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Introduction
By definition, zeta integrals “interpolates” automorphic $L$-functions to deduce their

somc analytic properties, say meromorphic continuation. But to procecd into deeper
arithmetic investigation, like as study of special values, we can not avoid the ramified
factors of integrals. In this past decade, several nice works have been sprung out. Howcver,
the satisfactorily developed theories are essentially limited to the cases of $GL(2)$ and
$GSp(4)$ .

In this note we treat the Gelbart Piatctski-Shapiro integral for generic cusp forms on
$U(3)$ , which arc recalled in \S 1. In \S 2, we report on Whittaker new vcctor for archimedean
component of the integral. That is there exists a unique (up to constant) $K_{\infty}$-finite vector
in Whittaker $mo$del of discrete series representation whose integral gives the Langlands
$L$-factor.

1 Zeta integral and its -adic factors
Note that we can obtain the same result without any loss of generality, even if we

formulate the problem over an arbitrary totally real algebraic number field. So we take
$\mathbb{Q}$ for our ground field and denote its ad\‘ele ring by $\mathbb{A}.$

$<$Group structure $>$

Let $E$ be an imaginary quadratic extension of $\mathbb{Q}$ and denotc the non-trivial element of its
Galois group by $-$ Put

$G;=\{g\in GL(3, E)|t\overline{g}[Matrix] g=[Matrix]\}.$

This defines a quasi-split unitary group of three variables ovcr $\mathbb{Q}$ . Let

$G=BK$, with $B=N\Lambda I$

$*$ In the workshop, a part of talk was devoted to review the $H$-period investigation as an motivating
introduction. But the main result is archimedean stuff, and we just report on it with this title, different
from the one of talk.
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be the Iwasawa decomposition of $G$ . Then each subgroups are expressed as

$N=\{(\begin{array}{lll} 1 -\overline{b}1 b z1\end{array})\in G|b, z\in E, z+\overline{z}=-|b|_{E}^{2}\},$

$M=\{(\alpha \beta \overline{\alpha}^{-1})\in G|\alpha\in E^{\cross}, \beta\in E^{(1)}\}$

and
$K=G\cap M_{3}(\mathcal{O}_{E})$ ,

where $\mathcal{O}_{E}$ is the ring of integers in $E.$

We need a subgroup

$H$ $:=$ Img $(\iota : U(1,1)\ni(:\star\star)\mapsto(\star\star 1 \star\star)\in G)$

as the Euler subgroup for a Rankin-Selberg integral. The Iwasawa dccomposition of $H$ is

$H=B_{H}K_{H}$ , with $B_{H}=Z_{N}A,$ $K_{H}=K\cap H,$

where

$Z_{N}=\{(1 1 z1)\in G|z\in \mathbb{R}\},$

$A=\{(a 1 a^{-1})\in G|a\in \mathbb{Q}^{X}\}.$

$<The$ standard L-function $>$

For a cuspidal automorphic representation $\pi=\otimes_{v}\pi_{v}$ of $G(\mathbb{A})=U(3)_{A}$ and a Hecke
character $\xi$ of $E$ , the $\xi$-twisted $L$-function is defined by a local way as an Euler product

$L(s; \pi\otimes\xi);= \prod_{v}L_{v}(s;\pi_{v}\otimes\xi_{\iota},)$ .

When $\xi_{p}$ is unramified and $\pi_{p}$ is the unramified component of unramified principal series
$Ind_{B_{p}}^{G_{p}}(\chi)$ , the unramified factor is given by

$L_{p}(s;\pi_{p}\otimes\xi_{p}):=L_{E,p}(s;\xi_{p})\Gamma_{\lrcorner}p(2s;\xi_{p}\chi)L_{p}(2s;\xi_{p}/\chi)$ .

