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1. INTRODUCTION

A distinguished role within the theory of holomorphic modular forms is played by those
having weight one. The Deligne-Serre theorem [2] identifies the $L$-function $L(s, f)$ of a
newform $f$ of weight one with the Artin $L$-function an irreducible odd two-dimensional
representation of the Galois group $G$ of a normal extension $K/\mathbb{Q}$ . It is natural to seek
arithmetic interpretations of the Fourier coefficients of a harmonic modular form of weight
one. Here I will report on some recent joint work with Yingkun Li on this problem; see
[3] for a detailed treatment and proofs.
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2. HARMONIC MODULAR FORMS

A harmonic modular form is a Maass form of weight $k \in\frac{1}{2}\mathbb{Z}$ for $\Gamma_{0}(M)$ that is annihi-
lated by the weight $k$ Laplacian and that is allowed polar-type singularities in the cusps.
To such a form $F$ is associated the weight $2-k$ weakly holomorphic form

$\xi_{k}F(z)=2iy^{k}\overline{\partial_{\overline{z}}F(z)}.$

The weight $k$ Laplacian $\triangle_{k}$ can be written as
$\triangle_{k}=\xi_{2-k}\circ\xi_{k}.$

A special class of harmonic forms have Fourier expansions (necessariy unique) of the form

(1)
$F(z)= \sum_{n\geq n0}c^{+}(n)q^{n}-\sum_{n\geq 0}c(n)\beta_{k}(n, y)q^{-n}.$

Here $q=e^{2\pi iz}$ with $z=x+iy\in \mathcal{H}$ , the upper half-plane, and $\beta_{k}(n, y)$ is given for $n<0$
by

$\beta_{k}(n, y)=\int_{y}^{\infty}e^{-4\pi nt}t^{-k}dt$

while for $k\neq 1$ we have $\beta_{k}(0, y)=y^{1-k}/(k-1)$ and $\beta_{1}(0, y)=-\log y$ . For such $F$ the
Fourier expansion of $\xi_{k}(F)$ is simply

$\xi_{k}(F)=\sum_{n\geq 0}c(n)q^{n}.$

We shall refer to the $c^{+}(n)$ as the holomorphic Foumer coefficients of $F(z)$ .
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Prototypical examples are provided by Eisenstein series. When $k=2$ we have for the
full modular group the harmonic form

$E_{2}^{*}(z)=8 \pi\sum_{n\geq 0}\sigma(n)q^{n}+y^{-1},$

for which $\xi_{2}(E_{2}^{*})=1$ . Here $\sigma(n)=\sum_{m|n}m$ for $n>0$ and we set $\sigma(0)=-1/24$ . When
$k=3/2$ we have Zagier’s Eisenstein series for $\Gamma_{0}(4)$ :

$E_{3/2}^{*}(z)=16 \pi\sum_{n\geq 0}H(n)q^{n}-\sum_{n\in \mathbb{Z}}\beta_{3/2}(n^{2}, y)q^{-n^{2}}$

for which $\xi_{3/2}(E_{3/2}^{*})=\theta(z)=\sum_{n\in \mathbb{Z}}q^{n^{2}}$ , the weight 1/2 Jacobi theta series. Here $H(n)$ is
the Hurwitz class number with $H(O)=-1/12$ . It is interesting to observe that in these
(non-standard!) normalizations, the holomorphic Fourier coefficients of $E_{2}^{*}(z)$ and $E_{3/2}^{*}(z)$

are transcendental. In general the holomorphic Fourier coefficients $c^{+}(n)$ from (1) are not
well understood and have been the focus of quite a lot of recent research, especially when
$k=1/2$ (see the Introduction of [3] for references).

The existence of a harmonic form $F$ of weight $k<2$ whose image $\xi_{k}(F)$ is a given
cusp form of weight $2-k$ is known in many cases. One method is to construct them
using Poincare series or their analytic continuations. This is the method we use in [3].
Another approach is given in [1]. In any case, such $F$ is not unique since we can add to
it any weakly holomorphic form $f$ and $\xi_{k}(F+f)=\xi_{k}(F)$ . In particular, the holomorphic
Fourier coefficients of $F$ are not determined by $\xi_{k}(F)$ .

