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Abstract. The purpose of this paper is to propose an inexact coordinate descent (ICD) method

for solving the weighted $l_{1}$ -regularized convex optimization problem with a box constraint.

The proposed algorithm solves a one dimensional subproblem inexactly at each iteration. We

give criteria of the inexactness under which the sequence generated by the proposed method

converges to an optimal solution and its convergence rate is at least $R$-linear without assuming

the uniqueness of solutions.
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1 Introduction

We consider the following weighted $l_{1}$ -regulanized convex optimization problem:

minimize $F(x)$ $:=g(Ax)+\langle b,$ $x \rangle+\sum_{i=1}^{n}\tau_{i}|x_{i}|$

(1. 1)

subject to $l\leq x\leq u,$

where $g$ : $\mathcal{R}^{m}arrow(-\infty, \infty]$ is a strictly convex function on dom $g,$ $A\in \mathcal{R}^{m\cross n}$ and $b\in \mathcal{R}^{n}.$

Moreover, $\tau,$
$l$ and $u$ are $n$ -dimensional vectors such that $l_{i}\in[-\infty, \infty),$ $u_{i}\in(-\infty, \infty],$ $\tau_{i}\in$

$[0, \infty)$ and $l_{i}<u_{i}$ for each $i=1,$ $\cdots,$ $n$ . The nonnegative scalar constant $\tau_{i}$ is called weight

and the term $\sum_{i=1}^{n}\tau_{i}|x_{i}|$ is called the $l_{1}$ -regularization function. For convenience, we denote the

differentiable term of $F$ by $f$ , that is, $f(x)$ $:=g(Ax)+\langle b,$ $x\rangle.$
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The problem (1.1) contains many well-known problems as special cases [7, 17, 15]. When
$\tau_{i}=0$ for all index $i$ , the problem (1.1) is reduced to the differentiable convex problem

with a box constraint. When $l_{i}=-\infty$ and $u_{i}=\infty$ for each $i$ , it is reduced to the un-
constrained $l_{1}$ -regulanized convex problem. When $\tau_{i}$ is a fixed positive constant $\hat{\tau}$ for all $i,$

$b=0$ and $g(y)$ $:= \frac{1}{2}\Vert y-z\Vert^{2}$ with some $z\in \mathcal{R}^{m}$ , it is the famous $l_{1^{-}}l_{2}$ problem. Another

important $s_{m}pecia1$ case is the $l_{1}$ -regularized logistic regression problem where $g$ is given by

$g(y)$
$:= \frac{1}{m}\sum_{i=1}\log(1+\exp(-y_{i}))$ . Each special case has wide applications in the real life such

as the compressed sensing [15], the feature selection in the data classification [7], the data

mining [9], geophysics [1] and so on. Typically, the scales of these weighted $l_{1}$ -regularized

convex optimization problems are very large and the objective functions are not differentiable
everywhere due to the regularization function. Moreover, the optimal solutions are possibly not

unique because the matrix $A$ may not have full column rank. Thus the Newton-type methods

such as the interior point method can not be applied directly.

In the past, the coordinate descent ($CD$) method is verified to be one of the feasible methods

for the large scale optimization problems [4, 11, 14, 17]. The $CD$ method minimizes the ob-

jective function with respect to one vaniable while all the others are fixed at each iteration. The
idea of this method is very simple and the storage of calculations is little. In some special cases,

it can be implemented in parallel. Luo and Tseng [17] proved its global and linear convergence
for a smooth problem, that is, $\tau_{i}=0$ for all $i$ . Note that the problem (1.1) can be reformu-

lated as a smooth problem. However, the reformulated problem has twice vanables. In 2001,

Tseng [11] showed the global convergence of a block coordinate descent ($BCD$) method for
minimizing an nondifferentiable function with certain separability. But the exact minimizers of

the subproblem must be found on each iteration in [11, 17]. It is possible for the $l_{1^{-}}l_{2}$ problem,

while usually it is hard for the general $l_{1}$ -regularized convex problem.

In this paper, we propose an inexact coordinate descent (ICD) method and extend the results
of Luo and Tseng [17]. Roughly speaking, we extend in the following three aspects:

$\bullet$ The smooth convex problem is extended to that with the $l_{1}$ -regularized function.

$\bullet$ On each iteration step, we accept an inexact solution of a subproblem instead of the exact

solution.

$\bullet$ The linear convergence rate is extended to the nonsmooth problem.

