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80 Introduction

Let k¥’ be an unramified quadratic extension of a p-adic field k, and we consider hermitian
and unitary matrices with respect to k'/k. For a matrix A = (a;;) € M, (k’), we dénote
by A* € M, (k') the conjugate transpose with respect to k’/k, and say A is hermitian if
A* = A. We introduce the unitary group and the space of unitary hermitian matrices:

0 1\ -
G= U(j2n) = {9 € GL2n(k’) | 9 Jmg = j2n}a Jon = - € GL2n(k,)1
1 0

X={ceG|z" =z, Os,() = (£ -1},
where ®,(t) is the characteristic function of the matrix y. The group G acts on X by
g-r=gzg", (9€G, v€X)

We take the maximal compact subgroup K = G N G L,,(O) and the Borel subgroup B
consisting of all upper triangular matrices in GG, then G = BK = K B. In the following,
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we fix a prime element 7 in & and the absolute value | | on & normalized by 7| =g
(O /().

In §1, we study K-orbits and G -orbits in X and obtain (cf. Theorem 1.2, Theorem 1.3,
and Theorem 1.4)

Theorem 1 (1) If k has odd residual characteristic, one has
X = U K -z5, xx= Diag(r™,... 7 a2 . 17 € X, (0.1)
AeAd

where
A ={XeZ' | x>X>-2>), >0}

(2) If k has even residual characteristic, there are K-orbits not of type K - zy, A € A}
(3) There are precisely two G-orbits in X, independent of the residual characteristic of k.

In §2, we introduce a spherical function w(z;s) for x € X and s € C™:

w(m;s)z/KH]di(k‘:r)

where d;(y) is the determinant of the lower right ¢ by ¢ block of y, & € C™ is a certain
fixed number, dk is the Haar measure on K. The above integral is absolutely convergent if
Re(s;) > Re(e;), 1 < i < n, continued to a rational function of ¢**,...,¢°", and becomes
a K-invariant function on X, hence w(z;s) € C*°(K\X) for each s € C™. It is convenient
to introduce a new variable z € C™ which is related to s by

St dk, (0.2)

8; = —2; + Zi+1, (1 S [ S n)a Sn = —Zn, . (03)

and we write w(z; z) = w(x; s).

Hereafter, we assume that k£ has odd residual characteristic, i.e. ¢ is odd. Let W be the
Weyl group of GG with respect to the maximal k-split torus in B. Then W acts on rational
characters on B so does on s and z, and we obtain (cf. Theorem 2.5, Theorem 2.6)

Theorem 2 (1) For every o € W, one has
w(z; 2) = To(z) - w(z; 0(2)),

where s)-1
1 — q a,z)—
LE= 1] mm—r
aexf (o)
ST is the set of positive roots and £F (o) = TF No(-Z7).
(2) One has

1_+_ q(a:z> ; .
1 = e < w(@iz) € Clg*™....,a " (=R, say).
acT?
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In §3, we will give the explicit formula for w(z,; z) for each A € A} (Theorem 3.1) by
a method introduced in [H4], which is based on functional equations of w(z; z) and some
data depending only on the group G. Since w(z; z) is K-invariant for z, it is enough to
consider the explicit formula for z, A € A} by Theorem 1.

Theorem 3 For each A € A}, one has

n

‘ _ (1 _ q——2)n 1— q(a,z)—l
o) = e Il g o @@ 09
aEY,
where G(z) is the same as in Theorem 2,

i (n—i =3 M\ (n—it+ L i\
or = ()ENCEDGENED () = T -6,

i=1

(a,2)—-1
A& =Y o (@), o= [ S 1T

oeW acxy QGE;

1 — q(a:z)—l
1 —_ q‘(a,z) )

By Theorem 2, we see Qx(z) is a polynomial in R. On the other hand, this is a
specialization of Macdonald polynomial Py, and it is known that the set {@x(2) | A € A}
forms a C-basis for R and Qo(z) is a constant. Hence, we have

(1 _ q-l)nwn(_q—l)Q H 1— q(a,z)—l

—_—. 0.5
wan(—g ) e (95)

w(lon; 2) =
aest

In §4, we consider the spherical Fourier transform on the Schwartz space S(K\X):

F: S(K\X) — R
@ — F(p) = [y o(x)¥(z; 2)dz,

where ¥(z; 2) = w(z; 2) /w(1sn; 2) and dx is a G-invariant measure on X. We obtain the
following (cf. Theorem 4.1, Theorem 4.2, Theorem 4.5).

