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Asymptotic stability for a geophysical system
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Abstract. This paper considers the asymptotic stability for a geophysical
fluid system. We state that there exists a weak solution of the system sat-
isfying the asymptotic stability. It is also stated that there exists a unique
global-in-time strong solution, which satisfies the asymptotic stability, of the
system in the case when the initial datum is sufficiently small. Especially,
this paper studies the asymptotic stability for the linearized system of our
system. Furthermore, this paper gives one derivation of our geophysical fluid
system.

1 Introduction and Main Results

Large-scale fluids such as the atmosphere and ocean are called geophysical
fluids. The motion of geophysical flows is formulated as a system of the
Navier-Stokes-Boussinesq equations with the Coriolis and stratification ef-
fects. We consider the following geophysical fluid system in the whole space:

(Btu—uAu+(u,V)u+deu+Vp-—-9663, t>0, r€R3
0,0 — kAO + (u, V)0 = —N?u3, t>0, v €R3
{V-u=0, t>0, zeR (1.1)
lim|m|_4oo u =0, lim|z|_,oo 0=0, t>0,
| Ult=0 = uo, 8lt=0 = b, z € R3,

where the unknown functions v = u(t,z) = (u!,u?,4?), § = 6(¢,z), and
p = p(t,x) are the fluid velocity, the thermal disturbances (temperature),
and the pressure of the fluid, respectively, while v > 0, Kk > 0, and G > 0
are the viscosity, the thermal diffusivity, and the gravity, respectively. Pa-
rameters 0 € R and N > 0 are the rotation rate (Coriolis-parameter)
and the Brunt-Vaisala frequency (stratification-parameter), respectively. We
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use the convention: A := 82 + 95 + 93, V = (01,05,03), e3 := (0,0,1),
S? := {(d1,ds, d3) € R3|d| = 1}, and we denote the exterior product by x.
Here d = (dy,ds,d3) € S? is the unit vector in the direction of the rotating
axis, the term Q0d x u the Coriolis force, the term Gfesz the buoyancy (flotation
or heat convection), and the term N?u? the temperature-stratification.

This paper studies the asymptotic stability for the system (1.1). We
first rewrite the system (1.1). Let us set w = w(t,z) = (w!, w? w3, w?) :=
(v, u?,u3,v/GO/N). We easily check that (w,p) satisfies the following sys-
tem:

w+ Aw+Sw+ Vp = —(w,V)w, t>0, z€R3,
lim|m]_,oo w =0, t>0,
V.w=0, t>0, z€R®,
’LU|t=0 = Wy, z € R3.

Here wp = (w3, w3, wd, w) = (uh,u2, ud, v/GOo/N), V := (84, 52, 83,0),

—vA 0 0 0
0 —-vA 0 0

(1.2)

A=1 0 —-vA 0 |’
0 0 0 —KkA
0 —Qds Qd, 0
s._| 9 0 -4 0

—de le 0 - \/_g_N
0 0 vGN 0

From now on we consider (1.2) instead of (1.1). Before stating main results,
we introduce function spaces and notation. Let us define real-valued function
spaces as follows:

Cy° = C(R®) :={f € C°(R?); f has a compact support in R%},

Coo = Cou(®?) == {f = (f, /%, ) € [CE°®R*)]*; V- f =0},

Ly = L(RY) =T 7, HY, = HL,(R®) = Tg5 1,

Gp = G,(R®) := {f € [LP(R¥)]%; f=Vg, g€ I (R%}

for 1 < p < oo and m € N. Here | - ||1» is the usual norm in the Lebesgue
space LP, and | - ||wm» the usual norm of the Sobolev space W™®. In this
paper, we use the following convention:

[f]|zee = ess. Sung{lf(w)l}, £z = [ fllwr2, and H' := W'(R®).
TE
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Moreover, by (-, -) we denote L?-inner product.
Next we define a weak solution of (1.2).

