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ABSTRACT. We discuss the action of Hecke operators on Siegel Eisen-
stein series in the case of degree 2 and square-free level.

1. INTRODUCTION

Determining representation numbers of quadratic forms is a classical prob-
lem in number theory, and elliptic modular forms have been used to great
advantage in studying this problem. The number of times a positive definite
quadratic form $Q$ represents an integer $t$ is given by the tth Fourier coeffi-
cient of the theta series attached to $Q$ , and this theta series is one of our
basic examples of a modular form. It is well-known that the average theta
series lies in the space spanned by Eisenstein series (this weighted average is
taken over the genus of $Q$ , which consists of all quadratic forms that locally
everywhere are isometric to $Q$ ). In the case of integral weight, the Fourier
expansions for the Eisenstein series are well-known (see, for instance, [15]);
then, realising the average theta series as a linear combination of Eisen-
stein series, one obtains closed-form formulas for the average representation
numbers (see, for instance, [17]).

Siegel introduced generalised theta series to study how often a given qua-
dratic form $Q$ represents any other quadratic form $T$ ; these generalised theta
series are our prototypical examples of Siegel modular forms. Currently, the
study of Siegel modular forms is a very active area of research, and there
are many different approaches used, both to provide new proofs of known
results, and to obtain new insights, tools, and of course theorems.

Two fundamental problems that have not been completely solved are that
of finding explicit Fourier series expansions for all Siegel Eisenstein series,
and that of determining the action of Hecke operators on all Siegel Eisen-
stein series. In the case of elliptic modular forms, for any (integral) weight,
level and character, as we know the Fourier expansions of a basis for the
space of Eisenstein series, we can use these to determine the action of the
Hecke operators on Eisenstein series. However, in the case of Siegel mod-
ular forms, closed-form formulas for Fourier coefficients of Eisenstein series
are only known in certain cases: In [9], formulas for the degree 2, level 1
Eisenstein series are developed. These are also developed in [4] (chapter II)
using the Fourier expansion for the level l, index 1 Jacobi Eisenstein series
(see [4] chapter I), and the connection between Jacobi forms and degree 2
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Siegel forms revealed by the first proof of the Saito-Kurokawa correspon-
dence (proved in the series of papers [11], [12], [13], [1], [19]). Then in
[7], [8], Katsurada combines the induction formula for local densities with
a functional equation to obtain formulas for the Fourier coefficients of the
Eisenstein series with Siegel degree at least 3 and level l. In [10], Kohnen
gives an explicit linear version of the Ikeda lift (this lift was conjectured
by Duke and Imamoglu); using this, he obtains formulas for the Fourier
coefficients of the Eisenstein series of any even Siegel degree and level 1.
Then in [2], Choie and Kohnen modify Kohnen’s approach to yield formulas
for the Fourier coefficients of the Eisenstein series of any odd Siegel degree
and level 1. In [14], Mizuno modifies the approach of [4], using (among
other things) a converse theorem of Imai [6] to obtain formulas for one of
the Eisenstein series of Siegel degree 2, odd square-free level, and primitive
character. Quite recently, in [16], Takemori uses $p$-adic Siegel $mo$dular forms
to develop formulas for one of the Eisenstein series of Siegel degree 2, arbi-
trary level, and primitive character. All these Fourier coefficient formulas
are rather complicated.

Recently [18], we determined the action of Hecke operators on all Eisen-
stein series of Siegel degree 2 and square-free level by intricate but elemen-
tary methods, without any use of known Fourier coefficients of Siegel Eisen-
stein series. The idea of the approach is described below; it relies merely
on the definition of the Eisenstein series and the explicit set of matrices de-
scribed in [5] that give the action of the Hecke operators. Via this concrete
approach, we find that the natural basis for the space of degree 2 Eisenstein
series of square-free level $\mathcal{N}$ and character $\chi$ consists of eigenforms for all
Hecke operators $T(p),$ $T_{j}(p^{2})(1\leq j\leq n)$ where $p$ is a prime not dividing $\mathcal{N},$