Theorem 4 (1) The spherical Fourier transform F' is an H(G, K )-module isomorphism,
in particular, S(K\ X) is a free H(G, K)-module of rank 2.

’ loggq

(2) For each z € C", the set {\I’(x; z+u) . u€ {0 ﬁ}"} forms a basis for the sphefical
functions on X corresponding to A;.

(3) (Plancherel formula) We give explicitly the normalization of dz on X and a measure

du(z) on )
o = (Rige) |



for which

| @iz = [ FOEFDEG). (. b€ SE\X),

In [H5], we have investigated spherical functions on a similar space X7 associated to
each nondegenerate hermitian matrix T, and obtained functional equations of hermitian
Siegel series as an application. Both spaces, X1 and the present X, are isomorphic to
U(2n)/U(n) x U(n) over the algebraic closure of k, and the former realization was useful
for the application to hermitian Siegel series. But it was not easily understandable, and
we could not obtain its Cartan decomposition, nor complete parametrization of spherical
functions. For the present space X, we give an explicit Cartan decomposition in §2,
and complete parametrization for spherical functions in §4, using explicit formulas of
particular spherical functions given in §4. We discuss the correspondence between both
spaces in Appendix. ‘

Throughout of this article, we denote by k a non-archimedian local field of charac-
teristic 0, fix an unramified quadratic extension k&' and consider unitary and hermitian
matrices with respect to k’/k. We fix a prime element 7 of k, denote by v.( ) the additive
value on k, and normalize the absolute value | | on k% by |7|™" = ¢ = #(O%/(7)). We
also fix a unit € € Of for which k' = k(\/e). We may take ¢ such as ¢ — 1 € 40, then

{1, 1+2\/E} forms an Oy-basis for Oy (cf. [Om], 64.3 and 64.4). From §2 to §4, we assume

that ¢ is odd.

§1 The space X and its K-orbit decomposition and
G-orbit decomposition

Let ¥’ be an unramified quadratic extension of a p-adic field k£ and consider hermitian
matrices and unitary matrices with respect to k'/k. For a matrix A € M,,(k’), we denote
by A* € My, (k') its conjugate transpose with respect to k'/k, and say A is hermitian if
A* = A.

We consider the unitary group

0 1
G=G,= {g € GL?n(k,) I g*ang = j2n}7 Jon = - € Moan, (1'1)
1 0
the space X of unitary hermitian matrices in G
X=X,={z€CG|z" =z, Og,,(t) = (* - )"}, (1.2)

and a supplementary space X containing X

X=X,={zeG|z=2"}, (1.3)
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where ®,(t) is the characteristic polynomial of the matrix y. The group G acts on X and
X by _
g -z =gzg" = z[g"] = gzjong ‘jom, 9EG, € X.

Over the algebraic closure k of k, we may understand as follows.
G(k) = GLon(k), X(k) = {z € G(k)| (220)* = Lan}, (14)
with action given by
g* T = gTjomg ‘jan, (9 € G(k), z € X(k)).

Then X (k) is decomposed into 2n + 1 G(k)-orbits according to the shape of ®,;, (t), and
we take

X(E) = G(R) % 1 = {x e X(F) ' By (8) = (2~ 1)"} . (1.5)
Then N ' L
X=XkNG=X(k)NnX.
We fix the maximal compact subgroup K of G by

K = K, = G N Man(Op). (1.6)

The main purpose of this section is to give the Cartan decomposition of X, i.e., the
K-orbit decomposition of X for odd ¢ (Theorem 1.2), and G-orbit decomposition of X
(Theorem 1.4).