Here $\chi$ is a representation of the Borel subgroup $B_{p}=N_{p}M_{p}$ given by

$\chi$ : $n$ .diag $(\alpha, \beta,\overline{\alpha}^{-1})\mapsto\chi_{E}(\alpha)\in \mathbb{C}^{\cross}$

19



and $\chi_{E}$ is a character of $E_{p}^{\cross}$ with conductor $\mathcal{O}_{E_{p}}^{\cross}.$

$<$ Zeta integral $>$

For a generic cusp form $\varphi$ belonging to gcneric $\pi$ , Gclbart and Piatetski-Shapiro introduced
the following zeta integral

$\mathcal{Z}(s;\varphi, \xi):=\int_{H(F)\backslash H(A)H}\varphi|_{H}(h)E^{H}(s;h, \xi)dh.$

Here $E^{H}$ is an Eisenstein series on $H(A)$

$E^{H}(s;h, \xi):=\sum_{\gamma\in B_{H}(\mathbb{Q})\backslash H(\mathbb{Q})}f_{\xi}^{(s)}(\gamma h)$
,

where $f_{\xi}^{(s)}$ is a section in the principal series $Ind_{B_{H}(A)}^{H(A)}(1_{N_{H}}\otimes\xi\otimes e^{2s})$ , which is factorizable

as $f_{\xi}^{(s)}=\otimes_{v}f_{\xi,v}^{(s)}$ . By the Langlands theory of Eisenstein series the integral is continued
to the whole $s$-plane.

$<$Unfolding and local integrals $>$

Assumc the generic cusp form is localizable; $\varphi=\otimes_{v}\varphi_{v}$ . By using the multiplicity onc
result on Whittaker models and an unfolding procedurc, the Rankin-Selberg integral
dccomposes into a product of local integrals:

$\mathcal{Z}(s;\varphi, \xi)=\prod \mathcal{Z}_{v}(s;W, f_{\xi}^{(s)})$ ,

with
$\mathcal{Z}_{v}(s;W, f_{\xi}^{(s)});= \int_{Z_{N,v}\backslash H_{v}}W_{\varphi_{v}}|_{H_{v}}(h_{v})f_{\xi}^{(s)}(h_{v})dh_{v}.$

Here $Z_{N,v}$ is thc center of the maximal nilpotent subgroup $N_{1}$ , of $G_{v},$ $W_{\varphi_{v}}$ is a Whittaker
vector

$W_{\varphi_{v}}(g_{v}):=\ell_{\psi}(\pi_{v}(g_{v}).\varphi_{v})$

corresponding to $\varphi_{v}\in\pi_{v}$ , where $\ell_{\psi}\in Hom_{G_{v}}(\pi_{v}, Ind_{N_{n}}^{G_{v}}\psi_{N_{v}})$ is a non-trivial functional.
And $f_{\xi}^{(s)}$ is a special section of the principal series $Ind_{B_{H,v}}^{H_{v}}(\xi|\cdot|^{s})$ of $H_{1}$ , induccd up from
its Borel subgroup $\iota((\star \star\star))$ . Note that this integral vanishes unless $\varphi$ is generic.

Over the places where everything is unramified, Gelbart and Piatetski-Shapiro showed
the coincidence of local factors of $L$-function and zeta integral by using the Casselman-
Shalika formula.

Proposition 1.1 ([Ge-PS] \S 4) For the unramified $(i.e. K_{p}-$spherical) $\pi_{p}’ s,$

$\mathcal{Z}_{p}(s;W, f_{\xi}^{(s)})=L_{p}(s;\pi_{p}\otimes\xi_{p})$ .

$\square$

$\backslash _{\wedge}^{\gamma}ext$ step of investigation is to analyze ramified factors. The $p$-adic case was treated by
Baruch in his thesis [Ba], upon which Miyauchi succeeded to find”Whittaker new vector”
by using his compact subgroup sequence. The detail would be reported in his article of
this proceedings.

Apparently the big lacking is Archimedean study of the integral $\mathcal{Z}_{\infty}(s;W, f_{\xi}^{(s)})$ .
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2 Archimedean results
We consider the Archimedean component of Gelbart- $PS$ integral. By the genericity of

cuapidal representation $\pi$ , the Archimedean component $\pi_{\infty}$ must be large. Here we treat
the case of discrete series exclusively. That is $\pi_{\infty}\cong\pi_{\Lambda}$ with Harish-Chandra parameter
$\Lambda=(\Lambda_{1}, \Lambda_{2}, \Lambda_{3})\in \mathbb{Z}^{3}$ satisfying

$\Lambda_{1}>\Lambda_{3}>\Lambda_{2}.$

We parameterize the infinite component of Hecke character

$\xi_{\infty};\mathbb{C}^{\cross}\ni\delta\mapsto|\delta|^{2t}(\frac{\delta}{|\delta|})^{n\iota}\in \mathbb{C}^{\cross},$

$(t, m)\in \mathbb{C}\cross \mathbb{Z}$ as usual. Thcn the Langlands factor defined by the $L$-parameter is of the
form:

$L_{\infty}(s; \pi_{\Lambda}, \xi_{(t,m)})= \prod_{i=1}^{3}\Gamma_{\mathbb{C}}(s+t+|\Lambda_{j}|+\frac{|m|}{2})$ .

