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1. INTRODUCTION

This paper is survey of the paper [14]. We consider the Cauchy problems for the
Navier-Stokes equations with the Coriolis force

%—Au+ﬂegxu+(u Viu+Vp=0 t>0,zeR3
divu=0 t>0, zeR3, (NSC)
u(0, z) = up(z) z € R3,

where u = u(t,z) = (ui(t, ), u2(t, z), us(t,z)) and p = p(t,z) denote the unknown ve-
locity field and the unknown pressure of the fluid at the point (¢,z) € (0,00) X R3,
respectively, while uy = ug(z) = (uo1(x), uo2(z), uo3(x)) denotes the given initial veloc-
ity field satisfying the compatibility condition div uy = 0. Here, 2 € R is the speed of
rotation around the vertical unit vector es = (0,0, 1).

For (NSC) with Q = 0, there are a lot of results for the existence of global solutions. It
is known that global smooth solutions are obtained for small initial data in some scaling
invariant function spaces. Kato [8] studied the existence of global solutions for small
initial data in the Lebesgue space L3(R3). Here, the space L3(R?) is scaling invariant to
the equation (NSC) with = 0. In fact, for a solution u let uy be defined by u(t,z) :=
Mu(A%t, Az) for A > 0. Then, u, is also a solution to (NSC) with 2 = 0 and we have the
following norm invariant property in the Lebesgue space:

lur(0)|| Lo (rsy = [|u(0)]|L»(w3) for any A >0 if p=3.
On the results for small initial data in such scaling invariant function spaces, Kozono-

Yamazaki [20] studied in the Besov spaces B;i: ?(R?) with 3 < p < oo, Koch-Tataru [18]
studied in the class of bounded mean oscillation BMO~!(R?).

In this paper, we take the speed || large and show the existence of global solutions to
(NSC) for large initial data in H*(R®) with s > 1/2. In particular, we give a sufficient
condition on the norm of initial data and the speed €2 for the existence of global solutions.
For the existence of global solutions to (NSC), Chemin-Desjardins-Gallagher-Grenier [6, 7]
proved that for any initial data uo € L2(R2)2+ H2 (R?)3, there exists a positive parameter
) such that for every Q € R with |Q| > Qo there exists a unique global solution. Babin-
Mahalov-Nicolaenko [2, 3, 4] showed the existence of global solutions and the regularity
of the solutions to (NSC) for the periodic initial data with large |Q2|. On the other hand,
Giga-Inui-Mahalov-Saal [11] showed the existence of global solutions for small initial data
up € FM;'(R3) which smallness is independent of 2 € R. On such other results of global



solutions for small initial data, Hieber-Shibata [12] studied in the Sobolev space Hz(R3),
Konieczny-Yoneda [19] studied in the Fourier-Besov space F B (R3) with 1 < p < oo.

We note that the spaces FM;'(R3), Hz(R®) and F Bp’Oo (R?) are scaling invariant spaces
to (NSC) with Q = 0.
We consider the following integral equation:

u(t) = Ta(t)uo — /Ot To(t — 7)PV - (u ® u)dr, (IE)

where P = (d;; + R;R;)1<i <3 denotes the Helmholtz projection onto the divergence-free
vector fields and Tu(-) denotes the semigroup corresponding to the linear problem of
(NSC), which is given explicitly by

Tolt)f = F* [cos (Qg

i el
for t > 0 and divergence-free vector fields f. Here, I is the identity matrix in R3,
R;(j = 1,2,3) is the Riesz transform and R(£) is the skew-symmetric matrix symbol
related to the Riesz transform, which is defined by

1 0 53 -52
R ==|-& 0 & for ¢ € R®\ {0}.
€] & & 0

We refer to Babin-Mahalov-Nikolaenko [1, 2, 3], Giga-Inui-Mahalov-Saal [10] and Hieber-
Shibata [12] for the derivation of the explicit form of Tq(-).