In this paper, under the same basic assumptions as in [17], we show that the proposed ICD

method is not only globally convergent but also with at least $R$-linear convergence rate under

the almost cycle rule.
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This paper is organized as follows. In Section 2, we derive the optimal conditions of the

problem (1.1) and also define the $\epsilon$-optimality conditions which are related to an inexact solu-

tion. In Section 3, we present a framework of the ICD method and make some assumptions for

the“inexact solutions”. The global convergence and linear convergence rate are established in

Section 4. Finally, we conclude this paper in Section 5.

Throughout this paper, we use the following notations. For a differentiable function $h,$

$\nabla h$ denotes the gradient of $h$ and $\nabla^{2}h$ denotes the Hessian matrix of $h.$ $\nabla_{i}h$ denotes the $i$th

coordinate of the gradient vector $\nabla h$ . If $h$ is convex and nondifferentiable, $\partial h$ denotes the

subdifferential of $h$ . For any real number $x,$ $|x|$ denotes the absolute value of $x$ . For a given

vector $x\in \mathcal{R}^{n}$ , we denote by $x_{i}$ the ith coordinate of $x$ . We denote the 2-norm of $x$ by $\Vert x\Vert.$

For any matrix $A$ , the transpose of $A$ is denoted by $A^{T}$ and $A_{j}$ denotes the $j$th column. For

the function $F:\mathcal{R}^{n}arrow \mathcal{R}$ and a vector $x\in \mathcal{R}^{n}$ , we sometimes use a notation $F(x_{1}, \cdots, x_{n})$

instead of $F(x)$ .
Since the length of the paper must be within 17 pages, we omit all proofs of theorems in the

subsequent sections. The full proofs can be found in [16].

2 Preliminaries

Throughout the paper, we make the following basic assumptions for the problem (1.1).

Assumption 2.1. For the problem (1.1), we assume that

$(a)A_{j}$ is a nonzero vectorfor all $j\in\{1,2, \cdots, n\}.$

$(b)l_{i}<0<u_{i}$ for all $i\in\{1,2, \cdots, n\}.$

$(c)$ The set ofthe optimal solutions, denoted by $X^{*}$ , is nonempty.

$(d)$ The effective domain of $g$, denoted by dom $g$, is nonempty and open.

$(e)g$ is twice continuously differentiable on dom $g.$

$(f)\nabla^{2}g(Ax^{*})$ is positive definite for every optimal solution $x^{*}\in X^{*}.$

We make a few remarks on these assumptions. In Part (a), if $A_{j}$ is zero, then $x_{j}^{*}$ of the

optimal solution $x^{*}$ can be easily determined. Thus we can remove $x_{j}$ from the problem (1.1).

Part (b) is just for simplification. If both $l_{i}$ and $u_{i}$ are positive for some $i\in\{1,2, \cdots, n\}$ , we
may replace $x_{i},$ $l_{i}$ and $u_{i}$ by $\overline{x}_{i}+\frac{l+u}{2}$ , $\frac{l-u}{2}$ and $\frac{u-l}{2}$ . Then the problem (1.1) is reformulated

into the case without $l_{1}$ -regularized term for the index $i$ . If $g$ is strongly convex and twice dif-

ferentiable on dom $g$ , then Part (e) and (f) are satisfied automatically. For example, a quadratic
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function, an exponential function, and even some complicate functions in the $l_{1}$ -regularized

logistic regression problem satisfy (e) and (f). Note that we do not assume the boundness of

the optimal solution set $X^{*}.$

Next, we present some properties under Assumption 2.1 that are used in the subsequent sec-
tions. From Assumption 2.1(e) and (f), there exists a sufficiently small closed neighborhood
$B(Ax^{*})$ of $Ax^{*}$ such that $B(Ax^{*})\subseteq$ dom $g$ and $\nabla^{2}g$ is positive definite in $B(Ax^{*})$ . Further-

more, it implies that $g$ is strongly convex in $B(Ax^{*})$ , i.e., there exists a scalar $\sigma>0$ such

that

$g(y)-g(z)-\langle\nabla g(z), y-z\rangle\geq\sigma\Vert y-z\Vert^{2}, \forall y, z\in B(Ax^{*})$ . (2.1)

2.1 Optimality conditions

The KKT conditions [13] for the problem (1.1) are described as follows.

$\nabla_{i}f(x)+\tau_{i}\partial|x_{i}|-\mu_{i}+v_{i}\ni 0,$

$x_{i}\geq l_{i}, \mu_{i}\geq 0, \mu_{i}(x_{i}-l_{i})=0, i=1, \cdots, n$ , (2.2)

$x_{i}\leq u_{i}, v_{i}\geq 0, v_{i}(u_{i}-x_{i})=0,$

where $\partial|$ $|$ is the subdifferential of the absolute value function. Since the problem (1.1) is
convex, $x$ satisfying (2.2) is a solution of the problem (1.1). The KKT conditions (2.2) can be

rewritten as follows.