and we compute the eigenvalues. For primes $q|\mathcal{N}$ , we obtain Hecke relations
among these Eisenstein series when $\chi^{2}\neq 1$ ; we use these to diagonalise the
basis to obtain a basis consisting of eigenforms for all $T(p),$ $T_{j}(p^{2})$ , and we
compute the eigenvalues (see Proposition 2.1 below). Additionally, we note
that these Hecke relations can be used with known Eisenstein series Fourier
coefficients to generate the Fourier coefficients of other Eisenstein series. In
particular, when $\chi=1$ , we note that one can use the Fourier expansion
for the level 1 Eisenstein series to generate the Fourier expansions for the
basis of Eisenstein series of square-free level $\mathcal{N}$ and trivial character; this
has recently been carried out by Martin Dickson [3].

Currently we are in the process of extending this work to arbitrary Siegel
degree. For trivial character, we are again finding that for primes $q|\mathcal{N}$ , the
action of $T(q),$ $T_{j}(q^{2})$ yield sufficiently many Hecke relations to allow us to
generatre the Fourier expansions of all basis elements with square-free level

$\mathcal{N}$ from the Fourier expansion of the level 1 Eisenstein series.

2. DEFINITIONS AND RESULTS

For $n\in z_{+}$ , the symplectic group $Sp_{n}(\mathbb{Z})$ is the set of $2n\cross 2n$ matrices
(written in the form of $n\cross n$ blocks)

$\{(\begin{array}{ll}A BC D\end{array})\in SL_{2n}(\mathbb{Z}):$ $A$ $tB,$ $CtD$ are symmetric, $AtD-B^{t}C=I\}.$
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For $\mathcal{N}\in \mathbb{Z}_{+},$ $\Gamma_{0}(\mathcal{N})$ is the subgroup of $Sp_{n}(\mathbb{Z})$ consisting of those matrices
where the block $C$ is congruent to $0$ modulo $\mathcal{N};\Gamma_{\infty}$ is the subgroup of
$Sp_{n}(\mathbb{Z})$ consisting of those matrices where the block $C$ is equal to $0$ . Each
$0$-dimensional cusp for the Siegel upper half-space

$\mathcal{H}_{(n)}=\{X+iY:X, Y\in \mathbb{R}_{sym}^{n,n}, Y>0\}$

and each Eisenstein series in the natural basis for the subspace of $\Gamma_{0}(\mathcal{N})-$

Siegel Eisenstein series corresponds to an element of

$\Gamma_{\infty}\backslash Sp_{n}(\mathbb{Z})/\Gamma_{0}(\mathcal{N})$ .

For $\gamma_{0}\in Sp_{n}(\mathbb{Z})$ , the weight $k$ Eisenstein series corresponding to $\Gamma_{\infty}\gamma_{0}\Gamma_{0}(\mathcal{N})$

is defined by

$E_{\gamma 0}(\tau)=\sum_{\gamma}\overline{\chi}(\det D_{\gamma})1(\tau)|\gamma0\gamma$

where $\Gamma_{\infty}\gamma_{0}\gamma$ varies over the $\Gamma_{0}(\mathcal{N})$ -orbit of $\Gamma_{\infty}\gamma_{0}$ , and for $\gamma=(_{M}*$ $N*)\in$

$Sp_{n}(\mathbb{Z}),$ $1(\tau)|\gamma=\det(M\tau+N)^{-k}$ ; here $\tau\in \mathcal{H}_{(n)}.$

From now on, suppose $\mathcal{N}$ is square-free. We can show that the elements of
$\Gamma_{\infty}\backslash Sp_{n}(\mathbb{Z})/\Gamma_{0}(\mathcal{N})$ correspond to factorisations of $\mathcal{N}$ as a product of $n+1$

positive integers as follows: With $\mathcal{N}_{0}\cdots \mathcal{N}_{n}=\mathcal{N}$ , we have $\Gamma_{\infty}$ $(_{M^{*}}$ $N*)$ and