Definition 1.1 (Weak Solution). Let wy € L2(R?) x L*(R3). We say that
a vector-valued function (w,p)(= (w',w? w? w*,p)) is a weak solution of
(1.2) with the initial datum wy, if for all T > 0 and for all s,t,e > 0 such
that 0 < s < e <t < T the following properties hold:

(i) (function class)

w e L®(0,T; L2(R%) x L*(R*) N L*(0, T; H} ,(R%) x H'(R?)),
Vp € [L¥(e, T; [L2(R®)]® x {0}) + L¥*(e, T; [L*(R®))® x {0})],
(ii) (weak form 1)

t t t
/<w,‘1)'>d7'—-l//<VE,V6)dT—I€/(Vw4,Vq)4>dT

—/ (Sw, ®)dr —/ ((w, VYw, ®)dr = (w(t), ®(t)) — (w(s), (s))

holds for all ® = (®!,®% @3, &%) € C'([s,t]; Hj,(R?) x H'(R?)), where
' = 00/0r, W= (w!, w?, w?), & = (¥}, 82, P3), and w(0) = wy,

(iii) (weak form I1) the vector-valued function (w,p) satisfies the following
identity:

t t - - t - -
/ (Sw, VT)dr + / (w0, 9w, VW) dr + / (Fp, )dr = 0

for all ¥ € C([e, t]; W2*(R3)), where V¥ = (8,7, 8,¥,837,0).
(iv) (strong energy inequality)

t t
Mﬁm;+w/NWWﬂmwrum/nvwwm%msnwﬂmz

holds for a.e. s > 0, including s = 0, and all t > s, where w(0) = wo.
Let us now state main results.

Theorem 1.2 (Weak solution). Letwp € L2(R%)x L?(R?). Then there ezists
at least one weak solution of (1.2) with the initial datum wy, satisfying

Jim fw(t)z2 = 0. (1.9

Moreover, the weak solution is smooth with respect to time when time is
sufficiently large.
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Theorem 1.3 (Strong solution). Let wy € Hj,(R®) x H'(R?). Then there
exists 09 > 0 independent of wy such that if

||’U)0”H1 < (50
then there exists a unique global-in-time strong solution

w € O([0, 00); Hy . (R®) x H) N C((0, 00); W2%]*) N C1((0, 00); LT x L),
Vp € C((0, 00); [L*(R®)* x {0})

of (1.2) with the initial datum wq, which satisfies (1.3). Here p is a pressure
associated with w.

Applying similar arguments in [6], we prove Theorems 1.2 and 1.3. Koba
([6]) studied the asymptotic stability of Ekman boundary layers in rotat-
ing stratified fluids. Under some assumptions on an energy inequality, he
constructed a weak solution of his Ekman system satisfying the asymptotic
stability and showed the existence of a unique global-in-time strong solution,
which satisfies the asymptotic stability, of the system in the case when the ini-
tial datum is sufficiently small. The approach of [6] is based on the methods
from ([5], [8], [9], [4]) and improves them. Kato and Fujita ([5]) constructed a
unique strong solution of the Navier-Stokes system by using fractional power
of the Stokes operator. In [8], Masuda proved that if a weak solution of the
Navier-Stokes system satisfies the strong energy inequality then the weak so-
lution is asymptotically stable. Miyakawa and Sohr ([9]) constructed a weak
solution to the Navier-Stokes system satisfying the strong energy inequality.
Moreover, they showed that the weak solution is smooth with respect to time
when time is sufficiently large. Hess-Hieber-Mahalov-Saal in [4] showed the
existence of a weak solution, which satisfies the asymptotic stability, of their
Ekman perturbed system by using maximal LP-regularity.

Let us now explain about construction of weak solutions of (1.2) and
construction of strong solutions of (1.2). Using the Yosida approximation,
maximal LP-regularity, real interpolation theory, and an energy inequality of
the system (1.2), one can construct a weak solution of the system. See ([9], [4],
[6]). Applying semigroup theory on Hilbert spaces and an energy inequality
of (1.2), we can show the existence of a strong solution of (1.2). See ([5], [6],
[7]). Koba ([7]) constructed strong solutions of the spatial inhomogeneous
Boussinesq system in various domains.
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In the rest of this paper, we consider the asymptotic stability for the
linearized system of (1.2) and discuss derivation of (1.1). In Section 2, we
study the stability for a linear system satisfying an energy inequality. In
Section 3, we derive our system (1.1) from the incompressible Navier-Stokes
system by using physical and mathematical assumptions.

Finally, we state some references for geophysical fluids and the
Boussinesq approximation. Greenspan ([3]), Pedlosky ([10]), and Benoit ([1])
are textbooks for geophysical fluids and rotating fluids. Fife ([2]) studied the
Benard problem and the Boussinesq approximation from a mathematical
point of view.

