ON SPECIAL VALUES OF TENSOR PRODUCT L－FUNCTIONS OF AN INNER FORM OF GSP（4）AND GL（2）

KAZUKI MORIMOTO

（GRADUATE SCHOOL OF SCIENCE，OSAKA CITY UNIVERSITY）

Abstract

We consider the Rankin－Slebrg integral which represents degree 8 tensor product L－functions for quaternion unitary groups and GL_{2} ．Using this integral representation，we prove the algebriacity of special values．

1．SET UP

Let F be a number field and E a quadratic extension．For each $n \in \mathbb{N}$ ，we define the similitude unitary group $G_{n}=\mathrm{GU}(n, n)$ ：

$$
G_{n}(F)=\left\{\left.g \in \mathrm{GL}(2 n, E)\right|^{t} g^{\sigma} J_{n} g=\lambda_{n}(g) J_{n}, \lambda_{n}(g) \in F^{\times}\right\}
$$

where σ is non－trivial element in $\operatorname{Gal}(E / F)$ and

$$
J_{n}=\left(\begin{array}{cc}
0_{n} & 1_{n} \\
-1_{n} & 0_{n}
\end{array}\right) .
$$

Let $E \subset D$ be a quaternion algebra over F ．For $x \in D$ ，we mean the canonical involution by \bar{x} ．For a matrix $A=\left(a_{i j}\right)$ with entries in D ，we denote the matrix $\left(\overline{a_{i j}}\right)$ by \bar{A} ．

Let us define the quaternion similitude unitary group H_{D} by

$$
H_{D}(F)=\left\{\left.g \in \mathrm{GL}(2, D)\right|^{t} \bar{g}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) g=\lambda(g)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \lambda(g) \in F^{\times}\right\} .
$$

When $D \simeq M_{2}(F)$ ，we have an isomorphism

$$
H_{D}(F) \simeq \operatorname{GSp}(4, F)=G_{2}(F) \cap \mathrm{GL}(4, F) .
$$

We note that we can take $\varepsilon \in F^{\times}$such that

$$
D \simeq\left\{\left.\left(\begin{array}{cc}
a & \varepsilon b \\
b^{\sigma} & a^{\sigma}
\end{array}\right) \right\rvert\, a, b \in E\right\} .
$$

Thus we may suppose that $D \subset \operatorname{Mat}_{2 \times 2}(E)$ ，so that we can consider H_{D} as a subgroup of $\mathrm{GL}(4, E)$ ．In fact，H_{D} can be embedded into G_{2} ，and we fix it ．Let us define a subgroup H of $G_{1} \times G_{2}$ by

$$
H=\left\{\left(g_{1}, h_{2}\right) \in G_{1} \times H_{D} \mid \lambda_{1}\left(g_{1}\right)=\lambda_{2}\left(h_{2}\right)\right\}
$$

and we regard H as a subgroup of G_{3} by the following embedding

$$
H \ni\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right),\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)\right) \hookrightarrow\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & A & 0 & B \\
c & 0 & d & 0 \\
0 & C & 0 & D
\end{array}\right) \in G_{3}
$$

2. Global integral

Let $P=M N$ denote the Siegel parabolic subgroup of G_{3} where

$$
\begin{aligned}
& M(F)=\left\{\left.\left(\begin{array}{cc}
g & 0 \\
0 & \lambda \cdot\left({ }^{t} g^{\sigma}\right)^{-1}
\end{array}\right) \right\rvert\, g \in \mathrm{GL}_{3}(E), \lambda \in F^{\times}\right\}, \\
& N(F)=\left\{\left.\left(\begin{array}{cc}
1_{3} & X \\
0 & 1_{3}
\end{array}\right) \right\rvert\,{ }^{t} X^{\sigma}=X \in \operatorname{Mat}_{3 \times 3}(E)\right\} .
\end{aligned}
$$

Let ν be a character of $\mathbb{A}_{E}^{\times} / E^{\times}$and τ a character of $\mathbb{A}_{F}^{\times} / F^{\times}$. Then we define a character $\nu \otimes \tau$ of $P\left(\mathbb{A}_{F}\right)$ by

$$
(\nu \otimes \tau)\left[\left(\begin{array}{cc}
g & 0 \\
0 & \lambda \cdot\left({ }^{t} g^{\sigma}\right)^{-1}
\end{array}\right)\left(\begin{array}{cc}
1_{3} & X \\
0 & 1_{3}
\end{array}\right)\right]=\nu(\operatorname{det} g) \cdot \tau(\lambda) .
$$