$\Gamma_{\infty}$ $(_{M^{*}}, N^{*\prime})$ in the same $\Gamma_{0}(\mathcal{N})$ -orbit if and only if $rank_{q}M=rank_{q}M’$

for each prime $q|\mathcal{N}$ (here $rank_{q}M$ denotes the rank of $M$ over $\mathbb{Z}/q\mathbb{Z}$ ). Thus
we can parameterise our basis of the space of Eisenstien series by these
factorisations of $\mathcal{N}$ , labeling the baeis elements as $\mathbb{E}_{(\mathcal{N}_{0},\ldots N_{n})}$ . (If $\chi_{q}^{2}=1$ for
any prime $q|\mathcal{N}_{i},$ $0<i<n$ , the above series for $E_{(\mathcal{N}_{0},\ldots N_{n})}$ is not well-defined.
If we try to build $\mathbb{E}_{(\mathcal{N}_{0,\ldots r}\wedge\Gamma_{n})}$ from $\Gamma(\mathcal{N})$-Eisenstein series when $\chi_{q}^{2}\neq 1$ for
some $q|\mathcal{N}_{i},$ $0<i<n$ , we get $0$ . So we only have $\mathbb{E}_{(\mathcal{N}_{0},\ldots,\mathcal{N}_{n})}$ in our basis
when $\chi_{q}^{2}=1$ for all primes $q|\mathcal{N}_{1}\cdots \mathcal{N}_{n-1}.)$

Now consider the case that $n=2$ , and let $\rho=(\mathcal{N}_{0},\mathcal{N}_{1},\mathcal{N}_{2})$ where
$\mathcal{N}_{0}\mathcal{N}_{1}\mathcal{N}_{2}=\mathcal{N}$ . Consider $p$ a prime not dividing the level $\mathcal{N}$ ; the sum
for $\mathbb{E}_{\rho}(\tau)|T(p)$ involves terms such as

$p^{k-3}\chi(p)\overline{\chi}_{\rho}(M, N)$

. $\det(M(1 p)G^{-1}(\tau tG^{-1}+(u 0))(^{1/p}$ $1)+N)^{-k}$

$=p^{k}p^{k-3}\chi(p)\overline{\chi}_{\rho}(M, N)$

. $\det(M(l p)G^{-1}\tau+(M(u 0)+N)tG(p 1))^{-k}$

where $u$ varies over $(\mathbb{Z}/p\mathbb{Z})^{\cross},$ $G$ varies over $SL_{n}(\mathbb{Z})/\mathcal{K},$

$\mathcal{K}=\{\gamma\in SL_{n}(\mathbb{Z}):\gamma\equiv(_{*}^{*} 0*)(p)\},$
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and $\chi_{\rho}(M, N)=\chi(\det D_{\gamma})$ where $\Gamma_{\infty}(_{M}*$ $N*)=\Gamma_{\infty}\gamma 0\gamma$ for $\gamma\in\Gamma_{0}(\mathcal{N})$ .

The other terms can be similarly massaged to be of the shape

$p^{2k-3}\chi(p^{2})\overline{\chi}_{\rho}(M, N)\det(pM\tau+N)^{-k},$

and
$p^{2k-3}\overline{\chi}_{\rho}(M, N)\det(M\tau+MY+pN)^{-k}$

with $Y\in \mathbb{Z}_{sym}^{2,2}$ varying modulo $p$ . We demonstrate how we proceed with
the latter terms.

Suppose $p\nmid \mathcal{N}$ ; decompose $\mathbb{E}_{\rho}$ as $\mathbb{E}_{0}+\mathbb{E}_{1}+\mathbb{E}_{2}$ where each $E_{i}$ is supported
on pairs $(MN)$ with $rank_{p}M=i$ . To demonstrate our technique, consider
the case $rank_{p}M=1$ . Adjust the $SL_{2}(\mathbb{Z})$-equivalence class representative
$(MN)$ to assume that $p$ divides the lower row of $M$ ; set

$(M’N’)=(1 \frac{1}{p})(MMY-\vdash pN)$ .