To start with, we recall the case of unramified hermitian matrices. The group Gy =
GL, (k') acts on the space H, (k') = {y € Go| y* =y} by 9y = gyg*, and there are two
Gy-orbits in #, (k') determined by the parity of v,(det(y)). Setting Ko = GL,(O), the
Cartan decomposition is known(cf. [Jac]) as follows:

Ho(K) = || Koo, (1.7)

AEA,

where '
7t = Diag(m™,..., 7)), Ay ={A€Z"| M > X > 2 A\ }.

Proposition 1.1 Let n=1. Then

Xi=| | K (7{; W%)u | |

20 1<r<vn(2)

where the latter union is empty if q is odd.

For general n, we have the following.
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Theorem 1.2 Assume that k has odd residual characteristic. Then, the K -orbit decom-
position of X, is gwen as follows:

Xo= || K-, (1.8)
where
' ={A€Z" | \>---> )\, >0},

A
o= 7 0 = Diag(n™ T )
A=\ q-r)=Diagln™, .. oo, w0, , .

For dyadic case, we show the following.

Theorem 1.3 Assume that q is even. Then

Xo=U U Koy mu=| 0 By 0
=0 xeat 0 0 Dy(=A)
NG

Here

Ty = (D*O(’\) DT(O_A)> €X,, (AeAD),

(rm(1= V)

\/E ﬂ-Um /
where any entry of E,,(u) except in the diagonal or anti-diagonal is 0, and Ty, 1S under-
stood as x (resp. En(p)) if T =n (resp. r =0). Further,

U K-ox= || K-z, 2 Eu(p), neA?.

AEAT AeA
As for G-orbits, we have the following. For A € A}, we set [A] = 3.7 | ); and call )
to be even or odd according to the parity of |A[.
Theorem 1.4 There are precisely two G-orbits in X,,:
Xn=G 19 UG- 21, z9=1lay, ;= Diag(m,1,...,1,77"). (1.9)

If q is odd, then
G'.Z'():u K'.’E‘,\, Gl‘lr—u K-I)\.

If q is even, xy, is G-equivalent to xo if and only if |A| + || is even.
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§2 Spherical function w(z;s) on X

For simplicity, we write j = j,, and take a Borel subgroup B of G by

(b 0 1, aj
5= {5 ) (5 1)) e

where B consists of all the upper triangular matrices in G.

We introduce a spherical function w(z;s) on X by Poisson transform from relative
B-invariants. For a matrix g € G, denote by d;(g) the determinant of lower right 7 by ¢
block of g. Then d;(z), 1 < i < n are relative B-invariants on X associated with rational
characters ; of B, where :

di(p- z) = ¥i(p)di(z), i(p) = Npi(di(p)), (z € X, p€ B). (2.1)

b is upper triangular of size n
a+a* =0 '

We set
XP={zeX|d(z)#0, 1<i<n}. (2.2)

For z € X and s € C*, we consider the integral

w(z; s) = /K d(k-z)[***dk, |d()" =[] @)™, (2.3)
i=1
where dk is the normalized Haar measure on K, k runs over the set {k € K | k- € X°P},
and
T/ —1 mv/—1 1
= =(-1,...,—-1,—= ",
€ Ej(]—*_( lqu 3 ) logq )7 €0 ( ) ) ) Z)EC
The right hand side of (2.3) is absolutely convergent if Re(s;) > —Re(e;) = —€q;, 1 <4 <
n, and continued to a rational function of ¢*1,. .., ¢**, and we use the notation w(z; s) in
such sense. We note here that
e 1
p)I° (= II lwi(p)|€‘> = [¥(p)|™ = d2(p), (2.4)
i=1

where § is the modulus character on B (i.e., d(pp’) = d(p')"'dp for the left invariant
measure dp on B). ‘

By a general theory, the function w(z; s) becomes an H(G, K')-common eigen function
on X (cf. [H2]-§1, or [H4]-§1), and we call it a spherical function on X. More precisely, the
Hecke algebra H(G, K) of G with respect to K is the commutative C-algebra consisting
of compactly supported two-sided K-invariant functions on G, which acts on the space
C®(K\X) of left K-invariant functions on X by

(f * )( / f(@)¥(g - v)dg, (f €H(G,K), WeC®(K\X)),  (25)

where dg is the Haar measure on G normalized by || K dk =1, and we see

(f *w(;8))(@) = As(Nwlz; ), (f € H(G, K)), (2.6)