Let δ_{P} denote the modulus character of $P\left(\mathbb{A}_{F}\right)$. Then let $I(s, \nu \otimes \tau)$ denote the normalized degenerate principal series representation $\left.\operatorname{Ind}_{P\left(\mathbb{A}_{F}\right)}^{G\left(\mathbb{A}_{F}\right)}(\nu \otimes \tau) \cdot \delta_{P}^{s}\right)$ of $G\left(\mathbb{A}_{F}\right)$. Here we employ the normalized induction so that $I(s, \nu \otimes \tau)$ is unitarizable when $\operatorname{Re}(s)=0$. Then for a holomorphic section $f^{(s)}$ of $I(s, \nu \otimes \tau)$ we have the Siegel Eisenstein series defined by

$$
E\left(g, f^{(s)}\right)=\sum_{\gamma \in P(F) \backslash G(F)} f^{(s)}(\gamma g) .
$$

This series is absolutely convergent in the right half plane $\operatorname{Re}(s)>\frac{1}{2}$ (Langlands [5]).

Let σ be an irreducible cuspidal representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$ and let χ be a character of $\mathbb{A}_{E}^{\times} / E^{\times}$such that

$$
\begin{equation*}
\left.\chi\right|_{\mathbb{A}_{F}^{\times}}=\omega_{\sigma} \tag{2.0.1}
\end{equation*}
$$

where ω_{σ} denotes the central character of σ. Since we have the isomorphism

$$
G_{1}(F) \simeq\left(\mathrm{GL}(2, F) \times E^{\times}\right) /\left\{\left(a, a^{-1}\right) \mid a \in F^{\times}\right\}
$$

we can regard $\sigma \boxtimes \chi$ as the irreducible cuspidal automorphic representation of $G_{1}\left(\mathbb{A}_{F}\right)$ and we denote it by π. Let V_{π} be the space of automorphic forms for π.

Let (Π, V_{Π}) be an irreducible cuspidal automorphic representation of $H_{D}\left(\mathbb{A}_{F}\right)$. Let ω_{Π} denote the central character of Π. Then we study a global integral defined by

$$
\begin{equation*}
Z\left(f^{(s)}, \phi, \Phi\right)=\int_{Z\left(\mathbb{A}_{F}\right) H(F) \backslash H\left(\mathbb{A}_{F}\right)} E\left(f^{(s)}, h\right) \Psi\left(g_{1}\right) \Phi\left(h_{2}\right) d h \tag{2.0.2}
\end{equation*}
$$

for $f^{(s)} \in I(s, \nu \otimes \tau), \Psi \in V_{\pi}$ and $\Phi \in V_{\Pi}$, where $Z=Z_{G} \cap H, Z_{G_{3}}$ denotes the center of G_{3}, and $h=\left(g_{1}, h_{2}\right) \in H$. Here in order for the integral (2.0.2) to be well-defined, we assume that

$$
\omega_{\Pi} \cdot \omega_{\sigma} \cdot \tau^{2} \cdot\left(\left.\nu\right|_{\mathbb{A}_{F}^{\times}}\right)^{3}=1
$$

Proposition 2.1. For $\operatorname{Re}(s) \gg 0$, we have

$$
Z\left(f^{(s)}, \Psi, \Phi\right)=\int_{S\left(\mathbb{A}_{F}\right) \backslash H\left(\mathbb{A}_{F}\right)} f^{(s)}(\eta h) W_{\Psi}\left(g_{1}\right) B_{\Phi}\left(h_{2}\right) d h
$$

where B_{Φ} is the Bessel model of Φ with respect to a non-split torus and W_{Ψ} is the Whittaker model of Ψ, and S is defined as follows: Let us define the Bessel subgroups R of H_{D} by

$$
R(F)=\left\{\left.\left(\begin{array}{cccc}
a^{\sigma} & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a^{\sigma} & 0 \\
0 & 0 & 0 & a
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \varepsilon b & c \\
0 & 1 & c^{\sigma} & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \in G_{2}(F) \right\rvert\, a \in E^{\times}, b \in F, c \in E\right\}
$$