The upper row of $M$ is non-zero modulo $p$ , as is the lower row of $N$ ; so
$(M’N’)$ is a coprime symmetric pair, with $rank_{p}M’\geq 1$ . Also, $p^{-k}\det(M’\tau+$

$N’)^{-k}=\det(M\tau+MY+pN)^{-k}$ . We can choose $Y\equiv 0(\mathcal{N})$ ; then $(M’N’)\equiv$

$(1 1/p)(MpN)(\mathcal{N})$ and so

$p^{-k}\chi_{\mathcal{N}_{0}\mathcal{N}_{2}}(p)\cdot\overline{\chi}_{\rho}(M’, N’)\det(M’\tau+N’)^{-k}$

$=\overline{\chi}_{\rho}(M, N)\det(M\tau+MY+pN)^{-k}.$

Reversing, given a coprime symmetric pair $(M’N’)$ , we need to count
the number of times an element of $SL_{2}(\mathbb{Z})(M’N’)$ is generated through the
preceeding process. Thus as we vary $E\in SL_{2}(\mathbb{Z}),$ $Y\in \mathbb{Z}_{sym}^{2,2}$ modulo $p$ , we
need to count how often

$(MN)= (1 p)E(M’\frac{1}{p}(N’-M’Y))$

represents distinct, integral $SL_{2}(\mathbb{Z})$-equivalence classes with $rank_{p}M=1.$

For $E\in SL_{2}(\mathbb{Z})$ , we have $(1 p)E(1 1/p)\in SL_{2}(\mathbb{Z})$ if and only if

$E\equiv(\begin{array}{ll}* 0* *\end{array})(p)$ (so using such $E$ does not change the $SL_{2}(\mathbb{Z})$-equivalence

class of $(MN))$ . Thus we need to consider $E\in \mathcal{K}\backslash SL_{2}(\mathbb{Z})$ ; so we can take
$E=(\begin{array}{ll}0 -11 0\end{array})$ or $(\begin{array}{ll}1 \alpha 0 1\end{array}),$ $\alpha$ varying modulo $p.$

(a) Say $rank_{p}M’=1$ ; assume $p$ divides row 2 of $M’$ . For 1 choice of $E,$

$p$ divides row 1 of $EM’$ , and then since $M=(1 p)EM’,$ $rank_{p}M\neq 1.$

So take any other choice of $E$ ($p$ choices). To have $N$ integral, we need to
choose $Y$ so that

$E(N’-M’Y)\equiv(\begin{array}{ll}0 0* *\end{array}) (p)$ ;
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there are $p$ choices for $Y$ that satisfy this condition. Then we necessarily
have that $(MN)$ is a coprime pair. This gives us a contribution to $\mathbb{E}_{\rho}|T(p)$

of $p^{-k}\chi_{N_{0}N_{2}}(p)\cdot p^{2}\cdot p^{2k-3}\mathbb{E}_{1}.$

(b) Say $rank_{p}M’=2$ . To have $N$ integral we need

$E(N’-M’Y)\equiv(_{*}^{0} 0*) (p)$ ,

and to have $(MN)$ coprime we need
$E(N’-M’Y)\not\equiv 0(p)$ .

So we have $p+1$ choices for $E$ , and for each of these, $p-1$ choices for $Y.$

This gives us a contribution to $\mathbb{E}_{\rho}|T(p)$ of $p^{-k}\chi_{\mathcal{N}_{0}\mathcal{N}_{2}}(p)\cdot(p^{2}-1)\cdot p^{2k-3}E_{2}.$

We continue in this manner to evaluate the action of $T(p)$ and $T_{1}(p^{2})$ .
This gives us the following (Propositions 3.3 and 3.4 in [18]):