Lemma 2.1. $A$ vector $x$ is an optimal solution of the problem (1.1) if and only if one of the

following statements holds for each $i.$

(i) $\nabla_{i}f(x)\geq\tau_{i}$ and $x_{i}=l_{i}.$

(ii) $\nabla_{i}f(x)=\tau_{i}$ and $l_{i}\leq x_{i}\leq 0.$

(iii) $|\nabla_{i}f(x)|\leq\tau_{i}$ and $x_{i}=0.$

(iv) $\nabla_{i}f(x)=-\tau_{i}$ and $0\leq x_{i}\leq u_{i}.$

(v) $\nabla_{i}f(x)\leq-\tau_{i}$ and $x_{i}=u_{i}.$

Next, we represent these conditions as a fixed point of some operator. To this end, we first

define a mapping $T_{\tau}$ : $\mathcal{R}^{n}arrow \mathcal{R}^{n}$ as

$T_{\tau}(x)_{i}$ $:=(|x_{i}|-\tau_{i})_{+}$ sgn $(x_{i})$ , (2.3)
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where the scalar function $(a)_{+}$ is defined by $(a)_{+};= \max(0, a)$ and sgn $(a)$ is a $sign$ function

defined as follows:

$sgn(a):=\{\begin{array}{ll}-1 if a<0,0 if a=0,1 if a>0.\end{array}$

It can be verified that $T_{\tau}$ is nonexpensive, i.e., $\Vert T_{\tau}(y)-T_{\tau}(z)\Vert\leq\Vert y-z\Vert$ , for any $y,$ $z\in$ dom $F.$

Let $[x]_{[l,u]}^{+}$ denote the orthogonal projection of a vector $x$ onto the box $[l, u]$ . This projection
is also nonexpensive and its ith coordinate can be written as $[x_{i}]_{1\prime}^{+}l_{t},u_{i}]$ $:=$ mid$\{x_{i}, l_{i}, u_{i}\}$ , where
$mid\{x_{i}, l_{i}, u_{i}\}$ is defined by $mid\{x_{i}, l_{i}, u_{i}\}$ $:= \max\{l_{i}, \min\{u_{i}, x_{i}\}\}.$

By using the mappings $T_{\tau}$ and $[\cdot]_{[l,u]}^{+}$ , we define a mapping $P_{\tau,l,u}(x)$ : $\mathcal{R}^{n}arrow \mathcal{R}^{n}$ by

$P_{\tau,l,u}(x):=[T_{\tau}(x-\nabla f(x))]_{[l,u]}^{+}$ . (2.4)

Since $[x]_{[l,u]}^{+}$ and $T_{\tau}$ are nonexpensive, we have that

$\Vert P_{\tau,l,u}(y)-P_{\tau,l,u}(z)\Vert\leq\Vert y-z-\nabla f(y)+\nabla f(z)\Vert,$ $\forall y,$ $z\in$ dom F. (2.5)

Now, the optimal solutions can be described as a fixed point of the mapping $P_{\tau,l,u}.$

Theorem 2.1. For the problem (1.1), a vector $x$ belongs to the optimal solution set $X^{*}if$ and

only if $x=P_{\tau,l,u}(x)$ , i. e., $X^{*}=\{x|x\in$ dom $g,$ $x=P_{\tau,l,u}(x)\}.$

Since the solution set $X^{*}$ is not necessarily bounded, the level set of $F$ may be not bounded.
Nevertheless, as an extension of [17, Lemma 3.3], we can show the compactness of the set
$\Omega(\zeta)$ $:=\{t|t=Ax, F(x)\leq\zeta, x\in[l, u]\}.$

Lemma 2.2. For a given constant value $\zeta$, the set $\Omega(\zeta)$ is a compact subset ofdom $g.$

Next, we show that $\nabla g$ is Lipschitz continuous on some compact set including $\Omega(\zeta)$ . For

this purpose, we define a set $\Omega(\zeta)+B(\epsilon_{0})$ as $\Omega(\zeta)+B(\epsilon_{0})$ $:=\{p+v|p\in\Omega(\zeta), \Vert v\Vert\leq\epsilon_{0}\},$

where $\epsilon_{0}$ is a positive constant. It is easy to see that the set $\Omega(\zeta)+B(\epsilon_{0})$ is a compact set.

Lemma 2.3. There exist constants $L>0$ and $\epsilon_{0}>0$ such that $\Omega(\zeta)+B(\epsilon_{0})\subseteq$ dom $g$ and
$\Vert\nabla g(y)-\nabla g(z)\Vert\leq L\Vert y-z\Vert for$ all y, $z\in\Omega(\zeta)+B(\epsilon_{0})$ .