We consider the initial data ug € H*(R?) with 1/2 < s < 3/4 to establish the existence
theorem on global solutions. In the case s > 1/2, the sufficient speed (2 is characterized by
the norm of initial data ||uo|| 7.. In the case s = 1/2, the sufficient speed (2 is characterized
by each precompact set K C H 2(R3) , which the initial data belongs to. Our theorem
for s > 1/2 is the following.

t)e= % I7(6) + sin (2521) =6 R(e) fle )

Theorem 1.1. Let 2 € R\ {0}, and let s,p and 0 satisfy

S
1, 1,8.1.2 s 1.1
s 1 1 5 3 s 3 3 1 2
s 1 1.5 3 s 3 3 1, 2 1.2
5 B 8 8 ptr 17557, 12)

Then, there ezists a positive constant C = C(s,p,0) > 0 such that for any initial velocity
field ug € H*(R®)3 with

uoll e < C|QY5™3  and divug =0, (1.3)
there exists a unique global solution u € C([0, 00), H*(R%))3NL(0, 00; H3(R?))? to (NSC).

Remark 1.2. The existence of global solutions for small initial data u, € Hz(R3)® were
shown by Hieber-Shibata [12]. The size condition (1.3) on initial data can be regarded

as a continuous extension of that in H%(R®)3. Indeed, Hieber-Shibata [12] assumed the
smallness condition ||uo|| 4 < 0 for some § > 0, which corresponds to our condition (1.3)

with s =1/2.
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Remark 1.3. The space L%(0, oo; H52(R®)) is scaling invariant to (NSC) in the case
Q = 0 if 0y, sp and pg satisfy

‘052;4‘}%:14-80. (14)
On the first condition of (1.2), we see that
2 3 5 s . 1
5+;<z+5<1+8 1fs>§.

Therefore, the space L%(0, oo; H;(IR")) in Theorem 1.1 includes more regular functions
than those in the scaling invariant spaces.

In the case s = 1/2, it seems difficult to obtain the sufficient condition on the size of
initial data and the speed for the existence of global solutions since H?(R3) is scaling
invariant to (NSC) with € = 0. Then, we introduce precompact sets in Hz(R3) to obtain
the following result.

Theorem 1.4. Let K be an arbitrary precompact set in H %(R3)3. Then, there ezists
w(K) > 0 such that for any @ € R with || > w(K) and for any up € K with
divug = 0, there exists a unique global solution u to (NSC) in C([0,00), Hz(R3))® N
1
L4(0, 00; HE (R3))3.
1

Remark 1.5. The space L*(0, 00; HZ (R?)) in Theorem 1.4 is scaling invariant space in
the case Q = 0 since 6y = 4, sp = 1/2 and p, = 3 satisfy (1.4).

Remark 1.6. For the original Navier-Stokes equations

%—Au—i—(u-V)u—l—Vp:O t>0, r€RY
divu =0 t>0,z€R®, (NS)
u(0, z) = up(zx) z € R3,

it is known by the results of Brezis [5], Giga [9] and Kozono [16] that the existence time
T of local solutions for initial data in L"(R®) (3 < r < oo) and L3(R?) is determined
by the each bounded set B in L™(R?®) (3 < r < o0) and the each precompact set K in
L3(RR®), respectively. Note that the space L3(R3) is a scaling critical space to (NS). On the
other hand, the sufficint speed €2 to obtain global solutions is determined by the bounded
sets and precompact sets in Theorem 1.1 and Theorem 1.4, respectively. Therefore, our
theorems can be regarded as a counterpart of such results from the viewpoint of the
Coriolis parameter 2 for the existence of global solutions.

In this paper, we prove Theorem 1.1 only. For the proof of Theorem 1.4, see [14]. In
Section 2, we introduce propositions to prove Theorem 1.1 which are on linear estimates
for the semigroup Ty (-) and the bilinear estimate. In Section 3, we prove Theorem 1.1.

2. PRELIMINARIES

In what follows, we denote by C' > 0 various constants and by 0 < ¢ < 1 various small
constants. In order to introduce propositions to prove theorems, let us recall the definition
of the homogeneous Besov spaces in brief. Let ¢ be a radial smooth function satisfying

suppp C {€ € R¥|27 < e[ <2}, D 4(27¢) =1 forany £ € R®\ {0}.