Proposition 2.1. For $p\nmid \mathcal{N}$ , we have

$\mathbb{E}_{(\mathcal{N}_{0}y_{1}y_{2})}|T(p)=\lambda(p)\mathbb{E}_{(\mathcal{N}_{0},\mathcal{N}_{1}y_{2})}$

where

$\lambda(p)=(\chi_{N_{0}\mathcal{N}_{1}}(p)p^{k-1}+\chi_{\mathcal{N}_{2}}(p))(\chi_{N_{0}}(p)p^{k-2}+\chi_{\mathcal{N}_{1}\mathcal{N}_{2}}(p))$ ,

and
$\mathbb{E}_{(\mathcal{N}oN_{1}N_{2})}|T_{1}(p^{2})=\lambda_{1}(p^{2})E_{(\mathcal{N}_{0}N_{1}N_{2})}$

where

$\lambda_{1}(p^{2})=(p+1)(\chi_{\mathcal{N}_{0}}(p^{2})p^{2k-3}+\chi(p)p^{k-3}(p-1)+\chi_{N_{2}}(p^{2}))$ .

For a prime $q|\mathcal{N}$ , we proceed as before, but now the the comparison of
$\chi_{\rho}(M, N)$ and $\chi_{\rho}(M’, N’)$ contributes character sums on $\chi_{q}$ . When $q|\mathcal{N}_{0}$ we
get the Hecke relation

$\mathbb{E}_{(\mathcal{N}_{0}\lambda_{1}^{(}N_{2})}|T(q)=\lambda(q)E_{(\mathcal{N}0_{r}/V_{1}N_{2})}$

$+a\mathbb{E}_{(\mathcal{N}_{0}/q,q\mathcal{N}_{1}N_{2})}+b\mathbb{E}_{(\mathcal{N}_{0}/qN_{1},q\mathcal{N}_{2})},$

where $a\neq 0$ iff $\chi_{q}=1,$ $b\neq 0$ iff $\chi_{q}^{2}=1$ , and

$\lambda(q)=\chi_{N_{1}}(q)\chi_{\mathcal{N}_{2}}(q^{2})$ .
For $q|\mathcal{N}_{1}$ , we have

$\mathbb{E}_{(\mathcal{N}_{0}N_{1}N_{2})}|T(q)=\lambda(q)E_{(\mathcal{N}_{0}\chi_{1}y_{2})}+cE_{(\mathcal{N}_{0}N_{1}/q,q\mathcal{N}_{2})}$

where $c\neq 0$ iff $\chi_{q}=1$ and

$\lambda(q)=\chi_{N_{0}\mathcal{N}_{2}}(q)q^{k-1}$ ;

for $q|\mathcal{N}_{2}$ , we have

$\mathbb{E}_{(\mathcal{N}_{0}N_{1_{\gamma}}N_{2})}|T(q)=\lambda(q)\mathbb{E}_{(\mathcal{N}_{0}N_{1r}\mathcal{N}_{2})}$

where
$\lambda(q)=\chi_{N_{0}}(q^{2})\chi_{\mathcal{N}_{1}}(q)q^{2k-3}.$

With $q|\mathcal{N}$ , we have similar statements for $E_{(\mathcal{N}oN_{1},\mathcal{N}_{2})}|T_{1}(q^{2})$ , where
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$\lambda_{1}(q^{2})=\{\begin{array}{ll}\chi_{\mathcal{N}_{2}}(q^{2})(q+1) if q|\mathcal{N}_{0},\chi_{\mathcal{N}_{0}}(q^{2})q^{2k-3}+\chi_{\mathcal{N}_{2}}(q^{2})q if q|\mathcal{N}_{1},\chi_{\mathcal{N}_{0}}(q^{2})(q+1)q^{2k-3} if q|\mathcal{N}_{2}.\end{array}$

Using these results, we construct a basis

$\{\tilde{\mathbb{E}}_{(\mathcal{N}_{0},\mathcal{N}_{1},\mathcal{N}_{2})}:\mathcal{N}_{0}\mathcal{N}_{1}\mathcal{N}_{2}=\mathcal{N}, \chi_{\mathcal{N}_{1}}^{2}=1\}$

for $\mathcal{E}_{k}^{(2)}(\mathcal{N}, \chi)$ consisting of eigenforms for the full Hecke algebra; their eigen-
values are the $\lambda,$ $\lambda_{1}$ given above.
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