On the Cyclicity of finite CM abelian varieties Cristian Virdol Graduate School of Mathematics Kyushu University virdol@imi.kyushu-u.ac.jp July 17, 2012 #### Abstract Let A be an abelian variety over a number field F of dimension r, where $r \geq 1$ is an integer. Assume that $\operatorname{End}_{\bar{F}}A \otimes \mathbb{Q} = K$, where K is a CM-field such that $[K:\mathbb{Q}] = 2r$. For \wp a finite prime of F, we denote by \mathbb{F}_{\wp} the residue field at \wp . If A has good reduction at \wp , let \bar{A} be the reduction of A at \wp . Under GRH, we obtain ([V]) an asymptotic formula for the number of primes \wp of F, with $N_{F/\mathbb{Q}}\wp \leq x$, for which $\bar{A}(\mathbb{F}_{\wp})$ has at most 2r-1 cyclic components. ### 1 The Main result Consider A an abelian variety defined over a number field F, of conductor \mathcal{N} , and of dimension r, where $r \geq 1$ is an integer. Let Σ_F be the set of finite places of F, and for \wp a prime of F, let \mathbb{F}_{\wp} be the residue field at \wp . Let \mathcal{P}_A be the set of primes $\wp \in \Sigma_F$ of good reduction for A, (i.e. $(N_{F/\mathbb{Q}}\wp, N_{F/\mathbb{Q}}\mathcal{N}) = 1$). For $\wp \in \mathcal{P}_A$, we denote by \overline{A} the reduction of A at \wp . We have that $\bar{A}(\mathbb{F}_{\wp}) \subseteq \bar{A}[m](\bar{\mathbb{F}}_{\wp}) \subseteq (\mathbb{Z}/m\mathbb{Z})^{2r}$ for any positive integer m satisfying $|\bar{A}(\mathbb{F}_{\wp})||m$. Hence $$\bar{A}(\mathbb{F}_{\wp}) \simeq \mathbb{Z}/m_1\mathbb{Z} \times \mathbb{Z}/m_2\mathbb{Z} \times \cdots \times \mathbb{Z}/m_s\mathbb{Z},$$ (1.1) where $s \leq 2r$, $m_i \in \mathbb{Z}_{\geq 2}$, and $m_i | m_{i+1}$ for $1 \leq i \leq s-1$. Each $\mathbb{Z}/m_i\mathbb{Z}$ is called a cyclic component of $\bar{A}(\mathbb{F}_{\wp})$. If s < 2r, we say that $\bar{A}(\mathbb{F}_{\wp})$ has at most (2r-1) cyclic components (thus if r = 1 this means that $\bar{A}(\mathbb{F}_{\wp})$ is cyclic). For $x \in \mathbb{R}$, define $$f_{A,F}(x) = |\{\wp \in \mathcal{P}_A | N_{F/\mathbb{Q}}\wp \le x, \ \bar{A}(\mathbb{F}_\wp) \text{ has at most } (2r-1) \text{ cyclic components}\}|.$$ Let F(A[m]) be the field obtained by adjoining to F the m-division points A[m] of A. We obtain (this is the main result of [V]; when $F = \mathbb{Q}$ and r = 1, i.e. when A is a CM elliptic curve over \mathbb{Q} , Theorem 1.1 is similar to Theorem 1.2 of [CM]): **Theorem 1.1.** Let A be an abelian variety over a number field F of dimension $r \geq 1$, of conductor \mathcal{N} , such that $\operatorname{End}_{\bar{F}}A \otimes \mathbb{Q} = K$, where K is a CM-field satisfying $[K:\mathbb{Q}] = 2r$. Assume that the Generalized Riemann Hypothesis (GRH) holds for the Dedekind zeta functions of the division fields for A. Then we have $$f_{A,F}(x) = c_{A,F} li \ x + O_{A,F}(x^{\frac{5}{6}} (\log x)^{\frac{2}{3}}),$$ where $li \ x := \int_2^x \frac{1}{\log t} dt$, and $$c_{A,F} = \sum_{m=1}^{\infty} \frac{\mu(m)}{[F(A[m]):F]}.