3. WEIGHT ONE

We now turn to the case of interest to us, namely the self-dual case of weight $k=1$ . The
Riemann-Roch theorem does not apply when $k=2-k$ , and the existence of cusp forms is
a subtle issue. We will provide some evidence that the holomorphic Fourier coefficients of
a harmonic form $F$ of weight one with $\xi_{1}(F)$ a newform, which is also of weight one and
is associated to $K$ by the Deligne-Serre theorem, contain arithmetic information about
$K$ . So far we have only been able to provide proofs in the dihedral case, but numerical
evidence for more general results is promising.

An interesting harmonic modular form of weight one was constructed by Kudla, Rapoport
and Yang [7]. Suppose that $M=p>3$ is a prime with $p\equiv 3(mod 4)$ and that $\chi_{p}(\cdot)=(_{\overline{p}})$

is the Legendre symbol. Let

(2) $E_{1}(z)= \frac{1}{2}H(p)+\sum_{n\geq 1}R_{p}(n)q^{n}$

be Hecke’s Eisenstein series of weight one for $\Gamma_{0}(p)$ with character $\chi_{p}$ , where for $n>0$

(3)
$R_{p}(n)= \sum_{m|n}\chi_{p}(m)$

.

It follows from [7] that for $n>0$

(4) $R_{p}^{+}(n)=-( \log p)ord_{p}(n)R_{p}(n)-\sum_{\chi_{p}(q)=-1}\log q($
ord$q(n)+1)R_{p}(n/q)$
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gives the n-th holomorphic Fourier coefficient of a harmonic form of weight one whose
image under $\xi_{1}$ is $E_{1}(z)$ . This harmonic form is constructed using the $s$-derivative of the
non-holomorphic Hecke-Eisenstein series of weight one. Its holomorphic Fourier coeffi-
cients $R_{p}^{+}(n)$ vanish when $n<0$ and $R^{+}(0)$ can be given explicitly.

Our interest here is in the holomorphic Fourier coefficients of harmonic forms associated
to newforms. We will continue to assume that $M=p>3$ is a prime. To each $\mathcal{A}\in_{1}$ Cl$(F)$ ,
the class group of $F$ , one can associate a theta series $\theta_{\mathcal{A}}(z)$ defined by

$\theta_{A}(z):=\frac{1}{2}+\sum_{[\mathfrak{a}]\in \mathcal{A}}q^{N(\mathfrak{a})}=\sum_{n\mathfrak{a}\subset \mathcal{O}_{F}\geq 0}r_{\mathcal{A}}(n)q^{n}$

Hecke showed that $\theta_{A}(z)\in M_{1}(p, \chi_{p})$ , the space of weight one $ho1’0$morphic modular forms
for $\Gamma_{0}(p)$ with character $\chi_{p}$ . Let $\psi$ be a character of Cl $(F)$ and consider $g_{\psi}(z)\in M_{1}(p, \chi_{p})$

defined by

$g_{\psi}(z):= \sum_{\mathcal{A}\in C1(F)}\psi(\mathcal{A})\theta_{\mathcal{A}}(z)=\sum_{n\geq 0}r_{\psi}(n)q^{n}.$

When $\psi=\psi_{0}$ is the trivial character, the form $g_{\psi_{0}}(z)$ is just $E_{1}(z)$ from (2), as a conse-
quence of Dirichlet’s fundamental formula

(5)
$R_{p}(n)= \sum_{\mathcal{A}\in C1(F)}r_{\mathcal{A}}(n)$

.

Otherwise, $g_{\psi)}(z)$ is a newform in $S_{1}(p, \chi_{p})$ , the subspace of $M_{1}(p, \chi_{p})$ consisting of cusp
forms.

The following result shows that the holomorphic Fourier coefficients of certain harmonic
modular forms of weight one whose image under $\xi_{1}$ is $g_{\psi}(z)$ can be expressed in terms of
logarithms of algebraic numbers in $H$ . It is to be noted that these harmonic forms have
poles in the cusps and are not in general unique. Let $H$ be the Hilbert class field of $F$

with ring of integers $\mathcal{O}_{H}$ and denote by $\sigma_{C}\in$ Gal$(H/F)$ the element associated to the
class $C\in$ Cl$(F)$ via Artin’s isomorphism.