117

where ), is the C-algebra homomorphism defined by
As i H(G,K) — C(q*,...,q™),
= [ e

We introduce a new variable z which is related to s by
si=—zi+zip1 (1<i<n-—-1), s,=-—2z, (2.7)

and write w(z;2) = w(z;s). Denote by W the Weyl group of G with respect to the
maximal k-split torus in B. Then W acts on rational characters of B as usual (i.e.,
o(1)(b) = ¥(n;'bn,) by taking a representative n, of o), so W acts on z € C® and on
s € C" as well. We will determine the functional equations of w(z;s) with respect to this
Weyl group action. The group W is isomorphic to S, x C%, S, acts on z by permutation
of indices, and W is generated by S, and 7 : (z1,...,2,) = (21, ..., 2n_1, —2n). Keeping
the relation (2.7), we also write \,(f) = A;(f). Since '

()" = [T IN G x 652 (0),

where p; is the i-th diagonal component of p € B, the C-algebra map ), is an isomorphism
(the Satake isomorphism)

A H(G,K) = Clg™*, ..., ¢** ", (2.8)

where the ring of the right hand side is the invariant subring of the Laurent polynomial
ring Clg*?, ¢, ..., ¢*~, q7 %] by W.

By using a result on spherical functions on the space of hermitian forms, we obtain
the following results.

Theorem 2.1 The function G1(z) w(z; s) is invariant under the action of S, on z, where

Gz = J] et (29)

. qzi—zj—l :
1<i<j<n

Hereafter till the end of §4, we assume k has odd residual characteristic, i.e. k is non
dyadic and ¢ is odd.

Next we study the functional equation with respect to 7. To begin with, based on
Proposition 1.1, we calculate w(l)(:cg; s) expliéitly and obtain the following.

Proposition 2.2 For n = 1, the spherical function w(z;s) is holomorphic for any
s € C and satisfies the functional equation

w(z;5) = wB(z; —s).
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Theorem 2.3 For general size n, the spherical function satisfies the functional equation
w(z; 2) = w(z; 7(2)).

We assume n > 2 and introduce the following standard parabolic subgroup P attached
to T:

q’ 1n—1 (04 ln'—l 6 . 7.7
~ alb 10 110 g
P = cld 0 I 1 —a'j 01 €G
q ln-1 P
q is upper triangular in GL,_1(k'), ¢ = jg*~'j )
b . ‘
(Z‘ d) € U(ja), @B € My_1.(K'), | (2.10)
Y€ My a(K), v+7" =0 )

where j = j,_1 and each empty place in the above expression means zero-entry.
The relative B-invariants d;(z), 1 < i < n — 1 are relative P-invariants, but dn(x)

is not. So we enlarged X and P as follows: Set P = P x GL:i(K'), X = X x V with
V = My (k'), and

(p,r) * (a:,v)‘ = (p - T, p(p)vf—l), (P, T) € ﬁ’ (.’E,U) € 5(:7

where p(p) = (ﬁ Z) for the decomposition of p € P as in (2.10).
Then we have the following relative P-invariant g(z;v) on X instead of dn(z).

Lemma 2.4 Set

_ —V2 N1 | 0 ~ . U1
g(x,v) = det I:( 0 I 1, ) ’ x(n+1):| ) (JZ,'U) €EX,v= (1’2> )

where T(n11) is the lower right (n+1) by (n+ 1) block of x. Then
(i) g(z,v) is a relative P-invariant on X associated with the P-rational character
D(p,T) = Yn-1(P)N(r)~1, and g(z,vp) = dn(x) with vy = 4(10). .
(ii) g(z,v) is expressed as g(z,v) = D(z)[v] by some hermitian matriz D(zx) of size 2.
For x € X, Dy(z) = d,_1(z) "1 D(z) belongs to X;.