Similar to [18, Lemma 2.1], we can prove the following invariant property of the optimal

solution set $X^{*}.$

Lemma $2A$. For any $x^{*},$ $y^{*}\in X^{*},$ $Ax^{*}=Ay^{*}.$
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2.2 $\epsilon$ -optimality conditions

In this subsection, we give a definition of a relaxed optimality conditions and a relation between
the conditions and the mapping $P_{\tau,l,u}.$

Definition 2.1. We say that the $\epsilon$-optimality conditionsfor the problem (1.1) hold at $x$ ifone of
the following statements holds for each $i.$

(i) $\nabla_{i}f(x)-\tau_{i}\geq-\epsilon and|x_{i}-l_{i}|\leq\epsilon.$

(ii) $|\nabla_{i}f(x)-\tau_{i}|\leq\epsilon$ and $l_{i}-\epsilon\leq x_{i}\leq\epsilon.$

(iii) $|\nabla_{i}f(x)|\leq\tau_{i}+\epsilon and|x_{i}|\leq\epsilon.$

(iv) $|\nabla_{i}f(x)+\tau_{i}|\leq\epsilon and-\epsilon\leq x_{i}\leq u_{i}+\epsilon.$

(v) $\nabla_{i}f(x)+\tau_{i}\leq\epsilon and|x_{i}-u_{i}|\leq\epsilon.$

Definition 2.2. We say $x$ is an $\epsilon$-approximate solution of the problem (1.1) if the $\epsilon$-optimality
conditions hold at $x.$

Note that the optimality condition in Lemma 2.1 can be obtained by Definition 2.1 with
$\epsilon=0.$

For convenience, we define the following five index sets:

$J_{1}(x, \epsilon):=\{i|\nabla_{i}f(x)-\tau_{i}\geq-\epsilon, |x_{i}-l_{i}|\leq\epsilon\}$ ;

$J_{2}(x, \epsilon):=\{i||\nabla_{i}f(x)-\tau_{i}|\leq\epsilon, l_{i}-\epsilon\leq x_{i}\leq\epsilon\}$ ;

$J_{3}(x, \epsilon):=\{i||\nabla_{i}f(x)|\leq\tau_{i}+\epsilon, |x_{i}|\leq\epsilon\}$ ;

$J_{4}(x, \epsilon):=\{i||\nabla_{i}f(x)+\tau_{i}|\leq\epsilon, -\epsilon\leq x_{i}\leq u_{i}+\epsilon\}$ ;

$J_{5}(x, \epsilon):=\{i|\nabla_{i}f(x)+\tau_{i}\leq\epsilon, |x_{i}-u_{i}|\leq\epsilon\}.$

Then the $\epsilon$-optimality conditions hold at $x$ if and only if $\bigcup_{i=1}^{5}J_{i}(x, \epsilon)=\{1,2, \cdots, n\}.$

Throughout the paper, for simplicity, we assume that

$\epsilon<\frac{1}{2}\min_{i}\{-l_{i}, u_{i}\}$ . (2.6)

By the definition of $T_{\tau}(x)$ and $P_{\tau,l,u}(x)$ in (2.3) and (2.4), we give an equivalent description
of the $\epsilon$-optimality conditions by the next theorem, which will be used for constmcting an
inexact $CD$ method and investigating its convergence properties, where the proof is omitted
here.

Theorem 2.2. The $\epsilon$-optimality conditions hold at $x$ if and only if $|x_{i}-P_{\tau,l,u}(x)_{i}|\leq\epsilon$ holds

for each $i.$
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3 Inexact coordinate descent (ICD) method

In this section, we will first present a framework for the ICD method, and then give some
assumptions for the“inexact solutions”.

A general framework of the ICD method can be described as follows.

Inexact coordinate descent (ICD) method:

Step $0$ : Choose an initial point $x^{0}\in[l, u]$ and let $r$ $:=0.$

Step 1: If some termination condition holds, then stop.

Step 2: Choose an index $i(r)\in\{1, \cdots, n\}$ , get an approximate solution $x_{i(r)}^{r+1}$ of the following

one dimensional subproblem:

$x_{i(r)}\in\{\iota_{()}\leq x_{i(r)}\leq u_{i(r)}\}minimizeF (x_{1}^{r}, x_{2}^{r}, \cdots , x_{i(r)-1}^{r}, x_{i(r)}, x_{i(r)+1}^{r}, \cdots , x_{n}^{r})$
. (3.1)

Step 3: Set $x_{j}^{r+1}$ $:=x_{j}^{r}$ for all $j\in\{1, \cdots, n\}$ such that $j\neq i(r)$ and let $r:=r+1$ . Go to Step

1.