JEZ
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Let {¢;};ez be defined by
¢i(z) == 2%¢(2z) for jeZ xR

Then, for s € R,1 < p,q < 0o, the homogeneous Besov space B? q(R3) is defined by the
set of all tempered distributions f € S'(R3) with

1£lsg, = [{29165 * Fliewn}eqllinry < o0
Lemma 2.1. [13] Let 2 < p < co. There exists C > 0 such that

log(e + |Qt)yz0-2)

—1 +ifR0t )
7R gy, < O{ =

||f||B3(1—%) (2.1)
2T 2

forallQeR, t >0, fEB (R3)

Lemma 2.2. Let 1 < ¢ <2 < p < oo satisfy 1/q > 1 —1/p. Then, there exists C > 0
such that

ITaft) s < o 26D (AL EIONIR g, (2:2)

for allQ e Rt > 0, f € LY(R?).
Proof. By the continuous embedding BY,(R?®) — L?(R®) and (2.1), we have

log(e + |Q2]t -3
ITa(01in < CTa0)1 3, < O{EETHNV P peray g,

-1’

And we have from Lemma 2.2 in [17] and the continuous embedding L4(R®) < BY,(R?)

€471 sy < CERED || fll30, < C 3G fllage)

p—2

Therefore, we obtain (2.2). O
Proposition 2.3. [13] Let 2 < p < 6, 2 < 6 < 0o satisfy
3 3 1 2

= <1-2Z2,

4 2p~ 0 p
Then, there exists C > 0 such that
_l48(1-2
1 Ta()fllzoooizny < CIQIT7F4072)| £]| 2
for all Q2 e R\ {0}, f € L%(R3).
Proposition 2.4. [14] For every f € H7(R3), it holds that

dm IO, =0 23)
Remark 2.5. The space L4(0, co; H3 (R3)) is scaling invariant function space to (NSC)
w1th 2 = 0. (2.3) is proved by Proposition 2.3 and the approximation of functions in

H?(R3) by smooth functions. (2.3) is used for the proof of Theorem 1.4.
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Proposition 2.6. Let 2 < p < 3 and 6/5 < q < 2 satisfy
1 1 1

1
1-2<Z<z4-, 2.4
p q 3 p (24)
1 3,1 1y 1/, 2 1.1 3,1 1
------ —~(1-2 <z-2(=-23). .
ma"{o’z 2(q p) 2(1 p)}<9—2 Z(q p) (2:5)
Then, there exists C > 0 such that
t
— < {3- 2(3‘3 -3} . .
1( / Toft ~ RV i()r, . <Cl0F Mgy 2

for all s € R, Q € R\ {0}, f € LF(0, 00; H:(R?)).

Proof. We only consider the case s = 0 for simplicity since the case s # 0 is treated
similarly. By Lemma 2.2, we have

H/ To(t — TPV f(r)dr| ,

t \-3-5G-3 log(e + ||t — 7]) 1 30-D
< — 2 ») ‘
- C“/O (t=7) { 1+ Q[ — 7| } 1 £ (T)||edT

In the case 1/6 = 1/2 — 3(1/q — 1/p)/2, we have from Hardy-Littlewood-Sobolev’s in-

equality
¢ _1-3@-1yflogle+ Q¢ —7 (-
H/(t—T) S ,,{ 1(+l££||1|tI D}z V)l

T

L9(0,00) '

L8(0,00)

Lo(O,oo)

Cllfll

In the case 1/0 < 1/2 — 3(1/q — 1/p)/2, we have from Hausdorff-Young’s inequality with
1/0=2/6+1/r —1

| [e-mrita {‘°g1‘j+|§'f,fl't ) (0 e

L% (0,00;L9)"

