambda_{i}[(f_{i}(x)+x^{T}z_{i})-(f_{i}(u)+u^{T}z_{i})-\sum_{j=1}^{m}\mu_{j}g_{j}(u)]$

$= \sum_{i\in P}\lambda_{i}(f_{i}(x)+x^{T}z_{i})-\sum_{i\in P}\lambda_{i}(f_{i}(u)+u^{T}z_{i})-\sum_{j=1}^{m}\mu_{j}g_{j}(u)$

$\geqq(x-u)^{T}\sum_{i\in P}\lambda_{i}(\xi_{i}+z_{i})-\sum_{j=1}^{m}\mu_{j}g_{j}(u)$

$=-(x-u)^{T} \sum_{j\in M}\mu_{j}\eta_{j}-\sum_{j=1}^{m}\mu_{j}g_{j}(u)+(x-u)^{T}d$

$\geqq\sum_{g’\in M}\mu_{j}(g_{j}(u)-g_{j}(x))-\sum_{j=1}^{m}\mu_{j}g_{j}(u)$

$=- \sum_{j\in M}\mu_{j}g_{j}(x)$

$\geqq-\sum_{j\in M}\mu_{j}g_{j}(x)$

$\geqq 0,$

which is a contradiction to (8). $\square$

Theorem 2.2 (Strong Duality) If $x^{*}$ is an efficient solution for $(MP)$ and weak duality theorem(Theorem
2.1) holds between $(MP)$ and $(WD)$ . $g_{j}(.$ $)$ , $j\in P$, are genemlized strictly quasiconvex at $x^{*}$ and $(x^{*})^{T}z_{i}=$

$s(x^{*}|D_{i}),$ $i\in P$, then there exist $\lambda_{i}^{*}>0,$ $z_{i}^{*}\in D_{i},$ $i\in P$ and $\mu_{j}^{*}\geqq 0,$ $j\in M$ such that $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is
an efficient’ solution for $(WD)$ and the objective values of $(MP)$ and $(WD)$ are equal.

Proof. Since $x^{*}$ is efficient for ($MP$), then by Theorem 3.7 of [8], there exist $\lambda_{i}^{*}>0,$ $z_{i}^{*}\in D_{i},$ $i\in$

$P,$ $\mu_{j}^{*}\geq 0,$ $j\in I^{<}(x^{*})$ and $d\in-N_{C}(x^{*})$ . By taking $\mu_{j}^{*}=0$ for $j\not\in I^{<}(x^{*})$ , then $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is feasible
for ($WD$ ). Suppose that $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is not efficient for ($WD$), then there exists $(u, z, \lambda, \mu)$ feasible for
($WD$ ) such that

$f_{i_{0}}(u)+u^{T}z_{i_{0}}+ \sum_{j=1}^{m}\mu_{j}g_{j}(u)>f_{i_{0}}(x^{*})+(x^{*})^{T}z_{i_{0}}^{*}+\sum_{j=1}^{m}\mu_{j}^{*}g_{j}(x^{*})$, for some $i_{0}\in P$, (9)

$f_{i}(u)+u^{T}z_{i}+ \sum_{j=1}^{m}\mu_{j}g_{j}(u)\geqq f_{i}(x^{*})+(x^{*})^{T}z_{i}^{*}+\sum_{j=1}^{m}\mu_{j}^{*}g_{j}(x^{*}), \forall i\in P$. (10)

Since $(x^{*})^{T}z_{i}^{*}=s(x^{*}|D_{i}),$ $i\in P$ and $\sum_{j=1}^{m}\mu_{j}^{*}g_{j}(x^{*})=0,$ (9) and (10) implies

$f_{i_{O}}(u)+u^{T}z_{i_{O}}+ \sum_{j=1}^{m}\mu_{j}g_{j}(u)>f_{i_{O}}(x^{*})+s(x^{*}|D_{i_{O}})$ , for some $i_{0}\in P,$

$f_{i}(u)+u^{T}z_{i}+ \sum_{j=1}^{m}\mu_{j}g_{j}(u)\geqq f_{i}(x^{*})+s(x^{*}|D_{i}), \forall i\in P.$

This would contradict weak duality. The objective values of ($MP$) and ($WD$ ) are clearly equal at their
respective efficient points. $\square$
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($MD$ ) Maximize $f(u)+u^{T}z$

subject to $0 \in\sum_{i\in P}\lambda_{i}(\partial_{c}f_{i}(u)+z_{i})+\sum_{j\in M}\mu_{j}\partial_{c}g_{j}(u)+N_{C}(u)$
, (11)

$\mu_{j}g_{j}(u)\geqq 0, j\in M, g_{j}(u)=0, j\in I^{=}$ , (12)

$\lambda_{i}>0, i=1, \cdots,p,\sum_{\dot{\iota}\in P}\lambda_{i}=1$
, (13)

$\mu_{j}\geqq 0,j=1, \cdots, m$ . (14)

Here, $F_{MD}$ denotes the set of feasible solution to ($MD$ ).