Note that the exact solution of the subproblem (3.1) is unique from Assumption 2.1(a) and

the strict convexity of $g$ . We use the notation $i(r)$ for the index chosen at the rth iteration. For

simplicity, we will use $i$ instead of $i(r)$ when $i(r)$ is clear from the context.

For the global convergence of the ICD method, it is important to define the inexactness of

the approximate solutions of the subproblem (3.1) and choose an appropriate index $i(r)$ in Step

2.

For the inexactness, we require the following assumptions:

Assumption 3.1. We assume that the following statements hold:

(i) $F(x_{1}^{r}, x_{2}^{r}, \cdots, x_{i-1}^{r}, x_{i}^{r+1}, x_{i+1}^{r}, \cdots,x_{n}^{r})\leq$ $\min$ $F(x_{1}^{r}, x_{2}^{r}, \cdots, x_{i-1}^{r}, x_{i}, x_{i+1}^{r}, \cdots, x_{n}^{r})$.
$x.\in\{l_{i},0,u_{\iota},x_{i}^{r}\}$

(ii) $x_{i}^{r+1}$ is feasible, i. e., $x_{i}^{r+1}\in[l_{i}, u_{i}].$

$(i\ddot{u})x_{i}^{r+1}$ is an $\epsilon^{r+1}$ -approximate solution of the subproblem (3.1).

(iv) Conditions on $\epsilon^{r+1}:\epsilon^{r+1}\leq\min\{\delta_{r}, \alpha_{r}|x_{i}^{r+1}-x_{i}^{r}|, \epsilon^{r}\}$ , where $\{\delta_{r}\}$ is a monotonically

decreasing sequence such that $\lim_{rarrow\infty}\delta_{r}=0$, and $\alpha_{r}\in[0,\overline{\alpha}]$ with a positive constant $\overline{\alpha}.$

(v) Conditions on $\alpha_{r}:\alpha_{r}<\frac{\sigma\min_{j}\Vert A_{j}\Vert^{2}}{L\max\Vert A_{j}\Vert^{2}+1}$ holds for sufficiently large $r$ , where $\sigma$ is a
$j$

positive constant defined in (2.1), and $L$ is the Lipschitz constant of $\nabla g$ given in Lemma

2.3.
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Here we make a simple explanation. Part (i) enforces not only that $\{F(x^{r})\}$ is decreasing
but also that $\{F(x^{r+1})\}$ is less than $F(x_{1}^{r}, x_{2}^{r}, \cdots, x_{i-1}^{r}, x_{i}, x_{i+1}^{r}, \cdots, x_{n}^{r})$ at a point where $F$ is
nonsmooth. This condition is easy to check when computing. It also plays a key role for the
convergence of $\{x^{r}\}$ when the objective function is not differentiable. In Part (iii), recall that
the $\epsilon$-optimality conditions for the one dimensional subproblem (3.1) is that one of $(i)-(v)$ in
Definition 2.1 holds at $x_{i(r)}$ . The assumptions(i)-(iv) are necessary for the global convergence
while the assumption (v) for $\alpha_{r}$ is used to guarantee the linear convergence rate of $\{x^{r}\}.$

Note that if we obtain the exact solution of the subproblem (3.1) on each iteration, then the

sequence $\{x^{r}\}$ satisfies Assumption 3.1 automatically. Hence, the classical $CD$ method is a
special case of the ICD method.

For the choice of the coordinate $i(r)$ in Step 2, we adopt the following almost cycle $mle,$

which is an extension of the classical cyclic rule in [3].

Almost cyclic $mle$ :
There exists an integer $B\geq n$ , such that every coordinate is iterated upon at least once every
$B$ successive iterations.

In the next section, we will show the ICD method with almost cycle rule converges $R$-

linearly to a solution under Assumption 2.1 and 3.1.

4 Global and linear convergence

In this section, we will show the global and linear convergence of the ICD method. Com-

pared with the classical exact $CD$ method, the ICD method has many “inexact” factors. Thus
we need some preparations.

First of all, we illustrate a brief outline of the proof.