$$ Here $\mu(\cdot)$ is the Mobius function, and the implicit $O_{A,F}$ -constant depends on A and F. #### 2 Odds and ends If F is a number field, we denote $G_F := \operatorname{Gal}(\bar{F}/F)$. Let A be an abelian variety over F of dimension $r \geq 1$, and of conductor \mathcal{N} . We denote by \mathcal{P}_A be the set of primes $\wp \in \Sigma_F$ of good reduction for A, (i.e. $(N_{F/\mathbb{Q}}\wp, N_{F/\mathbb{Q}}\mathcal{N}) = 1$). For $m \geq 1$ an integer, let A[m] be the m-division points of A in \bar{F} . Then $$A[m] \simeq (\mathbb{Z}/m\mathbb{Z})^{2r}.$$ If F(A[m]) is the field obtained by adjoining to F the elements of A[m], then we have a natural injection $$\Phi_m : \operatorname{Gal}(F(A[m])/F) \hookrightarrow \operatorname{Aut}(A[m]) \simeq \operatorname{GL}_{2r}(\mathbb{Z}/m\mathbb{Z}).$$ For l a rational prime, define $$T_l(A) = \varprojlim A[l^n].$$ The Galois group G_F acts on $$T_l(A) \simeq \mathbb{Z}_l^{2r},$$ where \mathbb{Z}_l is the *l*-adic completion of \mathbb{Z} at l, and we obtain a representation $$\rho_{A,l}: G_F \to \operatorname{Aut}(T_l(A)) \simeq \operatorname{GL}_{2r}(\mathbb{Z}_l),$$ which is unramified outside $lN_{F/\mathbb{Q}}\mathcal{N}$. If $\wp \in \mathcal{P}_A$, let σ_\wp be the Artin symbol of \wp in G_F , and let l be a rational prime satisfying $(l, N_{F/\mathbb{Q}}\wp) = 1$. We denote by $P_{A,\wp}(X) = X^{2r} + a_{2r-1,A}(\wp)X^{2r-1} + \ldots + a_{1,A}(\wp)X + N_{F/\mathbb{Q}}\wp^r \in \mathbb{Z}[X]$ the characteristic polynomial of σ_\wp on $T_l(A)$. Then $P_{A,\wp}(X)$ is independent of l. One can identify $T_l(A)$ with $T_l(\bar{A})$, where \bar{A} is the reduction of A at \wp , and the action of σ_\wp on $T_l(A)$ is the same as the action of the Frobenius π_\wp of \bar{A} on $T_l(\bar{A})$. We say that an abelian variety A defined over a number field F of dimension r is CM (or has many complex multiplications) if $\operatorname{End}_{\bar{F}}(A) \otimes \mathbb{Q} = K$, where K is a CM-field satisfying $[K:\mathbb{Q}]=2r$. We denote by \mathcal{F} the maximal totally real number field contained in K, and let $O_{\mathcal{F}}$ be the ring of integers of \mathcal{F} and let O_K be the ring of integers of K. Let $\phi_1,\ldots,\phi_r,\bar{\phi}_1,\ldots,\bar{\phi}_r$, be the set of embeddings of K into \mathbb{C} , where $\bar{\phi}_i$ is the complex conjugate of ϕ_i . Then we have $[K:\mathcal{F}]=2$, and $K=\mathcal{F}(\sqrt{-D})$ for some totally positive $D\in O_{\mathcal{F}}$. **Lemma 2.1.