Theorem 2.3 (Weak Duality) Let $x\in F$ and $(u, z, \lambda, \mu)\in F_{MD}$ . If $f_{i}(\cdot),$ $i\in P$, are generalized
strictly convex functions and $g_{j}(\cdot),$ $j\in M$ , are generalized quasiconvex at $u$ , then the following cannot
hold:

$f_{i_{O}}(x)+s(x|D_{1_{0}})<f_{i_{0}}(u)+u^{T}z_{i_{0}}$ , for some $i_{0}\in P$, (15)
$f_{t}(x)+s(x|D_{i})\leqq f_{i}(u)+u^{T}z_{i}, \forall i\in P$. (16)

Proof. Let $x$ be feasible solution for ($MP$) and $(u, z, \lambda, \mu)$ be feasible solution for ($MD$). Suppose
contrary to the result that (15) and (16) hold. Then

$f_{i_{O}}(x)+s(x|D_{i_{0}})<f_{\iota_{O}}(u)+u^{T}z_{i_{0}}$ , for some $i_{0}\in P$, (17)

and
$f_{i}(x)+s(x|D_{i})\leqq f_{i}(u)+u^{T}z_{\dot{*}}, \forall i\in P$ . (18)

Since $x^{T}z_{i}\leqq s(x|D_{i}),$ $i\in P,$ (17) and (18) yields
$f_{i_{O}}(x)+x^{T}z_{i_{0}}<f_{i_{O}}(u)+u^{T}z_{i_{0}}$ , for some $i_{0}\in P$, (19)

and
$f_{i}(x)+x^{T}z_{i}\leqq f_{i}(u)+u^{T}z_{i}, \forall i\in P$. (20)

We suppose that $x\in F$ , we have

$g_{j}(x)\leqq g_{j}(u)$ .
By assumption of $f(\cdot),$ $i\in P$ and $g_{j}(\cdot),$ $j\in M$ , we have

$\langle\sum_{1\in P}\lambda_{i}(\xi_{i}+z_{1}), x-u\rangle<0, \forall\xi_{1}+z_{i}\in\partial_{c}f_{1}(u)+z_{i}$
, (21)

$\langle\sum_{j\in M}\mu_{j}\eta_{j}, x-u\rangle\leqq 0, \forall\eta_{j}\in\partial_{c}g_{j}(u)$
. (22)

By (21) and (22), we have

$\langle\sum_{i\in P}\lambda_{i}(\xi_{i}+z_{i})+\sum_{j\in M}\mu_{j}\eta_{j}, x-u\rangle<0$
, (23)

for all $\xi_{1}+z_{i}\in\partial_{c}f_{i}(u)+z_{i}$ and $\eta_{j}\in\partial_{c}g_{j}(u)$ . From the constraints of ($MD$), it follows that for some
$d\in-N_{C}(u),$ $\xi_{i}+z_{i}\in\partial_{c}f_{i}(u)+z_{i},$ $\eta_{j}\in\partial_{c}g_{j}(u)$ ,

$\langle\sum_{1\in P}\lambda_{i}(\xi_{i}+z_{i})+\sum_{j\in M}\mu_{j}\eta_{j}, x-u\rangle\geqq(x-u)^{T}d\geq 0.$

This is a contradiction to (23). Hence (15) and (16) cannot hold. $\square$
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Remark 2.1 If we replace the generalized strictly convexity by the generalized strictly quasiconvenity,
then above weak duality holds under the regularity condition of $f_{i},$ $i\in P.$

Theorem 2.4 (Strong Duality) If $x^{*}$ is efficient for $(MP)$ and weak duality theorem(Theorem 2.3)
holds between $(MP)$ and $(MD),$ $g_{j}(\cdot),$ $j\in M$, are genemlized strictly quasiconvex at $x^{*}$ and $(x^{*})^{T}z_{i}=$

$s(x^{*}|D_{\iota’}),$ $i\in P$, then there $ex\iota st\lambda_{i}^{*}>0,$ $z_{i}^{*}\in D_{i},$ $i\in P$ and $\mu_{j}^{*}\geqq 0,$ $j\in M$ such that $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is
efficient for $(MD)$ and the objective values of $(MP)$ and $(MD)$ are equal.

Proof. Since $x^{*}$ is efficient for ($MP$), then by Theorem 3.7 of [8], there exist $\lambda_{i}^{*}>0,$ $z_{i}^{*}\in D_{i},$ $i\in$

$P,$ $\mu_{j}^{*}\geq 0,$ $j\in I^{<}(x^{*})$ and $d\in-N_{C}(x^{*})$ . By taking $\mu_{j}^{*}=0$ for $j\not\in I^{<}(x^{*})$ , then $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is feasible
for ($MD$). Suppose that $(x^{*}, z^{*}, \lambda^{*}, \mu^{*})$ is not efficient for ($MD$), $then|$ there exists $(u, z, \lambda, \mu)$ feasible for
($MD$) such that

$f_{i_{0}}(u)+u^{T}z_{i_{0}}>f_{i_{0}}(x^{*})+(x^{*})^{T}z_{i_{0}}^{*}=f_{i_{0}}(x^{*})+s(x^{*}|D_{i_{0}})$ , for some $i_{0}\in P,$

$f_{i}(u)+u^{T}z_{i}\geqq f_{i}(x^{*})+(x^{*})^{T}z_{i}^{*}=f_{i}(x^{*})+s(x^{*}|D_{i}), \forall i\in P.$

However, since $x^{*}$ is efficient for ($MP$), this would contradict weak duality. The objective values of ($MP$)
and ($MD$) are equal at their respective efficient points. $\square$

3 Special Cases
We give some special cases of our duality results.

(i) If $D_{i}=\{0\},$ $i=1,$ $\cdots,$
$k$ , then our dual programs ($MP$), ($WD$ ) and ($MD$ ) reduced to the

problems considered in Egudo et al. [4].
(ii)If $D_{i}=\{0\},$ $i=1,$ $\cdots,$

$k$ , then ($MP$), ($WD$ ) and ($MD$ ) reduce to corresponding ($MP$), ( $DM$) and
$(D2M)$ in Nobakhtian [8].
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