L8(0,00)
”t_i_g(l_l){log(e—f- |Q|t)}’( I\l
1+ |Q|t L7 (0,00) Lg(O,oo;Lq)
1+3d-1
_CIQIo 3 ”f“Lg(OooLq)
Therefore, we obtain (2.6). O
Lemma 2.7. Let s,p satisfy
s 1 1 s
< D P G
0<s<3, 3 p<2+6’

and let q satisfy

wl®»

1
q

N

Then, there exists C > 0 such that
Il 9l

H < C“fl

H;”.‘J”H;- (2.7)
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Proof. Let r satisfy 1/g = 1/p+ 1/r. In the Sobolev spaces, it is known that
| If9llay < Cllfllllgle- + Cllfllz-llg]

By the continuous embedding H:(R®) — L"(R®), we obtain (2.7). O

Hs-

3. PROOF OF THEOREM 1.1

Since the assumption on @ and p in Proposition 2.3 is satisfied by (1.1) and (1.2), there
exists Cy > 0 such that

_1,30_2
ITa Yol o0 ortiy < 194754072 Colfu -

Let ¥(u) and Y be defined by

t
U(u)(t) :=Ta(t)up — / To(t — 7)PV - (u @ u)(7)dr, (3.1)
0
Y i= {u € L°(0,00; Hy(R®))® | [ull o0 015) < 2Col2™5 4075 gl o, dives = 0},
d(u,v) = [lu - U“LG(O,oo;H;;)'

Let g satisfy 1/q¢ = 2/p — s/3. Since the assumptions on s,p,q and @ in Proposition 2.6
and Lemma 2.7 are satisfied by (1.1) and (1.2), for any u,v € Y, we have from Proposition
2.3, Proposition 2.6 and Lemma 2.7

_1.8(-2 11,811
12 ()l 20(0,00:25) < Col@ 77754 o]l 4, + CIQY7~ 3420 "’)llu@Ulng(Om;H;)

< Golff 340 ugl e + IO EGE ullF o g 52
< ColQ 785D fug | o + Cr|QPFTEHEGRIRATEODN )2
< GolQ 7750 Jug | + CLIQ~EHE(Q 5 EO o 3,

10 (u) - \I’(U)HL"(O,oo;Hg)

-| /0 To(t = TPV - {u® (u—v)(7) + (u—v) ® v(r)}dr |

< CIQF G lu® (u—v) + (u—v) @ o]

L#(0,00;H3)

L%(0,00;H2)
< Ol 722 (| gogo aoutie) + 101120 0.00082) 1 = V1l 20(0.00:2
= Ull26(0,00;H3) L8(0,00;H3) L8(0,00;H3)
< Gl 7GR D g g — 0l oo oty
1,3_3
= 02|Q|4+2q P HUOHH-’ ”u - v”Le(O,oo;Hg)
5,1
= ColQU™= 7% Juo| ge 1w — Il 200,005
If Q, ug satisfy

_s41 1
Hs S C(), CleI 2+4”’U’0”H*" S Ea
then, it is possible to apply Banach’s fixed point theorem in Y and we obtain u € Y with

Cy|0

|

u(t) = To(t)uo — /Ot To(t —7)PV - (u ® u)dr.
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Here, we show that the solution u € Y satisfies u(t) € H#(R3)3 for all t > 0. On the
linear part, it is easy to see that To(t)up € H*(R3)3 for any ¢ > 0. On the nonlinear part,
let 1/¢ =2/p — s/3 and we have from Lemma 2.2, Lemma 2.7 and Hélder’s inequality

| [ ate-rp9 - @eweyir], < [[6-nHHPlaoninlyr

t

____3(1_1) 2
<C“(t_ ) e ”L?"g'f(0<r<t)”“u(7—)“H§ £%(0,00)
-2y 0 r 1 311 9
< ot -5 {-3-3G 2)}]”ul|L9(0,oo;H;)
(3.3)
Here, we note on the integrability at 7 =t that
0 1 3,1 1 : 1 5 3 s
2222V <1 ifandonlyif -<2-2 43
0—2{2+2(q 2)} tandony F<g T3 "1
Therefore, we obtain u(t) € H*(R®)3 and we also see u € C([0, 00), H*(R3))3. O
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