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1. PRELIMINARIES
Let $E$ be a smooth Banach space with a norm $\Vert\cdot\Vert$ and let $C$ be a nonempty,

closed and convex subset of $E$ . We use the following bifunction $V(\cdot, \cdot)$ studied by
Alber [1], and Kamimura and Takahashi [11]. Let $V(\cdot, \cdot):E\cross Earrow[O, \infty)$ be
defined by $V(x, y)=\Vert x\Vert^{2}-2\langle x,$ $Jy\rangle+\Vert y\Vert^{2}$ for any $x,$ $y\in E$ , where $\langle\cdot,$ $\cdot\rangle$ stands for
the duality pair and $J$ is the normalized duality mapping. Note that the duality
mapping is single-valued in a smooth Banach space (see [21]). $\mathbb{R}om$ the definition
of $V(\cdot, \cdot)$ the following properties are trivial:
Lemma 1.1. $(a)$ For all $x,$ $y,$ $z\in E,$

$V(x, y)\leq V(x, y)+V(y, z)=V(x, z)-2\langle x-y, Jy-Jz\rangle.$

$(b)$ If a sequence $\{x_{n}\}\subset E$ satisfies $\lim_{narrow\infty}V(x_{n}, w)<\infty$ for some $w\in E,$

then $\{x_{n}\}$ is bounded.

Let $F(T)$ be the fixed points set of $T$ . Ibaraki and Takahashi defined a general-
ized nonexpansive mapping in a Banach space (see [10]).

Definition 1. $A$ mapping $T:Carrow C$ is said to be generalized nonexpansive if
$F(T)\neq\emptyset$ and $V(Tx,p)\leq V(x,p)$ for all $x\in C$ and $p\in F(T)$ .

Let $D$ be a nonempty subset of a Banach space $E.$ $A$ mapping $R$ : $Earrow D$ is
said to be sunny if for all $x\in E$ and $t\geq 0,$

$R(Rx+t(x-Rx))=Rx.$
A mapping $R$ : $Earrow D$ is called a retraction if $Rx=x$ for all $x\in D$ (see [6]).
It is known that a generalized nonexpansive and sunny retraction of $E$ onto $D$ is
uniquely determined if $E$ is a smooth and strictly convex Banach space (cf. [18]).
Ibaraki and Takahashi proved the following results in [10].
Lemma 1.2. (cf. [10]) Let $E$ be a reflexive, strictly convex and smooth Banach
space and let $T$ be a genemlized nonexpansive mapping from $E$ into itself. Then
there exists a sunny and genemlized nonexpansive retmction on $F(T)$ .

A generalized resolvent $J_{r}$ of a maximal monotone operator $B\subset E^{*}\cross E$ is
defined by $J_{r}=(I+rBJ)^{-1}$ for any real number $r>0$ . It is well-known that
$J_{r}$ : $Earrow E$ is single-valued if $E$ is reflexive, smooth and strictly convex (see [9]).
$\mathbb{R}om$ Lemma 1.1 (a), the following proposition is shown.
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Proposition 1.1. $(a)$ If a sunny retmction $R$ is genemlized nonexpansive, then $R$

satisfies
(1) $V(x, Rx)+V(Rx, y)=V(x,y)-2\langle x-Rx, JRx-Jy\rangle$

$\leq V(x, y)$ , for all $x,$ $y\in D.$

$(b)$ For each $r>0$ , a genemlized resolvent $J_{r}$ satisfies
(2) $V(x, J_{r}x)+V(J_{r}x,p)\leq V(x,p)$ for all $x\in E$ and $p\in F(J_{r})$ .

Remark 1. The property in Proposition 1.1 (b) means that $J_{r}$ is generalized
nonexpansive for any $r>0.$

2. MAIN RESULTS

By using the properties of generalized nonexpansive mappings, we show strong
convergence theorems for finding fixed points of a generalized nonexpansive map-
ping and zeroes of a maximal monotone operator.