(1) $\lim_{rarrow\infty}\{x^{r+1}-x^{r}\}=0$ . (Lemma 4.3)

(2) $Ax^{r}arrow Ax^{*}$ where $x^{*}$ is one of the optimal solutions. (Theorem 4.1)

(3) Sufficient decreasing: $F(x^{r})-F(x^{r+1})\geq\eta\Vert x^{r}-x^{r+1}\Vert^{2}$ for some positive constant $\eta.$

(Lemma 4.8)

(4) Error bound: $\Vert Ax^{r}-Ax^{*}\Vert\leq\kappa\Vert x^{r}-P_{\tau,l,u}(x^{r})\Vert$ for some $\kappa$ . (Lemma 4.9)

(5) Linear convergence. (Theorems 4.2 and 4.3)

Note that since it is not necessary for the matrix $A$ to have full column rank, $Ax^{r}arrow Ax^{*}$

(Theorem 4.1) does not imply $x^{r}arrow x^{*}.$
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For convenience, we define two vectors $\tilde{x}^{r+1}$ and $x^{r+1}$ as follows.

$\tilde{x}^{r+1}:=(x_{1}^{r}, x_{2}^{r}, \cdots, x_{i(r)-1}^{r},\tilde{x}_{i(r)}^{r+1}, x_{i(r)+1}^{r}, \cdots, x_{n}^{r})$ (4.1)

and

$x^{r+1}:=(x_{1}^{r}, x_{2}^{r}, \cdots, x_{i(r)-1}^{r}, x_{i(r)}^{r+1}, x_{i(r)+1}^{r}, \cdots, x_{n}^{r})$, (4.2)

where $x_{i(r)}^{r+1}$ and $\tilde{x}_{i(r)}^{r+1}$ are an $\epsilon^{r+1}$ -approximate solution and the exact solution of the subproblem

(3. 1), respectively.

In the first part of this section, we show $\lim_{rarrow\infty}\{F(\tilde{x}^{r})-F(x^{r})\}=0$ and $\lim_{rarrow\infty}\{x^{r+1}-x^{r}\}=0.$

To this end, we need the following function $h_{i}$ : $\mathcal{R}^{n}\cross \mathcal{R}^{n}arrow \mathcal{R}$ and Lemma 4.1.

$h_{i}(y, z) :=\nabla_{i}f(z)(y_{i}-z_{i})+\tau_{i}(|y_{i}|-|z_{i}|)$

$=\{\begin{array}{ll}(\nabla_{i}f(z)+\tau_{i})(y_{i}-z_{i}) if y_{i}\geq 0, z_{i}\geq 0,\nabla_{i}f(z)(y_{i}-z_{i})+\tau_{i}(y_{i}+z_{i}) if y_{i}\geq 0, z_{i}\leq 0,(43)\nabla_{i}f(z)(y_{i}-z_{i})+\tau_{i}(-y_{i}-z_{i}) if y_{i}\leq 0, z_{i}\geq 0,(\nabla_{i}f(z)-\tau_{i})(y_{i}-z_{i}) if y_{i}\leq 0, z_{i}\leq 0.\end{array}$

Lemma 4.1. There exists a positive constant $M$ such $that|x_{i(r)}^{r+1}- \tilde{x}_{i(r)}^{r+1}|\leq\frac{2M}{\Vert A_{i(r)}\Vert}$ for all $r.$

Lemma 4.2. $\lim_{rarrow\infty}\{F(\tilde{x}^{r})-F(x^{r})\}=0.$

Using the above lemmas, we can show that $\{x^{r+1}-x^{r}\}$ converges to $0$ by a similar way of

[18, Lemma 4. 1].

Lemma 4.3. For the sequence $\{x^{r}\}$ generated by the $ICD$ method, we have $\lim_{rarrow\infty}\{x^{r+1}-x^{r}\}=0.$

In the second part of this section, we will show the convergence of $\{Ax^{r}\}$ . Since $\{Ax^{r}\}$ is

bounded, there exist $t^{\infty}\in \mathcal{R}^{n}$ and an infinite set $\mathcal{X}$ such that

$\lim_{rarrow\infty,r\in \mathcal{X}}Ax^{r}=t^{\infty}$ . (4.4)

Then with the continuity of $\nabla g$ , we have

$\lim_{rarrow\infty,r\in \mathcal{X}}\nabla f(x^{r})=d^{\infty}$ , (4.5)

where

$d^{\infty}:=A^{T}\nabla g(t^{\infty})+b$ . (4.6)

For the set $\mathcal{X}$ , we have the following result with Lemma 4.3, which provides an interesting

property associated with $\{\nabla f(x^{r})\}.$
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Lemma 4.4. For any $s\in\{0,1, \cdots, B-1\}$ , where $B$ is the integer defined in the almost cycle
rule, we have $\lim_{rarrow\infty,r\in \mathcal{X}}\nabla f(x^{r-s})=d^{\infty}.$

