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ABSTRACT. We $co$nsider the Rankin-Slebrg integral which represents degree 8
tensor product $L$-functions for quaternion unitary groups and $GL_{2}$ . Using this
integral representation, we prove the algebriacity of special values,

1. SET UP

Let $F$ be a number field and $E$ a quadratic extension. For each $n\in \mathbb{N}_{j}$ we define
the similitude unitary group $G_{n}=GU(n, n)$ :

$G_{n}(F)=\{g\in GL(2n, E)|^{t}g^{\sigma}J_{n}g=\lambda_{n}(g)J_{n}, \lambda_{n}(g)\in F^{\cross}\}$

where $\sigma$ is non-trivial element in Gal $(E/F)$ and

$J_{n}=[Matrix].$

Let $E\subset D$ be a quaternion algebra over $F$ . For $x\in D$ , wc mean the canonical
involution by $\overline{x}$ . For a matrix $A=(a_{ij})$ with cntries in $D$ , we denote thc matrix
$(\overline{a_{ij}})$ by $\overline{A}.$

Let us define the quatcrnion similitude unitary group $H_{D}$ by

$H_{D}(F)=\{g\in GL(2, D)|t_{\overline{g}}[Matrix] g=\lambda(g)[Matrix] 1\lambda(g)\in F^{\cross}\}.$

When $D\simeq M_{2}(F)$ , we have an isomorphism

$H_{D}(F)\simeq GSp(4, F)=G_{2}(F)\cap GL(4, F)$ .

We note that we can take $\epsilon\in F^{\cross}$ such that

$D\simeq\{[Matrix]|a, b\in E\}.$

Thus we may suppose that $D\subset Mat_{2\cross 2}(E)$ , so that we can consider $H_{D}$ as a
subgroup of $GL(4, E)$ . In fact, $H_{D}$ can be embedded int$oG_{2}$ , and we fix it Lct
us define a subgroup $H$ of $G_{1}\cross G_{2}$ by

$H=\{(g_{1}, h_{2})\in G_{1}\cross H_{D}|\lambda_{1}(g_{1})=\lambda_{2}(h_{2})\},$

and we regard $H$ as a subgroup of $G_{3}$ by the following embedding

$H\ni([Matrix], [Matrix])\hookrightarrow[Matrix]\in G_{3}.$
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2. GLOBAL INTEGRAL

Let $P=MN$ denote the Siegel parabolic subgroup of $G_{3}$ where

$M(F)=\{(\begin{array}{ll}g 00 \lambda\cdot(tg^{\sigma})^{-1}\end{array})|g\in GL_{3}(E), \lambda\in F^{\cross}\},$

$N(F)=\{(\begin{array}{ll}1_{3} X0 1_{3}\end{array})|tX^{\sigma}=X\in Mat_{3\cross 3}(E)\}.$

Let $v$ be a character of $\mathbb{A}_{E}^{\cross}/E^{\cross}$ and $\tau$ a character of $\mathbb{A}_{F}^{\cross}/F^{\cross}$ Then we define a
character $v\otimes\tau$ of $P(\mathbb{A}_{F})$ by

$(\nu\otimes\tau)[(\begin{array}{ll}g 00 \lambda\cdot(tg^{\sigma})^{-1}\end{array})(\begin{array}{ll}1_{3} X0 1_{3}\end{array})]=v(\det g)\cdot\tau(\lambda)$ .

Let $\delta_{P}$ denote the modulus character of $P(\mathbb{A}_{F})$ . Then let $I(s, v\otimes\tau)$ denote the nor-
malized degenerate principal series representation $Ind_{P(A_{F})}^{G(A_{F})}((\nu\otimes\tau)\cdot\delta_{P}^{s})$ of $G(\mathbb{A}_{F})$ .
Here we employ the normalized induction so that $I(s, \nu\otimes\tau)$ is unitarizable when
${\rm Re}(s)=0$ . Then for a holomorphic section $f^{(s)}$ of $I(s, \nu\otimes\tau)$ we have the Siegel
Eisenstein series defined by

$E(g, f^{(s)})= \sum_{\gamma\in P(F)\backslash G(F)}f^{(s)}(\gamma g)$
.

This series is absolutely convergent in the right half plane ${\rm Re}(s)> \frac{1}{2}$ (Langlands
[5] $)$ .