Theorem 2.1. [14] Let $E$ be a reflexive, smooth and strictly convex Banach space,
and let $\{T_{n}\}_{n\in N}$ be a family of genemlized nonexpansive mappings. Suppose that
$\bigcap_{n\in N}F(T_{n})=F\neq\emptyset$ and that $R$ is a sunny and genemlized nonexpansive retraction
from $E$ to F. Let a sequence $\{x_{n}\}$ be defined as follows: For any $x_{1}=x\in E,$

$x_{n+1}=RT_{n}x_{n}$ for any $n\in \mathbb{N}.$

Then, $\{x_{n}\}$ converges strongly to a point $x^{*}$ in $F.$

Theorem 2.2. [14] Let $E$ be a reflexive, smooth and strictly convex Banach space.
Let $T:Earrow E$ be a generalized nonexpansive and let $B\subset E^{*}\cross E$ be a maximal
monotone opemtor. Suppose that $F(T)\cap(BJ)^{-1}(0)\neq\emptyset$ and that $R$ is a sunny
and genemlized nonempansive retmction from $E$ to $F=F(T)\cap(BJ)^{-1}(0)$ . Let an
itemtive sequence $\{x_{n}\}$ be defined as follows: For any $x=x_{1}\in E,$

$x_{n+1}=RTJ_{r_{n}}x_{n}$ for all $n\in \mathbb{N},$

where $\{r_{n}\}$ is a sequence of nonnegative real numbers. Then, the sequence $\{x_{n}\}$

converges strongly to a point $x^{*}$ in $F(T)\cap(BJ)^{-1}(0)$ .

Next we define a new pseudo-nonexpansive mapping which is called a $V$-strongly
nonexpansive mapping as follows ([14]).

Definition 2. [14] $A$ mapping $T:Carrow E$ is called $V$-strongly nonexpansive if
there exists a constant $\lambda>0$ such that

(3) $V(Tx,Ty)\leq V(x, y)-\lambda V((I-T)x, (I-T)y)$

for all $x,$ $y\in C$ , where $I$ is the identity mapping on $E$ . More explicitly, if (3) holds,
$T$ is said to be $V$-strongly nonexpansive with $\lambda.$

It is trivial that a $V$-strongly nonexpansive mapping is generalized nonexpansive
if $F(T)\neq\emptyset$ . In [16], Reich introduced a class of strongly nonexpansive mappings
which is defined with respect to the Bregmann distance $D(\cdot, \cdot)$ corresponding to a
convex continuous function $f$ in a reflexive Banach space $E$ . Let $S$ be a convex
subset of $E$ , and $T$ : $Sarrow S$ be a self-mapping of $S.$ $A$ point $p$ in the closure of
$S$ is said to be an asymptotically fixed point of $T$ if $S$ contains a sequence $\{x_{n}\}$

which converges weakly to $p$ and the sequence $\{x_{n}-Tx_{n}\}$ converges strongly to $0.$
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$\hat{F}(T)$ denotes the asymptotically fixed points set of $T$ . The definition of strongly
nonexpansive mappings in a reflexive Banach space $E$ is given as follows.
Definition 3. The Bregman distance corresponding to a function $f$ : $Earrow R$ is
defined by

$D(x, y)=f(x)-f(y)-f’(y)(x-y)$ ,
where $f$ is G\^ateaux differentiable and $f’(x)$ stands for the derivative of $f$ at the
point $x$ . We say that the mapping $T$ is strongly nonexpansive if $\hat{F}(T)\neq\emptyset$ and
(4) $D(p, Tx)\leq D(p, x)$ for all $p\in\hat{F}(T)$ and $x\in S,$

and if it holds that $\lim_{narrow\infty}D(Tx_{n}, x_{n})=0$ for a bounded sequence $\{x_{n}\}$ such that
$\lim_{narrow\infty}(D(p, x_{n})-D(p, Tx_{n}))=0$ for any $p\in\hat{F}(T)$ .