By the Cayley transform $C$ , our group is the unitary group for the Hermitian form
diag$(1, 1, -1)$ . So the maximal compact subgroup $K_{\infty}$ is isomorphic to $U(2)\cross U(1)$ and
all the $K_{\infty}$ -type $\tau\subset\pi_{\Lambda}$ can be parametrized by triple

$\mu=[\mu_{1}, \mu_{2};\mu_{3}]\in\{\Lambda+m[1, -1;0]+n[1,0;-1]|m, n\in \mathbb{N}\},$

where $(\mu_{1}, \mu_{2})$ is the highest weight of $U(2)$-representation and $\mu_{3}$ is the parameter of
$U(1)$ -charactcr.

For a $K_{\infty}$ -finite vector $w$ of $\pi_{\Lambda}$ belonging to $\tau_{\mu}$ , we denotc the corresponding Whittaker
function by

$W^{(\mu,w)}(g);=\ell_{\psi 1}(\pi_{\Lambda}(g).w)$ .

Definition 2.1 We say that $K_{\infty}$ -finite Whittaker function $W^{(\mu,w)}$ is a Whittaker new vector
for the Gelbart Piatetski-Shapiro integral if the equality

$\mathcal{Z}_{\infty}(s;W, f_{\xi,\Phi}^{(s)})=c\cross L_{\infty}(s;\pi_{\Lambda}, \xi_{(t,n\iota)})$

can be attained by $W^{(\mu,w)}$ alone. Here $c$ is a non-zero constant and $f_{\xi,\Phi}^{(s)}$ is the section

$f_{\xi,\Phi}^{(s)}(h):= \int_{\mathbb{C}^{\cross}}\Phi(h^{-1}.[z, z])\xi(z)|z|^{2s}d^{\cross}z\in I^{H}(s;\xi)$

constructed from a Schwartz class $\Phi\in \mathcal{S}(\mathbb{C}^{2})$ , called as Jacquet section. $\blacksquare$

Theorem 2.2 If the Harish-Chandra parameter satisfies the condition $\Lambda_{1}+\Lambda_{3}<0$ , then
the large discrete series $\pi_{\Lambda}$ admits a Whittaker new vector in its Whittaker model

$W^{(\mu^{good},w^{good})}\in \mathcal{W}h_{\psi}(\pi_{\Lambda})$ ,

which is unique up to constant multiple. The $K_{H\infty}$ -finite Schwartz function $\Phi$ is also
uniquely determined. $\square$
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Sketch of $Pf.$ ) Our task is to specify “ the good” $K_{\infty}$-type $\tau_{\mu^{good}}$ of $\pi_{\Lambda}$ , where “ the good”
$K_{\infty}$-finite vector $w^{good}$ can be found. We can carry out it by the following steps.

Step 1. Obtain an explicit formula for the minimal $K_{\infty}$-type 1 Whittaker function
$W^{(\Lambda,w)}$ for each

$w=$ $\Lambda_{1_{k}},\Lambda_{2}\rangle\otimes 1_{\Lambda_{3}}\in\tau_{\Lambda},$

where $\{|\Lambda_{1},\Lambda_{2}k\rangle|\Lambda_{1}\geq k\geq\Lambda_{2}\}$ is thc Gel’fand-Zetlin basis for the $U(2)$ -ropresontation
with highest weight $\Lambda_{1}>\Lambda_{2}$ and $1_{\Lambda_{3}}$ the base of $U(1)$-character $(u\mapsto u^{\Lambda_{3}})$ .