By the embedding
- ln—l
Ki=U(js) > K=Kpn, h— h= h ) (2.11)
1n—1

we have

w(z;s) = /K1 dh/ [d(k - z)°* dk

= J Mt ore [

<n

Sn+E€

do(hk - z)|  dhdk. (2.12)
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By Lemma 2.4, we see

do(h-y) = g(h-y,u0) = g((h,1) % (y, k" vo))
= dna(y)di((F*™" D1(y)) ™) = dn-1(y)di(h - Di(y) ™),

and we obtain

o) = [ T[latk-o)

i<n

i d g (k- ) WO (Dy (k- )71 s,) dk.

Then, by Proposition 2.2, we obtain
w'(x; s) = w(z;s1,...,8n-2,8n-1+ 28n, —8n),
which shows in z-variable
w(z; 2) = w(z;7(2)), 7(2) = (21, .., 21, —7n),
and we conclude the proof of Theorem 2.3. ‘ ]

In order to describe functional equations of w(z; z), we prepare some notations. We
denote by X the set of roots of G with respect to the maximal k-split torus of G contained
in B and by X the set of positive roots with respect to B. We may understand ¥ as a
subset in Z", and set

st =3srus (2.13)
Si={ei—e,e+e|1<i<j<n}, Zf={2;]|1<i<n},

where e; is the i-th unit vector in Z", 1 < i < n. Then A} can be regarded as the set of
dominant weights. We define a pairing on Z" x C™ by

(t, 2) =) tim, (teZ", z€Cm),

which satisfies

(a, z) = {(o(a), o(2)), | (aeX, zeC" oceW).

By Theorem 2.1 and Theorem 2.3 and cocycle relations of Gamma factors, we have
the following.

Theorem 2.5 The spherical function w(x;z) satisfies the following functional equation
for each o € W

w(z; z) = [y(2) - w(z; 0(2)), (2.14)
where
— gloy2)-1
L) = [] %_‘ij_ﬁ SH(0)={aest| —o(a) St}

a€eZd (o)

and we understand Ty (z) =1 if S} (o) = 0.
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Further we obtain the following in the similar line to the proof of Theorem 2.9 in [H5].

Theorem 2.6 The function

1+ gl>2
I1 A - w(z; 2)

1— q(a, z)—1

aext

18 holomorphic for all z in C* and W -invariant, in particular it is an element n
Clgt™,..., ¢V,

83 The explicit formula for w(z; 2)

We give the explicit formula of w(x;2). Since w(x;z) is stable on each K-orbit, it is
enough to show the explicit formula for each zx, A € A} by Theorem 1.2.

Theorem 3.1 For A € A}, one has the explicit formula:

. 3 (1 _ q—2)n 1— q(a,z)—l
w(zy z) = P I}L Trgea O Qx(2), (3.1)
acdg

where

wn®) = [[A =€), o = ()T A ZAOmiD,

Q(2) =Y o (T™c(2)),

oceW
1+ q(a, z)-1 1— q(a,z)—l
C(Z) - H 1— q(a, z) H 1-— q(a,z) : (32)
acst aEE;

Remark 3.2 We see that the main part Q,(z) of w(zy; 2) belongs to R = Clg**, ..., ¢tV
by Theorem 2.6. On the other hand Q,(z) is a specialization of Hall-Littlewood polyno-
mial P, of type C,, up to constant multiple, which is introduced in a general context of
orthogonal polynomials associated with root systems ([M2], §10), and Qo(2) is a special-
ization of Poincaré polynomial ([M1],Th.2.8.). More precisely,

_w(=a) po,
Wr(t) = W () [T wmeny (1), me(A) = #{é| X = ¢},
1

and it is known that the set {Qx(z) | A € A}} forms a C-basis for R, and in particular,
Qo(z) is a constant independent of z.
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By Theorem 3.1 and Remark 3.2, we have the following corollary.
Corollary 3.3 For o = 1o, one has
i _ ~1\n _—1N2 1— (a,2)—1
(=g ) "wa(=¢7')* =

w(lap; 2) = )
wan(=07") aest 1+ gl

Theorem 3.1 is proved by using a general expression formula given in [H4] (or in [H2])
of spherical functions on homogeneous spaces, which is based on functional equations of
finer spherical functions and some data depending only on the group G. We need to
check the assumptions there. Let G be a connected reductive linear algebraic group and
X be an affine algebraic variety which is GG-homogeneous, where everything is assumed
to be defined over a p-adic field k. For an algebraic set, we use the same ordinary
letter to indicate the set of k-rational points. Let K be a special good maximal compact
open subgroup of GG, and B a minimal parabolic subgroup of G defined over & satisfying
G = KB = BK. We denote by X(B) the group of rational character of B defined over k
and by Xo(B) the subgroup consisting of those characters associated with some relative
B-invariant on X defined over k. In these situation, the assumptions are the following:

(A1) X has only a finite number of B-orbits (, hence there is only one open orbit X).