2 Linear Stability

In this section, we investigate the asymptotic stability for the following sys-
tem: _
w+Aw+Sw+Vp=0, t>0, z€R3

lim|z|__.°° w =0, t>0,
V-w=0, t>0, z€R3,
W|t=0 = wo, T € R3.

(2.1)

Here w = w(t, z) = (w!,w?, w3, wl), p = p(t, ), V = (81,82, 85,0),

—vA 0 0 0
0 —-vA 0 0
A= 0 0 —-vA 0 ’
0 0 0 —kA

0 & S S
'—51 0 84 85
-8 =8 0 &g’
-8 =S8 -8 0

v,k >0,and S, € L*(R3) (£ = 1,2,...,6). Note that L*(R?) is a real-
valued function space in this paper. It is easy to check that the system (2.1)
contains the linearized system of (1.2). This section proves the proposition.
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Proposition 2.1. Let wy € L2(R3) x L%(R3). Then there exists a unique
global-in-time strong solution

w € C([0, 00); Ly (R?) x L*(R?)) N C((0, 00); [W2]*) N C*((0, 00); L2 x LP),
Vp € C((0,00); G2(R®) x {0})

of (2.1) with the initial datum wqy, where p is a pressure associated with w.
Assume in addition that S1,82,83,84,S5,S6 do not depend on x1. Then

tlim ||w(t)”L2(R3) =0.
—0Q

To prove Proposition 2.1, we introduce the three tools: the Fourier trans-
formation F, the extended Helmholtz projection P, and the tangential op-
erator 0.

Definition 2.2 (Fourier transformation). Let f and g be in the class of
rapidly decreasing K-valued functions & (R3K)(K = R,C). The Fourier
transform F[f] and the inverse Fourier transform F~1[g] are defined by

f[f(x)](&) — (2_71-1)_5_/_2 /]R3 e—z’(x1£1+x2§2+x3£3)f(x)dx,
.7:_1[9(5)](3?) — (_27?15_3/_2 /]RS ei(m&+x2£2+w3£3)g(§)d§,

where 1 = V —1; T = ($17$2ax3)a€ = (61)52763) € R3'
Definition 2.3 (Helmholtz projection). Let P be the operator defined by
& _L¢ _&
- % i
Pi@):=F711| -8 1-g& -%# |70 @

35 | 4
__&& __ &6 _
ep 1o

[N

for f € Z(R3K)(K =R,C). We call P the Helmholtz projection.
Definition 2.4 (Extended Helmholtz projection). Let P be the Helmholtz

projection. Set
~ P
Fe(P )

We call P an extended Helmholtz projection.
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It is clear that P : [LP(R3)]* — L2(R®) x LP(R3) (1 < p < 00).

Definition 2.5 (Tangential opei_rator). We define the tangential operator 51
in L2(R3) x L3(R?) as follows:

8 0 0 0
110 0 8 0}’
0 0 0 &

D(8y) = [L(R®) x L*(R®)] N [H'(R; L*(R?))]*,
where
HI(R; L2(R2)) = {f € Lz(Rs); \|81f||Lz(R3) < OO}

From [6, Sec. 3.3], we deduce the following lemma.
Lemma 2.6. The operator 8, has the following properties:
(i) 6, : D(8;) — Li(R®) x L*(R?).
(i) 8y is a closed operator.
(iii) The range R(81) is a dense subset of L2(R®) x L*(R®).

Multiplying (2.1) by the extended Helmholtz projection P, we obtain the
following abstract system:

wt-i—Lw:O, t>0,
W(t=0 = Wo.
Here the linear operator L is defined by
Lw := P(A+ S)w,
D(L) := [[LZ(R®) x LA(R®)] N [W2(R*)[*] @ 4[[L7 x L] N [W*2)4].
Moreover, we define the two linear operator A and L* as follows:
Aw = }BAw,
D(A) := [[L2(R®) x L*(R®)] N [W*2(R*)|*] @ 4[[L7 x L] n [W>2)7],
L*w := P(A - S)w,
D(L*) := [[L2(R®) x LA(R3)] N [W2(R*)]*] @ i[[L7 x L*] N [W22]"].

We easily check that L* is its adjoint operator of the operator L. See [7] for
details. Next we deduce useful properties of A and L.



Lemma 2.7. The operator A has the following properties:

(i) —A generates an analytic semigroup on [L2(R3?) x L2(R?)]® i[L2(R?) x
LA(R)].