Lemma 4.4 implies that for each $i\in\{1,2, \cdots, n\}$ , for any $s\in\{0,1, \cdots, B-1\}$ , we have

$\lim_{rarrow\infty,r\in \mathcal{X}}\nabla_{i}f(x^{r-s})=d_{i}^{\infty}$ . (4.7)

Fixed coordinate $i$ , let, $(r, i)$ denote the largest integer $\overline{r}$, which does not exceed $r$ , such

that the $i$th coordinate of $x$ is iterated upon at the $\overline{r}$th iteration, that is to say, for all $r\in \mathcal{X}$ , we
have

$x_{i}^{r}=x_{i}^{\varphi(r,i)}$ . (4.8)

Since the coordinate is chosen by the almost cycle rule, the relation $r-B+1\leq,$ $(r, i)\leq r$

holds for all $r\in \mathcal{X}$ . From (4.7), we further obtain

$\lim_{rarrow\infty,r\in \mathcal{X}}\nabla_{i}f(x^{\varphi(r,i)})=d_{i}^{\infty}$ . (4.9)

Now we define the following six index sets associated with $d_{i}^{\infty}$ as

$J_{1}^{\infty}:=\{i|d_{i}^{\infty}>\tau_{i}\}$ ;

$J_{2}^{\infty}:=\{i|d_{i}^{\infty}<-\tau_{i}\})$

$J_{3}^{\infty}:=\{i||d_{i}^{\infty}|<\tau_{i}\}$ ;

$J_{4}^{\infty}:=\{i|d_{i}^{\infty}=\tau_{i}, \tau_{i}>0\}$ ;

$J_{5}^{\infty}:=\{i|d_{i}^{\infty}=-\tau_{i}, \tau_{i}>0\}$ ;

$J_{6}^{\infty}:=\{i|d_{i}^{\infty}=0, \tau_{i}=0\}.$

Note that $\bigcup_{i=1}^{6}J_{i}^{\infty}=\{1,2, \cdots, n\}$ . Next two lemmas give sufficient conditions under which

$\{x_{i}^{r}\}_{\mathcal{X}}$ is fixed or lies in some interval.

Lemma 4.5. Suppose that Assumption 3.1(i) and (iii) hold, and that $x^{\varphi(r,i)}$ is a vector, where

the i-th coordinate is chosen on the, $(r, i)$ -th iteration. Let $L$ and $\epsilon_{0}$ be the constants given in

Lemma 2.3. If $\epsilon^{\varphi(r,i)}<\epsilon_{0}$, then the following statements holdfor anyfixed $i$ :

(i) If $\nabla_{i}f(x^{\varphi(r,i)})-\tau_{i}>L\Vert A_{i}\Vert^{2}\epsilon^{\varphi(r,i)}$ and $x_{i}^{\varphi(r,i)}\leq\epsilon^{\varphi(r,i)}+l_{i}$ , then $x_{i}^{\varphi(r,i)}=l_{i}.$

(ii) If $\nabla_{i}f(x^{\varphi(r,i)})+\tau_{i}<-L\Vert A_{i}\Vert^{2}\epsilon^{\varphi(r,i)}$ and $u_{i}-\epsilon^{\varphi(r,i)}\leq x_{i}^{\varphi(r,i)}$ , then $x_{i}^{\varphi(r,i)}=u_{i}.$

(iii) If $\nabla_{i}f(x^{\varphi(r,i)})+\tau_{i}>L\Vert A_{i}\Vert^{2}\epsilon^{\varphi(r,i)}and|x_{i}^{\varphi(r,i)}|\leq\epsilon^{\varphi(r,i)}$ , then $x_{i}^{\varphi(r,i)}\leq 0.$

(iv) If $\nabla_{i}f(x^{\varphi(r,i)})-\tau_{i}<-L\Vert A_{i}\Vert^{2}\epsilon^{\varphi(r,i)}and|x_{i}^{\varphi(r,i)}|\leq\epsilon^{\varphi(\prime r,i)}$, then $x_{i}^{\varphi(r,i)}\geq 0.$
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Lemma4.6. Suppose that Assumption 3.1 holds. Then, for sufficiently large $r$, we have

$\{x_{i}^{r}\}_{\mathcal{X}}=l_{i}, \forall i\in J_{1}^{\infty}$ ; (4.10)

$\{x_{i}^{r}\}_{\mathcal{X}}=u_{i}, \forall i\in J_{2}^{\infty}$ ; (4.11)

$\{x_{i}^{r}\}_{\mathcal{X}}=0, \forall i\in J_{3}^{\infty}$; (4.12)

$l_{i}\leq\{x_{i}^{r}\}_{\mathcal{X}}\leq 0, \forall i\in J_{4}^{\infty}$ ; (4.13)

$0\leq\{x_{i}^{r}\}_{\mathcal{X}}\leq u_{i},\forall i\in J_{5}^{\infty}$ ; (4.14)

$l_{i}\leq\{x_{i}^{r}\}_{\mathcal{X}}\leq u_{i}, \forall i\in J_{6}^{\infty}$ . (4.15)

Next, we will show $Ax^{r}arrow Ax^{*}$ , where $x^{*}$ is an arbitrary optimal solution of the problem

(1.1). For this purpose, we recall Hoffman’s error bound [2].