(A2) A basic set of relative B-invariants on X defined over k can be taken by regular
functions on X.

(A3) For y € X\X%, there exists some 1 in Xo(B) whose restriction to the identity
component of the stabilizer H, of B at y is not trivial. '

(A4) The rank of Xy(B) coincides with that of X(B).

In the present situation, our space X is isomorphic to U{jan)/U(12,) over k (cf. (1.5),
which is a symmetric space and (Al) is satisfied. (A2) and (A4) are satisfied by our
relative B-invariants {d;(z) | 1 <7 < n}, where n is the rank of X3(B) = Xo(B) and
X% ={zeX|diz)#0, 1 <i<n}. Tocheck (A3) is crucial and rather complicated.
It is proved by showing the existence of ¥ as above for each y € X\X.

According to the B-orbit decomposition of X we define finer spherical functions as
“follows

[Tz ()™ if y € X,

@) = [ NGk dk, )L =
K 0 otherwise .

where

X*=||X., U=(z/2z),
uel
Xu={z€XP| vo(di(z)) =ug+ - +u; (mod?2),1<i<n},
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For each character y of «, we may represent as follows

> x(wwu(z; s) = w(z; 24), (3.4)

u€U

-1
to z; for suitable 7 according to x, and they are

where z, is obtained by adding T

linearly independent (for generic z) as varying characters x. By Theorem 2.5, we have,
for each character y of i and 0 € W,

w(z;2z¢) = To(z)w(z;0(z))
= Tolz)w(@;0(2)ax); (3.5)

by taking a suitable character o(x) of U. If x is trivial character 1, then (3.5) coincides
with the original one. Further we obtain vector-wise functional equations as follows

(wu(;2)) ey = A7 G(0,2) - 0A - (wu(z;0(2))) ey ogeW, (3.6)
where
A= (W)ns 04 = (000(W)u € CLn(Z),

x runs over characters of U, u € U, and G(o, z) is the diagonal matrix of size 2" whose
(X, x)-component is I',(z,). Here we fix the first entry of x to be 1. Applying Theorem 2.6
in [H4] to our present case, we obtain for generic z, by virtue of (3.6),

(Wa(2x; 2)) yeyy = QZ ) (A7 G(0,2) - 7 A) (6u(22,0(2))) ey (3.7)

oW

where, taking U as the Iwahori subgroup of K compatible with B,

Q=Y [WoU:UI" = wan(=4")

—2
ceEW ( —4 )n
1— qZ(a, z)-2 1— q(a.z)fl
7(2) - H 1 — qZ(a,z) ’ H 1-— q(a,z) ’
acst O‘EZ;
- gf X
| g LTy € Xy
Su(2r; 2) = { 0 otherwise.

Then, we obtain

w@nz) = 3 Lwwa(ex2)
ueld

= the first entry of A(wu(r; 2)) ey

Nl ST D) 3 8o 0(2)

Wan ( q_l ceW

ci(l — g2 —Oh olz
_ ald-—g)r XZ’Y(U o),

Wan ( q! oW



Setting
]_ + q(av z)
G(Z) H 1— q(a,z)Al’
anj
we have
G
T,(2) = (0(2)) (by Theorem 2.6), ~(z) - G(z) = c(2).
G(2)

Thus we obtain the required explicit formula of w(z,; z) for generic z, and it is valid for