Then a subgroup S of H is defined by

$$
S=\{(\varphi(r), r) \mid r \in R\}
$$

where we denote

$$
\varphi\left[\left(\begin{array}{cccc}
a^{\sigma} & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a^{\sigma} & 0 \\
0 & 0 & 0 & a
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & \varepsilon b & c \\
0 & 1 & c^{\sigma} & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\right]=\left(\begin{array}{cc}
a & 0 \\
0 & a
\end{array}\right)\left(\begin{array}{cc}
1 & -b \\
0 & 1
\end{array}\right) .
$$

Remark. Our integral representation is a generalization to the similitude quaternion unitary case of Saha's interpretation [11] of Furusawa's integral [2]. Note that we unfold the Rankin-Selberg integral involving the Siegel Eisenstein series on G_{3} directly without recourse to the Klingen Eisenstein series on G_{2}. Thus even when $H_{D} \simeq \operatorname{GSp}(4)$, our local integral is totally different from Saha's.

In order for our investigation to be non-vacuous, we assume that Π has a Bessel model of non-split type.
We note that by the result of Li [6], any irreducible cuspidal automorphic representation of $H_{D}(\mathbb{A})$ has a Bessel model of this type if D does not split. Moreover if $D \simeq \operatorname{Mat}_{2 \times 2}(F)$, i.e., $H_{D} \simeq \operatorname{GSp}(4)$, Π has a Whittaker model or a Bessel model of some type. If Π is associated to a holomorphic cusp form, it is non-generic, and Pitale-Schmidt [8] shows that it does not have a Bessel model of split type. Thus such automorphic representations satisfy the above assumption.

The uniqueness of Bessel model is expected for any irreducible admissible representations of $H_{D}\left(F_{v}\right)$. However as far as the author knows, there is no reference which proves the uniqueness in general. For example, for unramified representations of $\operatorname{GSp}\left(4, F_{v}\right)$, Sugano [12] proves the uniqueness. Then by the uniqueness of Bessel model and Whittaker model, we obtain

$$
Z(s)=\prod_{v \notin S} Z_{v}\left(W_{\Psi, v}, B_{\Phi, v}, f_{v}^{(s)}\right) \cdot Z_{S}\left(W_{\Psi, S}, B_{\Phi, S}, f_{S}^{(s)}\right) .
$$

Here S is a finite set of places such that any place $v \notin S$ is finite and satisfies
(1) 2 does not divide v
(2) E_{v} / F_{v} is unramified quadratic extension or $E_{v} \simeq F_{v} \oplus F_{v}$
(3) $\Pi_{v}, \pi_{v}, \nu_{v}, \tau_{v}$ are unramified.
(4) $D\left(F_{v}\right) \simeq \operatorname{Mat}_{2 \times 2}\left(F_{v}\right)$.

Then Furusawa and Ichino computed unramified local integrals explicitly.

Proposition 2.2 (Furusawa-Ichino, Appendix in [7]). Suppose $v \notin S$. For normalized spherical vectors W_{v}, B_{v} and $f_{v}^{(s)}$, we have

$$
Z_{v}(s)=\prod_{i=1}^{3} L\left(6 s+i,\left.\nu\right|_{F_{v}^{\times}} \cdot \varepsilon_{E_{v} / F_{v}}^{i+3}\right)^{-1} \cdot L\left(3 s+\frac{1}{2}, \Pi \times \sigma \times\left(\left.\nu\right|_{F^{\times}}\right)^{2} \times \tau\right)
$$

where we normalize the measure on $H\left(F_{v}\right)$ suitably, and $\varepsilon_{E_{v} / F_{v}}$ is the quadratic character of $F_{v}{ }^{\times}$corresponding to E_{v} via local class field theory.

3. Main Theorem

Assume that

$$
H_{D}(\mathbb{R}) \simeq \operatorname{GSp}(4, \mathbb{R}) \quad \text { and } \quad F=\mathbb{Q}
$$

We possibly have $D \simeq \operatorname{Mat}_{2 \times 2}(\mathbb{Q})$. We suppose that the central characters of II and π are trivial.