Taking the function $\Vert\cdot\Vert^{2}$ as the convex, continuous and G\^ateaux differentiable
function $f$ , we obtain the fact that the Bregmann distance $D(\cdot, \cdot)$ coincides with
$V(\cdot, \cdot)$ . Especially in a Hilbert space, $D(x, y)=V(x, y)=\Vert x-y\Vert^{2}$ We shall recall
some nonlinear mappings in a Hilbert space $H.$

Definition 4. Let $C$ be a nonempty, closed and convex subset of $H.$ $A$ mapping
$A:Carrow H$ is said to be $\alpha$-inverse strongly monotone if
(5) $\alpha\Vert Tx-Ty\Vert^{2}\leq\langle x-y,$ $Tx-Ty\rangle$

for all $x,$ $y\in C.$

If $A$ : $Harrow H$ is an $\alpha$-inverse monotone operator, then $T=I-A$ satisfies the
following inequality.

$\langle Ax-Ay, x-y\rangle\leq\Vert x-y\Vert^{2}-\alpha\Vert(I-A)x-(I-A)y\Vert^{2}$

Therefore, we obtain for an $\alpha$-inverse strongly monot $0$ne $A$ with $\alpha>0$ that $(I-A)$
is $V$-strongly nonexpansive with a constant $\alpha$ . Furthermore, we have the following
result.

Proposition 2.1. [14] In a Hilbert space $H$ , the followings hold.
$(a)A$ firmly nonexpansive mapping is $V$ -strongly nonexpansive with $\lambda=1.$

$(b)$ $AV$ -strongly nonexpansive mapping $T$ with $\hat{F}(T)\neq\emptyset$ is stmngly nonexpan-
sive.

In a Banach space, $V$-strongly nonexpansive mappings have the following prop-
erties.
Proposition 2.2. [14] In a smooth Banach space $E$ , the followings hold.

$(a)$ For $c\in(-1,1],$ $T=cI$ is $V$ -strongly nonexpansive. For $c=1,$ $T=I$ is
$V$ -strongly nonexpansive for any $\lambda>0$ . For $c\in(-1,1),$ $T=cI$ is $V$ -strongly
nonexpansive for any $\lambda\in(0, \frac{1+c}{1-c}].$

$(b)$ If $T$ is $V$ -stmngly nonexpansive with $\lambda$ , then for any $\alpha\in[-1,1]$ with $\alpha\neq 0,$

$\alpha T$ is also $V$ -strongly nonexpansive with $\alpha^{2}\lambda.$

$(c)$ If $T$ is $V$ -strongly nonexpansive with $\lambda\geq 1$ , then $A=I-T$ is $V$ -strongly
nonexpansive with $\lambda^{-1}.$

$(d)$ Suppose that $T$ is $V$ -strongly nonexpansive with $\lambda$ and that $\alpha\in[-1,1]$ satis-
fies $\alpha^{2}\lambda\geq 1$ . Then $(I-\alpha T)$ is $V$ -strongly nonexpansive with $(\alpha^{2}\lambda)^{-1}$ . Moreover,
if $T_{\alpha}=I-\alpha T$, then
(6) $V(T_{\alpha}x, T_{\alpha}y)\leq V(x, y)-\lambda^{-1}V(Tx, Ty)$ .
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It is obvious that a $V$-strongly nonexpansive mapping $T$ is nonexpansive in a
Hilbert space. However in Banach spaces, as we will show the following example,
a $V$-strongly nonexpansive mapping $T$ is not necessary nonexpansive even if $T$ is a
continuous mapping with a fixed point ([15]).