“every z € C", since G(z) - w(zy; 2) is a polynomial in ¢**, ..., ¢g**". i

84 Spherical Fourier transform and Plancherel for-
mula on S(K\X)

We consider the Schwartz space

S(K\X) = {y:X — C| left K-invariant, compactly supported} ,
which is an H(G, K)-submodule of C*°(K\X) by the convolution product and spanned
by the characteristic function of K-z, x € X. We introduce a modified spherical function
W(;2) = (o 2) fw(loni 2) € Cl™, .., =W (= R, say), (41)

and define the spherical Fourier transform

F: S(K\X) — R

p o Fp)(2) = [y o(2)¥(z; 2)da,

where dz is a G-invariant measure on X. There is a G-invariant measure on X, since X is a
disjoint union of two G-orbits, and G is reductive. We don’t need to fix the normalization
of dz at this moment, we will determine suitably afterward(cf. Theorem 4.5). We denote
by v(K - y) the volume of K -y by dz. We regard R as an ‘H(G, K)-module through the
Satake isomorphism

X H(G,K) =5 Clg*®, ... ¢V (= Ry, say).
By Theorem 3.1, Corollary 3.3 and (3.3), we see, for any X € A,

(4.2)

U(zy;2) = cxwyPa(2),
F(chy))(z) = v(K - 2)¥(zx; 2) = cywyv(K - z5) Pa(2), (4.3)

where ¢, is the same as in Theorem 3.1, ch,, is the characteristic function of K -z, and

)
g 1Un(—_q_1)2.
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Theorem 4.1 The spherical Fourier transform F is an H(G, K)-module isomorphism,
in particular S(K\X) is a free H(G, K)-module of rank 2™.

Proof. Since { P\(z) | X € A} forms a C-basis for R(cf. Remark 3.2) and
{cha| A € A} forms a C-basis for S(K\X)(cf. Theorem 1.2), F is bijective by (4.3). It
is easy to check

F(fxo)=X(NF(p), (J€H(G K), peSK\X)),

and we see S(K\X) is a free H(G, K)-module of rank 2", since R is a free Ro-module of
rank 27. ' ]

As a corollary we have the following.

Theorem 4.2 All the spherical functions on X are parametrized by eigenvaelues z €
((C/@EZ) /W through A,(f). The set { ¥(z;z+u) | u € {0,mv/=1/logq}"} forms a

loggq
basis of the space of spherical functions on X corresponding to z.

In order to give the Plancherel formula on S(K\X), we introduce an inner product
on R by

(P, @ = [ PORPIE),  (PQER)

Here

2 n
0t = {\/-1 (R/—lz>} ,
log q
and the measure dy = du(z) on a* is given by

1 we(-¢hH? 1
dy = —— - : dz,
P e ep

where ¢(z) is defined in (3.2) and and dz is the Haar measure on a* with [, = 1. Then,
the following lemma is essentially reduced to a result of Macdonald([M2], §10).
Lemma 4.3 For A\, € A}, one has

n’

(Py, Pu)R = (-P;n PA)R = ‘5&#7"”;1-

On the other hand, one may obtain
Lemma 4.4 For A\, u € A} such that |A| = |u| (mod 2),

v(K 7)) _ CoWy
v(K-z,) Swy
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Since we may normalize dxr on X according to G-orbits, we normalize as

1—(— —-1\n)\2
WK m) =1, (K -z) = it 1(+Z-1) L

where 1o = 13, and z; = Diag(m,1,...,1,77}) (cf. Theorem 1.4). Then we obtain

Theorem 4.5 (Plancherel formula on S(K\X)) By the normalization of G-invariant
measure dx such that

(K - z)) = cfw/{l, AE AL

one has, for any v,y € S(K\X),
[ elai@ide = [ PTG CE)

Corollary 4.6 (Inversion formula) For any ¢ € S(K\X),

o(z) = / F(p)(2) U )du(z), @€ X

Appendix

In [H5], we have considered, for each T € H, (k')

Xp=Xp/U(T),  Xr={z€ Mypu(K)| Hla] =T}, Hy= <1On 15) .

where U(H,) acts homogeneously on Xr by the left multiplication, and the stabilizer at
a point in X7 is isomorphic to U(T) x U(T) (cf. [H5] Lemma 1,1).