(i) For all f € D(8,) and t >0
|67 f — ™48, f|lz= =0,
(iii) For all f € [H'(R3)]* and each j = 1,2,3
1B6,f — ,Bfllzz = 0.

(iv) There is C > 0 depending only on (v, k) such that for all f € L2 x L?
andt >0

B C
Ve ™ fll2 < ﬁ/—zﬂfﬂm‘-

Proof of Lemma 2.7. Using the Fourier-transformation, the definition of the
extended Helmholtz projection, and the formula:

et f = F ' [diag{e ", e, e e~ L F £](6)] (),
we prove Lemma 2.7. O

Lemma 2.8. The two operators L and L* have the following properties:

(i) Each operator —L and —L* generates an analytic semigroup on

L5 (R?) x L2(R?)] @ 4[L7(R®) x L*(R?)].

(i) If 81,85,53,84,55,5¢ do not depend on x,, then for all f € D(gl) and
t>0

1016 f — ™01 fll2 = O,
181~ f — 728, f|| 12 = 0.
Proof of Lemma 2.8. Applying Lemma 2.7 and perturbation theory on semi-

group, we deduce (i). By Lemma 2.7 and the assumption of (ii), and an
argument similar to that in [6, Sec. 3.5], we see (ii). O

Let us now prove Proposition 2.1 by using Lemmas 2.6 and 2.8.

23
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Proof of Proposition 2.1. Let wo € L2(R®) x L*(R3). Set w(t) := e *Fwp(t >
0). Since e~** is an analytic semigroup on L2 x L?, it follows from semigroup
theory that

w € C([0,00); L2(R?) x L2(R%)) N C((0, 00); [W3*) N C*((0, 00); L2 x L?)
and w satisfies

(2.2)

w|t=0 = Wo.

{wt+Lw:0, t >0,

Multiplying (2.2) by w, integrating by parts, and integrating with respect to
time, we see that for all s,¢ > 0(0 < s < t)

t
lw(®)lZz + 2 min{y, R}/ IV (r)|[Z2dr < Jlw(s)lZ2 < llwollZa.

Here we used the fact that
(Sw,w) = (Sw,w)r2 = 0.

Fix € > 0. Since R(gll is dense in L2 x L? by Lemma 2.6, there exist
a € L x L? and b € D(0) such that

lwo — aollL2 < €/2,
a= 81b

Set U(t) = e*a, V(t) = e tL(wo — a), and W (t) = e~*Lb. As before, we see
that for all 5,t > 0(0 < s<t)

IU®)|IZ2 + 2min{v, 5} /st IVU(D)Zedr < |U(S)]1Z2 < llallZ, (2.3)
IV(#)lZe +2min{v, s} /: IVV (7)l|Z2dr < [V (9)I1Z2 < llwo — allZ2, (24)
IW (#)lZ» + 2 min{v, 5} /st IVW ()lZ2dr < W (s)lZ2 < llblize-  (25)
By (2.4), we check that
lle™*wol|z2 <llwo — allz2 + le™*all .2

s§+ugw@hm (2.6)



From (2.3), we find that for ¢t > s
e~ allza < lle~all .

Integrating both its sides of the above inequalities with respect to s and using
the Holder inequality, we see that

1 t
e~ alzz <5 [ o alads
0

1 f el 2 2
gtT/i (/0 |le™® a||L2ds) . (2.7)

Since a = d1b and e=*L0,b = §;e7°Lb, we use (2.5) to check that

t t
[ tetalds = [ 10 mbiads
0 0

t
< [ 1 H3ads
0

15117
~2min{y, k}

Combining (2.6), (2.7), and (2.8), we obtain

_ € / 1 _
le tLU’O”L? < 5 + mt 1/2||bHL2-

Hence we see that there is T > 0 such that for all £ > T
le w2 < €.
Since ¢ is arbitrary, we conclude that
lim [w(t)]z2 = 0.

Set B
Vp = —w, — Aw — Sw.

It is easy check that (w, €7p) is a strong solution of (2.1) with the initial
datum wy. Since (2.2) is a linear system, we see the uniqueness of the strong
solution. Therefore Proposition 2.1 is proved. O

25
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3 Derivation of a Geophysical Fluid System

This section gives one derivation of a geophysical fluid system. We derive
our geophysical fluid system from the incompressible Navier-Stokes system
by using mathematical and physical assumptions. The argument on the
derivation of our system (1.1) may not be rigorous from a physical point of
view, but the argument here makes a lot of sense to the reader. We first
prepare one tool. By direct calculations, we obtain the following lemma.