Example 1. [15] Let $1<p,$ $q<\infty$ such that $\frac{1}{p}+\frac{1}{q}=1$ . Let $E=l^{p}(\mathbb{R}\cross \mathbb{R})$ be
a real Banach space with a norm $\Vert\cdot||_{p}$ defined by

$\Vert x\Vert_{p}=\{|x_{1}|^{p}+|x_{2}|^{p}\}^{\frac{1}{p}}$ for all $x=(x_{1},x_{2})\in E.$

Then $E$ is smooth, and the normalized duality mapping $J$ is single-valued. $J$ is
given by

$Jx=\Vert x\Vert_{p}^{2-p}(x_{1}|x_{1}|^{p-2},x_{2}|x_{2}|^{p-2})\in l^{q}(\mathbb{R}\cross \mathbb{R})$ for all $x=(x_{1}, x_{2})\in E.$

Hence we have for $x,$ $y\in E$ that
$V(x, y)=\Vert x\Vert_{p}^{2}+\Vert y\Vert_{p}^{2}-2\langle x, Jy\rangle$

$=\Vert x\Vert_{p}^{2}+\Vert y\Vert_{p}^{2}-2\Vert y\Vert_{p}^{2-p}\{x_{1}y_{1}|y_{1}|^{p-2}+x_{2}y_{2}|y_{2}|^{p-2}\}.$

We define a mapping $T:Earrow E$ as follows:

$Tx=\{\begin{array}{l}x if 1x\Vert_{p}\leq 1,\frac{1}{\Vert x\Vert_{p}}x if \Vert x\Vert_{p}>1.\end{array}$

This example simultaneously give a fact that $T$ is not quasi-nonexpansive for
some $p$ . Let $p= \frac{3}{2},$ $x=(O, 1)\in F(T)$ and $y=(O.2,0.95)\in E$ , we have that

$\Vert Tx-Ty\Vert_{p}^{p}=\Vert y\Vert_{p}^{-p} \{(0.2) B3+(\Vert y\Vert_{p}-0.95)^{3}z\}$

$>(0.2)^{\#}+(0.05)^{\S}=\Vert x-y\Vert_{p}^{p}.$

Finally, we give a convergence theorem for finding common zero points of a
maximal monotone operator and a $V$-strongly nonexpansive mappings.

Theorem 2.3. Let $E$ be a reflexive, smooth and strictly convex Banach space.
Suppose that the duality mapping $J$ of $E$ is weakly sequentially continuous. Let $C.$

be a nonempty, closed and convex subset of E. Let $B$ $:-E^{*}arrow 2^{E}$ be a maximal
monotone opemtor and let $J_{r_{n}}=(I+r_{n}BJ)^{-1}$ be a genemlized resolvent of $B$ for
a sequence $\{r_{n}\}\subset(0, \infty)$ . Suppose that $T:Carrow E$ is a $V$ -stmngly nonexpansive
mapping with $\lambda\geq 1$ such that $C_{0}=T^{-1}(0)\cap(BJ)^{-1}(0)\neq\emptyset$ and that $R_{C}$ : $Earrow C$

is a sunny and genemlized nonexpansive retmction. For an $\alpha\in[-1,1]$ such that
$\alpha^{2}\lambda\geq 1$ , let an itemtive sequence $\{x_{n}\}\subset C$ be defined as follows: for any $x=x_{1}\in$

$C$ and $n\in \mathbb{N},$

(7) $\{\begin{array}{l}y_{n}=R_{C}(I-\alpha T)x_{n},x_{n+1}=R_{C}(\beta_{n}x+(1-\beta_{n})J_{r_{n}}y_{n}) ,\end{array}$
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where $\{\beta_{n}\}\subset[0,1]$ and $\{r_{n}\}\subset(0, \infty)$ satisfy that

(8)
$\sum_{n\geq 1}\beta_{n}<\infty$

and $\lim_{narrow}\inf_{\infty}r_{n}>0.$

Then, there exists an element $u\in C_{0}$ such that
(9) $x_{n}arrow u$ and $R_{C_{0}}(x_{n})arrow u.$
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