The explicit formula of w(zy; z) in Theorem 3.1 is the same as the explicit formula of
wr(yx; 2) on X at y) € Xr parametrized by \ € A} in Theorem 3.3 in [H5]. We explain
the relation between the spaces X and X7p’'s.

We assume T is diagonal and realize X7 as a set of k-rational points in an algebraic
set defined over k. We consider the space

Xr(k) = {(z,y) € Mann(k) & Mann(k) | ‘yHpz =T},
with the action of I' = Gal(k/k) given by

(z°,y°) f oy =id
(yU,IU) if O‘Ik/ =T,

o(z,y) = {
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where z° = (z;;°) for z = (z;;) and ¢ € I', and (7) = Gal(k'/k). We set

U(Hn) = U(Hn)(k) = { (91,92) € GLan(k) X GLon(k) | ‘g2Hngr = Hn},
U(T) = U(T) (k) = { (h1, h2) € GLyn(k) x GLy(k) | thoThy =T},

Xr(k) = %7(k)/U(T) D Xr(k) = X7,

where we may consider the similar I-action on U(H,) and U(T), since H, and T are
[-invariant. We identify

U(Hn)" = {(9,9) € GLon(K') X GLoy(K') | 'gHng = Hp}  with U(H,),
U(T)" = {(h,h) € GLn(K') x GLa(K') | *hTh =T} with U(T),
where and henceforth we write g instead of g” for a matrix g with entries in k’. By the

injective map
wr - XT — XT(k)a IU(T) — (.’II,ZL—)U(T),

we understand X7 as a subspace of Xr(k). Set

™ 0 ~ T
Tl = <O 1n_1) y N = (nﬂ’anﬂ')’ M = <\/7T0r 1n_—1> .

Lemma A.1 The map

fXr (k) — Xi,(k), (2,9)U(T1) — (27, y7,)U (1)

is well defined, it sends X, (k) into Xy, (k) and f(Xr1,) # X1,

n={( 0) (5 o] ma k) e v}

with the similar -action on N as before, and identify NI with

N:{(S 2) ‘h,keU(ln)}.

The stabilizer at yoU(1,) € X1, in U(Hn),‘where
_ (¢ _1+e
Yo = (171) ) 5 - 9 ’

is given by

ln —ln
On the other hand, the stabilizer at 12, in G = U(jay,) is given by

vNv=t v = (51" 61") € GLyy(Okr).

. _1; ) € GLan(k).

n Jn

1
Nyt =
pNp Iz (]
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Further we see

pr U(H)op™ = G, w U(H, v = G(k). (A1)
Thus we have a commutative diagram
pa— 50 —_— —
Xi.(k) = U(H,)/vNv™t = G(k)/pNp™t = Xn(K)
U U (A.2)
@

Xi, (k) DX1, = U(H,)/vNv! =5 G/uNu™=2 G 1y C X,

where ¢ is the conjugation determined by (A.1). Then we have the following by (A.2),
Lemma A.1, and Theorem 1.4.

Proposition A.2 The above ¢ gives an isomorphism between the sets of k-rational points
U(H)\Xu, (k) = G\ X,
and U (Hn)—‘orbﬁ decomposition
Xia(k) =X, U f(Xn); X1, 2G-zp, f(Xp)=G-a,

where xo and z; are the representatives of G-orbits in X,, given in Theorem 1.4.

Under the assumption ¢ is odd, we have ,u € GLyn(Ok). Hence we see

K':=U(H,) N GLyp(Op) = v *Kpv 1,

and the spacé X inherits the Cartan decomposition of X,,, and we have

Theorem A.3 Assume k has odd residual characteristic and take any T € H,(k'). Then

¥r= | | K'phaU(T),

AeAT
AT

A
Yr = (617‘- ) Exﬂ"\a

A ~ T means that |\| = v,(det(T)) (mod 2) and guarantees the ezistence of hy € G L, (k')
satisfying T = 7 [hy].

where

The above decomposition has been expected in [H5] Remark 4.2. In [H5], we have
known the disjointness of orbits in the right hand side by explicit formulas of spherical
functions wr(y; z), but we didn’t know they are enough. By Theorem A.3, we see the
spherical Fourier transform Fr is isomorphic in [H5, Theorem 4.1.].
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