Suppose that the archimedean component I_{∞} of Π is the holomorphic discrete series of $\operatorname{PGSp}(4, \mathbb{R})$ with Harish-Chandra parameter $\ell\left(e_{1}+e_{2}\right)$ with even integer ℓ where we define

$$
e_{i}\left(\left(\begin{array}{cccc}
t_{1} & & & \\
& t_{2} & & \\
& & t_{1}^{-1} & \\
& & & t_{2}^{-1}
\end{array}\right)\right)=t_{i} \quad t_{i} \in \mathbb{G}_{m}
$$

Suppose that σ is a cuspidal automorphic representation associated to a new form of weight ℓ. Then we consider an automorphic form $\Psi \in V_{\sigma}$ as the automorphic form on $G_{1}(\mathbb{A})$ by extending it trivially, i.e.

$$
\Psi(a g)=\Psi(g)
$$

for $a \in \mathbb{A}_{E}^{\times}$and $g \in \mathrm{GL}\left(2, \mathbb{A}_{\mathbb{Q}}\right)$.
Theorem 3.1. Suppose that $\ell>6$. Let $\Phi \in V_{\Pi}$ and $\Psi \in V_{\sigma}$ be arithmetic automorphic forms in the sense of Harris [4]. Then for an integer m such that $2<m \leq \frac{\ell}{2}-1$, we have

$$
\frac{L(m, \Pi \times \sigma)}{\pi^{4 m}\langle\Psi \otimes \Phi, \Psi \otimes \Phi\rangle} \in \overline{\mathbb{Q}}
$$

and

$$
\left(\frac{L(m, \Pi \times \sigma)}{\pi^{4 m}\langle\Psi \otimes \Phi, \Psi \otimes \Phi\rangle}\right)^{\tau}=\frac{L\left(m, \Pi^{\tau} \times \sigma^{\tau}\right)}{\pi^{4 m}\left\langle\Psi^{\tau} \otimes \Phi^{\tau}, \Psi^{\tau} \otimes \Phi^{\tau}\right\rangle}
$$

for all $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. Here we define

$$
\langle\Psi \otimes \Phi, \Psi \otimes \Phi\rangle=\int_{Z_{H}\left(\mathrm{~A}_{\mathbb{Q}}\right) H(\mathbb{Q}) \backslash H\left(\mathrm{~A}_{\mathbb{Q}}\right)}\left|\Psi\left(g_{1}\right) \Phi\left(h_{2}\right)\right|^{2} d h
$$

where we denote $h=\left(g_{1}, h_{2}\right) \in H\left(\mathbb{A}_{\mathbb{Q}}\right)$, and $d h$ is the Tamagawa measure on $H\left(\mathbb{A}_{\mathbb{Q}}\right)$.

We can prove this by a similar way with Garrett-Harris [3]. For a detail of the proof, we refer to $[7]$.
3.1. Period Relation. Let (II, V_{Π}) be an irreducible cuspidal automorphic representation of $\operatorname{GSp}\left(4, \mathbb{A}_{\mathbb{Q}}\right)$ as in Theorem 3.1. Further we assume that Π is tempered and non-endoscopic. We suppose that there exists an irreducible cuspidal automorphic representation $\left(\Pi_{D}, V_{\Pi_{D}}\right)$ of $H_{D}\left(\mathbb{A}_{\mathbb{Q}}\right)$ such that for every place v such that $H_{D}\left(\mathbb{Q}_{v}\right) \simeq \operatorname{GSp}\left(4, \mathbb{Q}_{v}\right)$,

$$
\Pi_{v} \simeq \Pi_{D, v}
$$

Then Π_{D} satisfies the condition in Theorem 3.1. Comparing the equations in Theorem 3.1 for Π and Π_{D}, we obtain the following relation.

Corollary 3.1. For any arithmetic forms $\Phi \in V_{\Pi}$ and $\Phi_{D} \in V_{\Pi_{D}}$, we have

$$
\langle\Phi, \Phi\rangle /\left\langle\Phi_{D}, \Phi_{D}\right\rangle \in \overline{\mathbb{Q}}
$$

and

$$
\left(\langle\Phi, \Phi\rangle /\left\langle\Phi_{D}, \Phi_{D}\right\rangle\right)^{\tau}=\left\langle\Phi^{\tau}, \Phi^{\tau}\right\rangle /\left\langle\Phi_{D}^{\tau}, \Phi_{D}^{\tau}\right\rangle
$$

for any $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
Here we define the pairing $\left\langle\Phi_{D}, \Phi_{D}\right\rangle$ by

$$
\langle\Phi, \Phi\rangle=\int_{Z_{H_{D}}\left(\mathbb{A}_{\mathbb{Q}}\right) H_{D}(\mathbb{Q}) \backslash H_{D}\left(\mathbb{A}_{\mathscr{Q}}\right)}\left|\Phi_{D}(h)\right|^{2} d h
$$

where $d h$ is the Tamagawa measure on $H_{D}\left(\mathbb{A}_{\mathbb{Q}}\right)$, and we define $\langle\Phi, \Phi\rangle$ similarly.