** (Ribet [R]) Let A be a CM abelian variety defined over a number field F, of dimension r, of conductor \mathcal{N} , and let m be a positive integer. Then 1. $$\phi(m)^2 \ll [F(A[m]):F],$$ where $\phi(m)$ is the Euler function, 2. the extension F(A[m])/F is ramified only at places dividing $m\mathcal{N}$. **Lemma 2.2.** (Shimura [SH]) Let A be a CM abelian variety defined over a number field F, of dimension r, and of conductor N. Then for all $\wp \in \mathcal{P}_A$, the characteristic polynomial $P_{A,\wp}(X)$ has roots $\pi_1(\wp), \ldots, \pi_r(\wp), \bar{\pi}_1(\wp), \ldots, \bar{\pi}_r(\wp)$, where $\bar{\pi}_i(\wp)$ is the complex conjugate of $\pi_i(\wp)$, and $\pi_i(\wp)\bar{\pi}_i(\wp) = N_{F/\mathbb{Q}\wp}$, for all $i = 1, \ldots, r$. Moreover one can assume that $\pi_1(\wp) \in End_{\bar{F}}(A) \subseteq O_K$, and that for any $i = 1, \ldots, r$, we have $\pi_i(\wp) = \phi_i(\pi_1(\wp))$. On can prove the following results (see [V]): **Lemma 2.3.** Let A be an abelian variety over a number field F, of conductor \mathcal{N} . Let $\wp \in \mathcal{P}_A$, and let p be the rational prime below \wp . Let $q \neq p$ be a rational prime. Then $\bar{A}(\mathbb{F}_\wp)$ contains a (q, \ldots, q) -type subgroup (q appears 2r-times), i.e. a subgroup isomorphic to $\mathbb{Z}/q\mathbb{Z} \times \ldots \times \mathbb{Z}/q\mathbb{Z}$, iff \wp splits completely in F(A[q]). **Lemma 2.4.** Let A be a CM abelian variety defined over a number field F, of dimension r, and of conductor N. Let m be a positive integer. Then $\wp \in \mathcal{P}_A$, with $(N_{F/\mathbb{Q}}\wp, m) = 1$, splits completely in F(A[m]) iff $\frac{\pi_1(\wp) - 1}{m} \in End_{\bar{F}}(A)$, where $\pi_1(\wp)$ appears in Lemma 2.2. **Lemma 2.5.** Let A be an abelian variety over a number field F, of conductor \mathcal{N} . Let $\wp \in \mathcal{P}_A$, and let p be the rational prime below \wp . Then $\overline{A}(\mathbb{F}_\wp)$ contains at most (2r-1)-cyclic components iff \wp does not split completely in F(A[q]) for any rational prime $q \neq p$. **Lemma 2.6.** With the same notations as above, for any $m \in \mathbb{N}^*$ and any $x \in \mathbb{R}$, we have that $$S_m := |\{\wp \in \Sigma_F | N_{F/\mathbb{Q}}\wp \le x, N_{F/\mathbb{Q}}\wp = (\alpha m + 1)^2 + D\beta^2 m^2,$$ $$for \ some \ \alpha + \sqrt{-D}\beta \in O_K, \ where \ \alpha, \beta \in \mathcal{F}\}|$$ $$\ll \frac{x^{\frac{3}{2}}}{m^3} + 1.$$ ## 3 Chebotarev Consider L/F a Galois extension of number fields, with Galois group G. We denote by n_L and d_L the degree and the discriminant of L/\mathbb{Q} , and by d_F the discriminant of F/\mathbb{Q} . Let $\mathcal{P}(L/F)$ be the set of rational primes p which lie below places of F which ramify in L/F. **Lemma 3.1.** (Serre [SE]) If L/F is Galois extension of number fields, then $$\log d_L \le |G| \log d_F + n_L (1 - \frac{1}{|G|}) \sum_{p \in \mathcal{P}(L/F)} \log p + n_L \log |G|.