Let $\sigma$ be an irreducible cuspidal representation of $GL_{2}(\mathbb{A}_{F})$ and let $\chi$ be a char-
acter of $\mathbb{A}_{E}^{\cross}/E^{\cross}$ such that

(2.0.1) $\chi|_{A_{F}^{\cross}}=\omega_{\sigma}$

where $\omega_{\sigma}$ denotes the central character of $\sigma$ . Since we have the isomorphism

$G_{1}(F)\simeq (GL(2, F)\cross E^{\cross})/\{(a, a^{-1})|a\in F^{\cross}\},$

we can regard $\sigma\otimes\chi$ as the irreducible cuspidal automorphic representation of
$G_{1}(\mathbb{A}_{F})$ and we denote it by $\pi$ . Let $V_{\pi}$ be the space of automorphic forms for $\pi.$

Let $(\Pi, V_{\Pi})$ be an irreducible cuspidal automorphic representation of $H_{D}(\mathbb{A}_{F})$ .
Let $\omega\Pi$ denote the central character of $\Pi$ . Then we study a global integral defined
by

(2.0.2) $Z(f^{(s)}, \phi, \Phi)=\int_{Z(A_{F})H(F)\backslash H(A_{F})}E(f^{(s)}, h)\Psi(g_{1})\Phi(h_{2})dh$

for $f^{(s)}\in I(s, \nu\otimes\tau),$ $\Psi\in V_{\pi}$ and $\Phi\in V_{\Pi}$ , where $Z=Z_{G}\cap H,$ $Z_{G_{3}}$ denotes the
center of $G_{3}$ , and $h=(g_{1}, h_{2})\in H$ . Here in order for the integral (2.0.2) to be
well-defined, we assume that

$\omega_{\Pi}\cdot\omega_{\sigma}\cdot\tau^{2}\cdot(v|_{A_{F}^{\cross}})^{3}=1.$

Proposition 2.1. For $Re(s)\gg 0$ , we have

$Z(f^{(s)}, \Psi, \Phi)=\int_{S(A_{F})\backslash H(A_{F})}f^{(s)}(\eta h)W_{\Psi}(g_{1})B_{\Phi}(h_{2})dh$
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where $B_{\Phi}$ is the Bessel model of $\Phi$ with respect to a non-split torus and $W_{\Psi}$ is
the Whittaker model of $\Psi$ , and $S$ is defined as follows: Let us define the Bessel
subgroups $R$ of $H_{D}$ by

$R(F)=\{(\begin{array}{llll}a^{\sigma} 0 0 00 a 0 00 0 a^{\sigma} 00 0 0 a\end{array})(\begin{array}{llll}1 0 \epsilon b c0 1 c^{\sigma} b0 0 1 00 0 0 1\end{array})\in G_{2}(F)|a\in E^{\cross},$ $b\in F,$ $c\in E\}.$

Then a subgroup $S$ of $H$ is defined by

$S=\{(\varphi(r), r)|r\in R\}$

where we denote

$\varphi[(\begin{array}{llll}a^{\sigma} 0 0 00 a 0 00 0 a^{\sigma} 00 0 0 a\end{array})(\begin{array}{llll}1 0 \epsilon b c0 1 c^{\sigma} b0 0 1 00 0 0 1\end{array})]=(\begin{array}{ll}a 00 a\end{array})(\begin{array}{ll}1 -b0 1\end{array}).$

Remark. Our integral representation is a generalization to the similitude quater-
nion unitary case of Saha’s interpretation [11] of Furusawa’s integral [2]. Note that
we unfold the Rankin-Selberg integral involving the Siegel Eisenstein series on $G_{3}$

directly without recourse to the Klingen Eisenstein series on $G_{2}$ . Thus even when
$H_{D}\simeq$ GSp(4), our local integral is totally different from Saha’s.

In order for our investigation to be non-vacuous, we assume that
$\Pi$ has a Bessel model of non-split type.

We note that by the result of Li [6], any irreducible cuspidal automorphic repre-
sentation of $H_{D}(\mathbb{A})$ has a Bessel model of this type if $D$ does not split. Moreover
if $D\simeq Mat_{2\cross 2}(F)$ , i.e., $H_{D}\simeq$ GSp(4), $\Pi$ has a Whittaker model or a Bessel model
of some type. If $\Pi$ is associated to a holomorphic cusp form, it is non-generic, and
Pitale-Schmidt [8] shows that it does not have a Bessel model of split type. Thus
such automorphic representations satisfy the above assumption.