Theorem 1. Let $p\equiv 3(mod 4)$ be a prime with $p>3$ . Let $\psi$ be a non-trivial chamcter
of Cl$(F)$ , where $F=\mathbb{Q}(\sqrt{-p})$ . Then there exists a weight one harmonic modular form
whose image under $\xi_{1}$ is $g_{\psi}(z)$ and whose holomorphic Fourier coefficients $r_{\psi}^{+}(n)$ vanish
when $\chi_{p}(n)=1$ or $n<- \frac{p+1}{24}$ and have the form

$r_{\sqrt{}}^{+}(n)=- \beta\sum_{A\in C1(F)}\psi^{2}(\mathcal{A})\log|u(n, \mathcal{A})|,$

where $u(n, \mathcal{A})$ are units in $\mathcal{O}_{H}$ when $n\leq 0$ and algebmic numbers in $H$ when $n>0$ . Here
$\beta\in \mathbb{Q}$ depends only on $p$ . Furthermore, for all $\mathcal{A},$ $C\in$ Cl$(F)$ we have that

$\sigma_{C}(u(n, \mathcal{A}))=u(n, \mathcal{A}C^{-1})$

and $N_{H/\mathbb{Q}}(u(n, \mathcal{A}))$ is an integer with

(6) $- \frac{\beta}{2}\log|N_{H/\mathbb{Q}}u(n, \mathcal{A})|=R_{p}^{+}(n)$

when $n\neq 0.$
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The statements about $u(n, \mathcal{A})$ bear a striking similarity to Stark’s Conjectures on spe-
cial values of derivatives of $L$-functions (see [8],[9]). When $n\leq 0$ they are actually conse-
quences of known cases of these conjectures. Also, (6) can be interpreted as a harmonic
version of Dirichlet’s identity (5).

The proof of this result makes use of the Rankin-Selberg method developed in [5]
for computing heights of Heegner divisors. However, it requires the use of weight one
harmonic forms with polar singularities in cusps in place of weight one Eisenstein series
hence uses regularized inner products. In fact, modular curves of large prime level $N$

and their Heegner divisors of height zero are used order to get to the individual Fourier
$co$efficients.

As was pointed out by Zagier, his identity with Gross for the norms of differences of
singular values of the modular $j$-function can be expressed in terms of the coefficients
$R_{p}^{+}(n)$ given in (4). For simplicity, let $-d<0$ be a fundamental discriminant not equal
to $-p$ . and set $F’=\mathbb{Q}(\sqrt{-d})$ . As is well-known, the modular $j$ -function is well-defined
on ideal classes of $F$ and $F’$ and takes values in the rings of integers of their respective
Hilbert class fields. Also, values of the $j$-function at different ideal classes are Galois
conjugates of each other. For any $\mathcal{A}\in$ Cl$(F)$ define the quantity

(7)
$a_{d,\mathcal{A}}:= \prod_{\mathcal{A}’\in C1(F’)}(j(\mathcal{A})-j(\mathcal{A}’))$

,

whose norm to $F$ is thus $\prod_{\mathcal{A}\in C1(F)}a_{d,\mathcal{A}}$ and is an ordinary integer. The result of Gross
and Zagier [4, Theorem 1.3] is that this integer can be expressed in terms of $R_{p}^{+}(n)$ as
follows:

(8)
$\log\prod_{\mathcal{A}\in C1(F)}|a_{d,\mathcal{A}}|^{2/w_{d}}=-\frac{1}{4}\sum_{k\in \mathbb{Z}}\delta(k)R_{p}^{+}(\frac{pd-k^{2}}{4}))$

where $w_{d}$ is the number of roots of unity in $F’$ and $\delta(k)=2$ if $p|k$ and 1 otherwise.
There are two proofs of this factorization in [4]. One proof is analytic and the other one

algebraic. The algebraic approach actually gives the factorization of the ideal $(a_{d,\mathcal{A}})$ in
$\mathcal{O}_{H}$ for each class $\mathcal{A}\in$ Cl$(F)$ . It is enough to state it for the principal class $\mathcal{A}_{0}$ . Suppose
that $\ell$ is a rational prime such that $\chi_{p}(P)\neq 1$ . Then the ideal $(\ell)$ factors in $\mathcal{O}_{H}$ as