$W( (y 1 y^{- 1}))=\sum_{\Lambda_{1}\geq k\geq\Lambda_{2}}\gamma_{k}^{\lambda}\cdot y^{\Lambda_{1}-\Lambda_{2}-\frac{1}{2}}W_{0,k-\Lambda_{1}-\Lambda_{2}+\Lambda_{3}}(2\sqrt{b_{\psi}}y)\cross(|\Lambda_{1},\Lambda_{2}k\rangle\otimes 1_{\Lambda_{3}})$.

Here $b_{\psi}$ is a constant controlling the normalization of additive character $\psi$ , and $\gamma_{k}^{\lambda\prime}s$ are
normalizing constant depending on $\lambda$ and $\psi.$

Step 2. Write down the recursive relations among $K_{\infty}$-finite Whittaker vectors coming
from the rank one differential operators.

Step 3. Normalize the additive character $\psi$ of $N_{\infty}$ to get two $\Gamma_{\mathbb{C}}$ from the Mellin
transform of $W^{(\mu,w)}$ . That is $b_{\psi}=\pi^{2}$ . This step depends on the Cayley transform $C$ that
is on the Hermitian form.

Step 4. Normalize the Schwartz function as

$\Phi_{m_{1},n_{1},m_{2},n2}(z_{1}, z_{2});=\prod_{i=1}^{2}z_{i}^{m_{t\overline{Z_{i}}}n_{i}}\cross oxp(-\pi|z_{i}|^{2})$ ,

where $(m_{1}, n_{1};m_{2}, n_{2})\in \mathbb{Z}_{\geq}^{4}$ , to get one $\Gamma_{\mathbb{C}}$ from the integral definition of $f_{\xi,\Phi}^{(s)}(h)$ .
Step 5. Regarding the zeta integral $\mathcal{Z}_{\infty}(s;W, f_{\xi,\Phi}^{(s)})$ as a $K_{H_{\infty}}$-coupling between Whit-

taker vector and the Jacquet section for $\Phi_{m_{1},n_{1};m,n_{2}}2$ , we obtain the constraint among the
parameters;

$n_{1}-m_{1}=m_{\xi}+\Lambda_{3}, n_{2}-m_{2}= -\Lambda_{3}.$

By using the relation in Step 2, we specify “the good” $K_{\infty}$-type satisfying the above
constraint;

$\mu^{good}=[m_{\xi}-|\Lambda|, |\Lambda|+\lambda_{3};-m_{\xi}+|\Lambda|-\lambda_{3}]$

where $|\Lambda|$ $:=\lambda_{1}+\lambda_{2}+\lambda_{3}.$

Step 6. Finally, we find “the good” $K_{\infty}$-finite vector in $\tau_{\mu}^{good}$ as

$w$
good

$=|\lambda_{1}+\lambda_{2}-2m_{\xi}\mu_{1}^{good},$$\mu_{2}^{good}\rangle\otimes 1_{\mu_{3}^{good}},$

again by appealing to the recursive relations in Step 2. $\blacksquare$

lBecause $\pi_{\Lambda}$ is large, the Blattner parameter coincides with the Harish-Chandra parameter $\Lambda$ in this
case.

22



Here are some comments. It was Oda and Koseki who first tried to investigate the
Archimcdean com.ponent of Gelbart Piatetski-Shapiro integral. In [K-O] they treated
$GCD$ of whole $A_{\infty}$-radial part of $\mathcal{Z}_{\infty}(s;W, f_{\xi,\Phi}^{(s)})$ as an application of their explicit formula
of Whittaker function on $SU(2,1)$ . But $\mathcal{Z}_{\infty}(s;W, f_{\xi,\Phi}^{(s)})$ is integration on $A_{\infty}$ and on $K_{H\infty}.$

So the quite many members in Koseki-Oda’s family should be abandoned in thc view
point of $GCD$ definition for local $L$-factor.

Even after considering $K_{H_{\infty}}$ -integral, the $GCD$ of archimedean zeta integrals $\mathcal{Z}_{\infty}(s;W, f_{\xi}^{(s)})$

for ALL the $K_{\infty}$-finite $W$ and normalized section $f_{\xi}^{(s)}$ has an odd form comparcd with
the Langlands factor. We reported this phenomenon in the RIMS workshop 2006 [Is].

After all, the above proof shows that by taking $GCD$ of $\mathcal{Z}_{\infty}(s;W, f_{\xi}^{(s)})$ we can NOT
gain the genuine Langlands factor.
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