$$ Let C be a conjugacy class in G. For a positive real number x, let $$\pi_C(x, L/F) := |\{\wp \in \Sigma_F | N_{F/\mathbb{Q}}\wp \le x, \wp \text{ unramified in } L/F, \sigma_\wp \in C\}|,$$ where σ_{\wp} is a Frobenius element at \wp . The Chebotarev density theorem says that $$\pi_C(x, L/F) \sim \frac{|C|}{|G|} \text{li } x \sim \frac{|C|}{|G|} \frac{x}{\log x},$$ and moreover: **Lemma 3.2.** (Serre [SE]) Let L/F be a Galois extension of number fields. If the Dedekind zeta function of L satisfies the GRH, then $$|\pi_C(x, L/F) - \frac{|C|}{|G|} li \ x| \ll |C| x^{\frac{1}{2}} (\log x + \frac{\log |d_L|}{|G|}),$$ where the implied O-constant depends only on F. # 4 Sketch of the proof of Theorem 1.1 Using §2 one obtains (see §4 of [V]), for y = y(x) any real number with $y \le 2x^{\frac{1}{2}}$, that $$f_{A,F}(x) = \sum_{m \le 2x^{\frac{1}{2}}} \mu(m)\pi_1(x, F(A[m])/F)$$ $$= \sum_{m \le y} \mu(m)\pi_1(x, F(A[m])/F) + \sum_{y < m \le 2x^{\frac{1}{2}}} \mu(m)\pi_1(x, F(A[m])/F)$$ $$= \min + \text{error.}$$ (4.1) Using §2 and Chebotarev, under GRH, one obtains (see §4 of [V]) $$\min = \sum_{m \le y} \frac{\mu(m)}{n(m)} \operatorname{li} x + \sum_{m \le y} O(x^{\frac{1}{2}} \log(mN_{F/\mathbb{Q}} \mathcal{N} x))$$ $$= \sum_{m < y} \frac{\mu(m)}{n(m)} \operatorname{li} x + O(yx^{\frac{1}{2}} \log(N_{F/\mathbb{Q}} \mathcal{N}x)), \tag{4.2}$$ where n(m) := [F(A[m]) : F], and error $$\ll \sum_{\substack{y < m \le 2x^{\frac{1}{2}} \\ m \text{ souare-free}}} \frac{x^{\frac{3}{2}}}{m^3} \ll \frac{x^{\frac{3}{2}}}{y^2}.$$ For $$y \coloneqq rac{x^{ rac{1}{3}}}{(\log(N_{F/\mathbb{Q}}\mathcal{N}x))^{ rac{1}{3}}},$$ from §2 one gets (see §4 of [V]) $$\sum_{m>y} \frac{\mu(m)}{n(m)} \mathrm{li} \ x \ll \sum_{\substack{m>y\\ m \ \mathrm{square-free}}} \frac{(\log\log m)^2}{m^2} \mathrm{li} \ x \ll \frac{(\log\log y)^2}{y} \mathrm{li} \ x \ll x^{\frac{5}{6}}.$$ Hence $$f_{A,F}(x) = \sum_{m=1}^{\infty} \frac{\mu(m)}{n(m)} \text{li } x + O(x^{\frac{5}{6}} (\log(N_{F/\mathbb{Q}} \mathcal{N} x))^{\frac{2}{3}}).$$ #### References - [CM] A. C. Cojocaru and M. R. Murty, Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linniks problem, Math. Ann. 330 (2004) 601-625. - [M] D. Mumford, *Abelian varieties*, Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, by Oxford University Press. - [R] K. A. Ribet, Division points of abelian varieties with complex multiplication, Mem. Soc. Math. de France 2e serie 2 (1980), 75-94. - [SE] J.-P. Serre, Quelques applications du theoreme de densite de Chebotarev, Inst. Hautes Etudes Sci. Publ. Math., no. 54, 1981, pp. 123-201. - [SH] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Princeton University Press, 1971. - [SI] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151. Springer, New York (1994). - [V] C. Virdol, Cyclicity of finite CM abelian varieties, submitted.