Lemma 3.1. Let Q@ > 0 andt € R. Let d = (dy,ds,d3) € R3 such that

E+di+di=1. Set

0 —Qds
MQ = ng 0

—-Qd, Qd;
and
Tl Ti2
RQ (t) = T21 T22
31 T32
with

Qd,
-,
0

T13
Ta3
T33

r1 = r11(Q,t) :== 14 (d? — 1)(1 — cos (),
r12 = r12(Q, t) := d1da(1 — cos (Qt)) — ds sin (Qt),
r13 = 113(Q, t) := d1ds(1 — cos (Qt)) + dasin (),
ro1 = T21( 1) := d1da(1 — cos (Qt)) + ds sin (Ot),
Tog = T92(Q, t) := 1+ (d2 — 1)(1 — cos (),
ro3 = T23( t) 1= dad3(1 — cos (Qt)) — d; sin (),
r31 = r31(Q,t) := d1ds(1 — cos (Qt)) — da sin (),
T3 = T32(Q, 1) := dads(1 — cos (Qt)) + d; sin (),
ra3 = r33(Q, 1) := 1+ (di — 1)(1 — cos (Qt)).

Let Wy := (W}, WE,WE) € R3. Set W(t) := Ra(t)Wo(t € R). Then W

satisfies

Wy — MqW =0, t € R,

{W|t=0 == W().



Furthermore, the following equalities hold:

MQW = Qd x I/V,
Ro(t) = I + (1 — cos (Qt)) M2 /Q? + sin (Qt) Mq/Q,

Ro(~t) = [Ra(t)]",

Rq(t)Ra(—t) = Ro(—t)Ra(t) = I,
dRqa(t)/dt = MaRa(t),
dRo(~t)/dt = ~MgRa(~t),

Tfl + 7"%2 + Tfa =1,
T + Tay + Ta3 = 1,
o+ o+ T3 =1,
T11721 + T12T22 + 713723 = 0,
T11731 + 712732 + T13733 = 0,

T21731 + ToaT32 + Ta3733 = 0,
and

di(ros + r32) = da(r13 + 731) = d3(r12 + 721),
d1(7"22 - 7"33) = dorgy — d3r13 = dor12 — d3ran,
d2(7”11 - 7"33) = dy7T12 — d3res = diTo1 — d3rsg,

d3(7”11 - 7'22) = dyr13 — daT3e = d1731 — daras.

Now we derive our system (1.1). Here we do not consider the initial
conditions and boundary conditions. The procedure for deriving our system
(1.1) is as follows:

Incompressible Navier-Stokes system (INS)
= Navier-Stokes system with rotational effect (NSR)
= Navier-Stokes-Coriolis system (NSC)
—> Navier-Stokes-Boussinesq system
with Coriolis and stratification effects (NSBCS)
= Geophysical fluid system (1.1).

27
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Let v,r >0, Q2> 0, and d = (d1,ds, d3) € R? such that d? + d% + d2 = 1.
Fix € > 0. We call € a scale parameter here. Set for ¢t > 0
R, = {z = (21, 73,73) € R} 1 < |7] < 147},
RE®) := {y = (y1,¥2,¥3) € R®;y = Rqe2(t)x for z € R, }

with
110
Roe2(t):= |0 1 0] 4 [1 — cos (Qe?t)]M? + sin (Qe’t) M.
0 01
Here
0 —d; d;
M = d3 0 —dl
—dy di O

We consider the incompressible Navier-Stokes system in a rotating spher-
ical shell:

v+ (v, Viv—-vAv+Vp=f, t>0, z€R(),

INS ,
( ){V-v-——O, t>0, z € RE(E).

Here v = v(t,z) = (v}, v?,v3) is the fluid velocity, p = p(t, z) the pressure of
the fluid, and f = f(¢t,z) = (f1, f2, f3) the external force. We assume that
(v,p, f) are smooth functions. Set

V(t,z) = [Rae2(t)]Tv(t, Raez(t)),
P(t,z) = p(t, Rae2(t)z),
F(t,7) = [Roe2(t)]" f(t, Roer (t)x).
Using Lemma 3.1, we see that
Vi+ (V,V)V —vAV + VP + Qe?d x V

(NSR) — (Qe%d x (z1,22,73),V)V =F, t >0, T € R,,
V-V=0,1t>0, z €R,.