The uniqueness of Bessel model is expected for any irreducible admissible rep-
resentations of $H_{D}(F_{v})$ . However as far as the author knows, there is no reference
which proves the uniqueness in general. For example, for unramified representa-
tions of GSp$(4, F_{v})$ , Sugano [12] proves the uniqueness. Then by the uniqueness of
Bessel model and Whittaker model, we obtain

$Z(s)= \prod_{v\not\in S}Z_{v}(W_{\Psi,v}, B_{\Phi,v}, f_{v}^{(s)})\cdot Z_{S}(W_{\Psi,S}, B_{\Phi,S}, f_{S}^{(s)})$
.

Here $S$ is a finite set of places such that any place $v\not\in S$ is finite and satisfies

(1) 2 does not divide $v$

(2) $E_{v}/F_{v}$ is unramified quadratic extension or $E_{v}\simeq F_{v}\oplus F_{v}$

(3) $\Pi_{v},$ $\pi_{v},$ $\nu_{v},$ $\tau_{v}$ are unramified.
(4) $D(F_{v})\simeq Mat_{2\cross 2}(F_{v})$ .

Then Furusawa and Ichino computed unramified local integrals explicitly.
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Proposition 2.2 (Furusawa-Ichino, Appendix in [7]). Suppose $v\not\in S.$ For nor-
malized spherical vectors $W_{v},$ $B_{v}$ and $f_{v}^{(s)}$ , we have

$Z_{v}(s)= \prod_{i=1}^{3}L(6s+i, \nu|_{F_{v}^{x}}\cdot\epsilon_{E_{v}/F_{v}}^{i+3})^{-1}\cdot L(3s+\frac{1}{2}, \Pi x\sigma\cross(\nu|_{F^{\cross}})^{2}\cross\tau)$

where we normalize the measure on $H(F_{v})$ suitably, and $\epsilon_{E_{v}/F_{v}}$ is the quadratic
character of $F_{v}^{x}$ corresponding to $E_{v}$ via local class field theory.

3. MAIN THEOREM

Assume that
$H_{D}(\mathbb{R})\simeq$ GSp $(4, \mathbb{R})$ and $F=\mathbb{Q}.$

We possibly have $D\simeq Mat_{2\cross 2}(\mathbb{Q})$ . We suppose that the central characters of $\Pi$

and $\pi$ are trivial.
Suppose that the archimedean component $II_{\infty}$ of $\Pi$ is the holomorphic discrete

series of PGSp $(4, \mathbb{R})$ with Harish-Chandra parameter $\ell(e_{1}+e_{2})$ with even integer
$\ell$ where we define

$e_{i}((t_{1} t_{2} t_{1}^{-1} t_{2}^{-1}))=t_{i} t_{i}\in \mathbb{G}_{m}.$

Suppose that $\sigma$ is a cuspidal automorphic representation associated to a new form
of weight $\ell$ . Then we consider an automorphic form $\Psi\in V_{\sigma}$ as the automorphic
form on $G_{1}(\mathbb{A})$ by extending it trivially, i.e.

$\Psi(ag)=\Psi(g)$

for $a\in \mathbb{A}_{E}^{\cross}$ and $g\in GL(2, A_{\mathbb{Q}})$ .

Theorem 3.1. Suppose that $\ell>6$ . Let $\Phi\in V_{\Pi}$ and $\Psi\in V_{\sigma}$ be arithmetic automor-
phic forms in the sense ofHarris [4]. Then for an integerm such that $2<m \leq\frac{\ell}{2}-1,$

we have

$\frac{L(m,\Pi\cross\sigma)}{\pi^{4m}\langle\Psi\otimes\Phi,\Psi\otimes\Phi\rangle}\in\overline{\mathbb{Q}}$

and

$( \frac{L(m,\Pi\cross\sigma)}{\pi^{4m}\langle\Psi\otimes\Phi,\Psi\otimes\Phi\rangle})^{\tau}=\frac{L(m,\Pi^{\tau}\cross\sigma^{\tau})}{\pi^{4m}\langle\Psi^{\tau}\otimes\Phi^{\tau},\Psi^{\tau}\otimes\Phi^{\tau}\rangle}$