(9)
$\ell=\prod_{\mathcal{A}\in C1(F)}\mathfrak{l}_{\mathcal{A}}^{\delta(\ell)}.$

The $\mathfrak{l}_{A}$ ’s are primes in $H$ above $l$ uniquely labeled so that $\sigma_{C}(\mathfrak{l}_{\mathcal{A}})=\mathfrak{l}_{\mathcal{A}C^{-1}}$ for all $C\in$ Cl $(F)$

and complex conjugation sends $\mathfrak{l}_{\mathcal{A}}$ to $\mathfrak{l}_{\mathcal{A}^{-1}}$ . It is shown in [4] that the order of $a_{d,\mathcal{A}_{0}}$ at the
place associated to the prime $\mathfrak{l}_{\mathcal{A}}$ is given by

(10) ord $\iota_{A}(a_{d,\mathcal{A}_{0}})=\frac{1}{2}\sum_{k\in \mathbb{Z}}\delta(k)\sum_{m\geq 1}r_{\mathcal{A}^{2}}(\frac{pd-k^{2}}{4\ell^{m}})$
.

Our second main result gives a modular interpretation of the individual values $|a_{d,\mathcal{A}}|.$

It is convenient to give it as a twisted version of (8).
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Theorem 2. For any harmonic form given in Theorem 1 having holomorphic Fourier
coefficients $r_{\psi}^{+}(n)and-d<0$ any fundamental discriminant different $from-p$ we have

(11)
$\sum_{\mathcal{A}\in C1(F)}\psi^{2}(\mathcal{A})\log|a_{d,\mathcal{A}}|^{2/w_{d}}=-\frac{1}{4}\sum_{k\in \mathbb{Z}}\delta(k)r_{\psi}^{+}(\frac{pd-k^{2}}{4})$

where $a_{d,\mathcal{A}}$ is defined in (7).

Since $p>3$ is a prime number, Cl $(F)$ has odd order $H(p)$ and $\psi^{2}$ is only trivial when
$\psi$ is trivial. Thus we can express each logarithmic term in the sum on the left hand side
of (11) in terms of the holomorphic coefficients of a harmonic modular form associated to
a theta series.

As with Theorem 1, this is proved using the methods of [5] and not the analytic tech-
nique of [4], which uses the restriction to the diagonal of an Eisenstein series for a Hilbert
modular group. In particular, we make use of a real-analytic function $\Phi(z)$ that trans-
forms with weight 3/2 and leve14, and use holomorphic projection to obtain an equation
between a finite linear combination of $r_{\psi}^{+}(n)$ ’s and an infinite sum, similar to one in [5].
We also use machinery from [6]. $A$ novel feature is an elementary counting argument
needed to construct a Green’s function evaluated at $CM$ points. Actually, equation (11)
is a particular example of a more general identity involving values of certain Borcherds
lifts.

Numerical examples and the fact that it would also imply (10) motivate the following.
Conjecture. In Theorem 1 we have:

(i) The number $2/\beta$ is an integer dividing $24H(p)h_{H}$ , where $h_{H}$ is the class number of
$H.$

(ii) For $\mathcal{B}\in$ Cl $(F)$ , let $\mathfrak{l}_{\mathcal{B}}$ be a prime ideal above the mtional $p_{7\eta}me\ell$ as in (9). Then
the order of $u(n, \mathcal{A})$ at the place of $H$ corresponding to $\mathfrak{l}_{\mathcal{B}}$ is

ord
$\mathfrak{l}_{\mathcal{B}}(u(n, \mathcal{A}))=\frac{2}{\beta}\sum_{m\geq 1}r_{(\mathcal{A}^{-1}\mathcal{B})^{2}}(\frac{n}{l^{m}})$

.

At all other places of $H,$ $u(n, \mathcal{A})$ is a unit. In particular, $u(n, \mathcal{A})\in \mathcal{O}_{H}$ for all $n,$
$\mathcal{A}.$

Finally, we remark that further numerical calculations suggest that results analogous
to Theorem 1 and the Conjecture should hold for non-dihedral newforms. Again, see [3]
for details.
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