Set

d? + d? d?
22 3‘,17%_{_ 12

PE =Q? 4[

— didyz122 — d1d3T1T3 — d2d3$2563] )
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w(t,z) = V(t,z) — Qe’d x z, T = (11, T2, x3),

q:=P-PF:.
By direct calculations, we check that (w, ¢) satisfies the following system:
(NSC) w4+ (W, VYw —vAw+Vg+2Qe2dxw=F, t>0, z€R,,
V-w=0, t>0, z€R,.

Next we consider fluids effected by heat and stratification effects. Fix
Xo = (0, Yo, 20) € R, and Ty > 0. Set for § > 0

Ba(To,Xo) = {(t,a:) e Ry x R3; It - TDI < 6, |.’E - X0| < 5}
Now we consider (NSC) in a neighborhood of the point (Tg, Xo):

Us+ (U, V)U —vAU + Vq+202d x U =F  in Bs(Tp, Xo),
V-U=0 in Bs(Tp, Xo).

Here B;(To, Xo) C Ry x Ry and U = U(t,z) = (U, U?, U?) := w|g,m,x0)-
Assume that the fluid in Bj(Tp, Xo) is effected by heat and stratification
effects. Applying the following Boussinesq approximation:

q=Q + qo,

31:‘10 = Oa

0yqo >~ 0,

0.9 ~ —GO,

— N2U3 = dO/dt — kAB + (U, V)0,
F =0,

or

F = go,
— N?U? = dO/dt — kAO + (U, V)0,

we obtain

Ut + (U, V)U — vAU + VQ + 2082d x U = g@63 in B5(T0,X0),
9t + (U, V)@ — KAO = ~—]\72(]3 in Bg(To,Xo),
V-U=0 in B‘s(To,Xo).



Here © is temperature, « > 0, and G, N > 0. Set
Ry, :={t e R;t > to}

and

WE = {(tix) = (t,$1,$2,$3) € RT() X R3a (52t+ T01E$ + XO) € WE}

It is clear that as e — 0
W, —» Ry, x R* =~ R, x R3.

Now we consider two cases in order to drive our system (1.1).

3.1 Casel

Let us consider the following system:

Ui+ (U, VU —vAU +VQ +2Qe%d x U = GOe3  in W,
0, + (U, V) — kAO = —N2U3 in W,
V:-U=0 in W,.

Assume that there is Ny € R such that

N = N()EZ.
Set
U(t, z) == eU(et + Ty, ez + Xo),
O°(t, z) := £0(e% + Ty, ez + Xo),
Q5 (t, ) := e2Q(e% + Ty, ex + Xo).
Then
Ut + (U, V)U® — vAU® + V@ +2Qd x U = GO in W,
Of + (U*, V)OF — kAB® = —N2U<? in W,
V-Us=0 in W.



Using the following assumption: as ¢ — 0

Ue — u,
e — 0,
Q>
we obtain
s+ (u, V)u — vAu+ Vp +2Qd x u = Ghes in R, x R3,
6: + (u, V) — kKA = —NZu® in R, x R3,
in ]R+ X R3.

V-u=0

Therefore we get our system (1.1).

31

in W,

3.2 Casell
Let us consider the following system:
Ut+(U,V)U—I/AU+VQ+ZQ€2dX U=g@eg in WE,
6+ (U,V)® — kAO = —N2U3 in W,
V-U=0 in W-.
Assume that there are Ny, Gy € R such that
g - g062:
N = N()E.
Set
ﬁe(t, .’E) = EU(Ezt + To, EXT + X()),
O°(t,z) := eO(e% + Tp, ez + Xo),
ée(t, r) 1= 2Q(e% + Ty, ex + Xp).
Then
Us + (U5, V)U* — vAU® + VQ© + 2Qd x U = GoO°e;3
O + (Ue, V)6 — kASF = —N2U=3 in W.,

V-Ue =

in W,.
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Using the following assumption: as € — 0
Ue — u,
e — 0,
Q- p,
we obtain

us + (u, V)u — vAu + Vp +2Qd x u = Gofe; in Ry x R3,
0; + (u, V)8 — kAO = —NZu? in R; x R3,
V-u=0 in R, x R3.

Therefore we get our system (1.1).
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