for all $\tau\in$ Gal $(\overline{\mathbb{Q}}/\mathbb{Q})$ . Here we define

$\langle\Psi\otimes\Phi, \Psi\otimes\Phi\rangle=\int_{Z_{H}(A_{Q})H(\mathbb{Q})\backslash H(A_{Q})}|\Psi(g_{1})\Phi(h_{2})|^{2}dh$

where we denote $h=(g_{1}, h_{2})\in H(A_{\mathbb{Q}})$ , and $dh$ is the Tamagawa measure on
$H(\mathbb{A}_{\mathbb{Q}})$ .

We can prove this by a similar way with Garrett-Harris [3]. For a detail of the
proof, we refer to [7].
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3.1. Period Relation. Let $(\Pi, V_{\Pi})$ be an irreducible cuspidal automorphic repre-
sentation of GSp $(4, \mathbb{A}_{\mathbb{Q}})$ as in Theorem 3.1. Further we assume that $\Pi$ is tempered
and non-endoscopic. We suppose that there exists an irreducible cuspidal auto-
morphic representation $(\Pi_{D}, V_{\Pi_{D}})$ of $H_{D}(\mathbb{A}_{\mathbb{Q}})$ such that for every place $v$ such that
$H_{D}(\mathbb{Q}_{v})\simeq GSp(4, \mathbb{Q}_{v})$ ,

$\Pi_{v}\simeq\Pi_{D,v}.$

Then $\Pi_{D}$ satisfies the condition in Theorem 3.1. Comparing the equations in The-
orem 3.1 for $\Pi$ and $\Pi_{D}$ , we obtain the following relation.

Corollary 3.1. For any arithmetic forms $\Phi\in V_{\Pi}$ and $\Phi_{D}\in V_{\Pi_{D}}$ , we have
$\langle\Phi, \Phi\rangle/\langle\Phi_{D}, \Phi_{D}\rangle\in\overline{\mathbb{Q}}$

and
$(\langle\Phi, \Phi\rangle/\langle\Phi_{D}, \Phi_{D}\rangle)^{\tau}=\langle\Phi^{\tau}, \Phi^{\tau}\rangle/\langle\Phi_{D}^{\tau}, \Phi_{D}^{\mathcal{T}}\rangle$

for any $\tau\in$ Gal $(\overline{\mathbb{Q}}/\mathbb{Q})$ .
Here we define the pairing $\langle\Phi_{D},$ $\Phi_{D}\rangle$ by

$\langle\Phi, \Phi\rangle=\int_{Z_{H_{D}}(\mathbb{A}_{Q})H_{D}(\mathbb{Q})\backslash H_{D}(\mathbb{A}_{Q})}|\Phi_{D}(h)|^{2}dh$

where $dh$ is the Tamagawa measure on $H_{D}(\mathbb{A}_{\mathbb{Q}})$ , and we define $\langle\Phi,$ $\Phi\rangle$ similarly.

3.2. Remarks on Tbeorem 3.1.

3.2.1. critical point. The critical points in Theorem 3.1 does not cover all critical
points on the right half plane ${\rm Re}(s)>0$ . Indeed the critical points for $s= \frac{1}{2}$ and

$\frac{1}{6}$ are not included due to the analytic property of Eisenstein series.

3.2.2. Split case. When $H_{D}\simeq$ GSp(4), similar results are proved by many people.
Furusawa [2] discovered an integral representation of this $L$-function and he proved
the algebriacity at the rightmost critical point for Siegel cusp forms and elliptic
cusp form of full level. Pitale-Schmidt [9] extended his result with respect to the
level of elliptic cusp forms, and Saha [10] extended with respect to both of levels of
Siegel cusp forms and elliptic cusp form. Saha [11] also proved the algebraicity for
other critical points combining the pull-back formula and differential operators. On
the other hand, B\"ocherer-Heim [1] showed the algebraicity at all critical points in
the full modular balanced mixed weight case using Heim’s integral representation.

3.2.3. Yoshida’s Conjecture. When the irreducible cuspidal automorphic represen-
tation of GSp $(4, \mathbb{A}_{\mathbb{Q}})$ is associated to a Siegel cusp form, our result is compatible
with Yoshida’s calculation [13] on Deligne peirod.
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