3.2. Remarks on Theorem 3.1.

3.2.1. critical point. The critical points in Theorem 3.1 does not cover all critical points on the right half plane $\operatorname{Re}(s)>0$. Indeed the critical points for $s=\frac{1}{2}$ and $\frac{1}{6}$ are not included due to the analytic property of Eisenstein series.
3.2.2. Split case. When $H_{D} \simeq \operatorname{GSp}(4)$, similar results are proved by many people. Furusawa [2] discovered an integral representation of this L-function and he proved the algebriacity at the rightmost critical point for Siegel cusp forms and elliptic cusp form of full level. Pitale-Schmidt [9] extended his result with respect to the level of elliptic cusp forms, and Saha [10] extended with respect to both of levels of Siegel cusp forms and elliptic cusp form. Saha [11] also proved the algebraicity for other critical points combining the pull-back formula and differential operators. On the other hand, Böcherer-Heim [1] showed the algebraicity at all critical points in the full modular balanced mixed weight case using Heim's integral répresentation.
3.2.3. Yoshida's Conjecture. When the irreducible cuspidal automorphic representation of $\operatorname{GSp}\left(4, \mathbb{A}_{\mathbb{Q}}\right)$ is associated to a Siegel cusp form, our result is compatible with Yoshida's calculation [13] on Deligne peirod.

Acknowledgements. This article is based on a talk delivered by the author at the 2012 RIMS conference Automorphic forms and automorphic L-functions. The author thanks the organizer of the conference, Tomonori Moriyama and Atsushi Ichino, for the opportunity to speak.

The research of the author was supported in part by Grant-in-Aid for JSPS Fellows (23-6883) and JSPS Institutional Program for Young Researcher Overseas Visits project: Promoting international young researchers in mathematics and mathematical sciences led by OCAMI.

References

[1] Böcherer, S., and B. Heim. "Critical values of L-functions on $\mathrm{GSp}_{2} \times \mathrm{Gl}_{2}$." Mamthmatische Zeitschrift 254, no. 3 (2006): 485-503.
[2] Furusawa, M. "On L-functions for $\operatorname{GSp}(4) \times \operatorname{GL}(2)$ and their special values." Journal für die Reine und Angewandte Mathematik 438 (1993): 187-218.
[3] Garrett, P., and M. Harris. "Special values of triple product L-functions." American Journal of Mathematics 115 (1993): 161-240.
[4] Harris, M. "Arithmetic vector bundles and automorphic forms on Shimura varieties. I." Inventiones Mathathematicae 82 (1985): 151-189.
[5] Langlands, R. On the Functional Equations Satisfied by Eisenstein Series. Lecture Notes in Mathematics 544: Springer, 1976.
[6] Li, J.-S. "Nonexistence of singular cusp forms." Compositio Mathematica 83, no. 1 (1992): 43-51.
[7] Morimoto, K. "On L-functions for quaternion unitary groups of degree 2 and GL(2) (with an Appendix by M. Furusawa and A. Ichino)." preprint
[8] Pitale, A., and R. Schmidt. "Bessel models for lowest weight representations of $\operatorname{GSp}(4, \mathbb{R})$." International Mathematics Research Notices 2009, no. 7 (2009): 1159-1212.
[9] Pitale, A., and R. Schmidt. "Integral representation for L-functions for GSp(4) \times GL(2)." Journal of Number Theory 129 (2009): 1272-1324.
[10] Saha, A. " L-functions for holomorphic forms on $\operatorname{GSp}(4) \times \mathrm{GL}(2)$ and their special values." International Mathematics Research Notices 2009, no. 10 (2009): 1773-1837.
[11] Saha, A. "Pullbacks of Eisenstein series from GU(3,3) and critical L-values for GSp(4) \times GL(2)." Pacific Journal of Mathematics 246, no. 2 (2010): 435-486.
[12] Sugano, T. "On holomorphic cusp forms on quaternion unitary groups of degree 2." Journal of the Faculty of Science. Section I A. Mathematics 31, no. 3 (1985): 521-568.
[13] Yoshida, H. "Motives and Siegel modular forms." American Journal of Mathematics 123 (2001): 1171-1197.