Lemma 4.7. Let $B\in \mathcal{R}^{k\cross n},$ $C\in \mathcal{R}^{k\cross n}$ and $e\in \mathcal{R}^{k},$ $d\in \mathcal{R}^{k}$ . Suppose that the linear system

$By=e,$ $Cy\leq d$ is consistent. There exists a scalar $\theta>0$ depending only on $B$ and $C$, and

such that, for any $\overline{x}\in[l, u],$ $l,$ $u\in \mathcal{R}^{n}$ , there is a point $\overline{y}\in \mathcal{R}^{n}$ satisfying $By=e,$ $C\overline{y}\leq d$

and $\Vert\overline{x}-\overline{y}\Vert\leq\theta(\Vert B\overline{x}-e\Vert+\Vert(C\overline{x}-d)_{+}\Vert$, where $(x_{i})_{+}:= \max\{0, x_{i}\}.$

Theorem 4.1. Let $x^{*}be$ an optimal solution ofthe problem (1.1). Then we $ha \nu e\lim_{rarrow\infty}Ax^{r}=Ax^{*}.$

Theorem4.1 implies that there exists a scalar $\overline{r}>0$ , for any $r\geq\overline{r}$ , such that $Ax^{r}\in B(Ax^{*})$ ,

where $B(Ax^{*})$ is the closed ball defined just before (2.1). Note that $g$ is strongly convex.

In the third part of this section, we show the sufficient decreasing of $\{F(x^{r})\}$ for sufficiently

large $r.$

Lemma 4.8. Under Assumption 3.1, there exists a scalar $\eta>0$ such that $F(x^{r})-F(x^{r+1})\geq$

$\eta\Vert x^{r}-x^{r+1}\Vert^{2}$ for sufficiently large $r.$

In the last part of this section, before showing the global and linear convergence of $\{x^{r}\},$

we first recall a kind of the Lipschitz error bound in [10, 11, 18].

Lemma 4.9. There exists a scalar constant $\kappa>0$ such thatfor any $Ax^{r}\in B(Ax^{*})$ ,

$\Vert Ax^{r}-Ax^{*}\Vert\leq\kappa\Vert x^{r}-P_{\tau,l,u}(x^{r})\Vert$ . (4.16)

The following result is a direct extension of [17, Lemma $4.5(a)$] to the problem (1.1).

Lemma 4.10. Under Assumption 3.1, there exists a constant. $>0$ such that the inequality

$\Vert Ax^{r}-Ax^{*}\Vert\leq.\sum_{h=r}^{r+B-1}\Vert x^{h}-x^{h+1}\Vert$ holdsfor sufficiently large $r.$

Now we are ready to show the linear convergence of $\{F(x^{r})\}$ and $\{x^{r}\}.$
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Theorem 4.2. Suppose that $\{x^{r}\}$ is genemted by the $ICD$ method with the almost cycle rule.

Let $F^{*}$ denote the optimal value of the problem (1.1). Then $\{F(x^{r})\}$ converges to $F^{*}at$ least
$B$ -step $Q$ -linearly.

Theorem 4.3. Suppose that $\{x^{r}\}$ is generated by the $ICD$ method with the almost cycle rule.

Then there exists an optimal solution $x^{*}of$ the problem (1.1) such that $\{x^{r}\}$ converges to $x^{*}at$

least $R$-linearly.

5 Conclusions

In this paper, we have presented a framework of the ICD method for solving $l_{1}$ -regularized con-
vex optimization (1.1). We also have established the $R$-linear convergence rate of this method

under the almost cycle $mle$ . The key to the ICD method lies in Assumption 3.1 for the ”inexact

solution”. On each iteration step, we only need to find an approximate solution, that raises the

possibility to solve general $l_{1}$ -regularized convex problem.

The proposed ICD method solves an one-dimensional subproblem on each iteration. The

Block Coordinate Descent method, which solves a small scale multi-dimensional subproblem,

is efficient for some practical problems. Thus it is interesting to extend the proposed ICD

method to the ”inexact” block $CD$ method.
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