A Simplified Characterisation of Provably Computable Functions of the System ID₁ of Inductive Definitions (Extended Abstract)

Naohi Eguchi* Mathematical Institute, Tohoku University, Japan

Andreas Weiermann[†] Department of Mathematics, Ghent University, Belgium

Abstract

We present a simplified and streamlined characterisation of provably total computable functions of the system ID_1 of non-iterated inductive definitions. The idea of the simplification is to employ the method of operator-controlled derivations that was originally introduced by Wilfried Buchholz and afterwards applied by the second author to a streamlined characterisation of provably total computable functions of Peano arithmetic PA.

1 Introduction

As stated by Gödel's first incompleteness theorem, any reasonable consistent formal system has an unprovable Π_2^0 -sentence that is true in the standard model of arithmetic. This means that the total (computable) functions whose totality is provable in a consistent system, which are known as provably (total) computable functions, form a proper subclass of total computable functions. Hence it is natural to ask how we can describe the provably computable functions of a given system. Not surprisingly provably computable functions are closely related to provable well-ordering, i.e., ordinal analysis. Several successful applications of techniques from ordinal analysis to provably computable functions have been provided by B. Blankertz and A. Weiermann

^{*}The first author is generously supported by the research project *Philosophical Frontiers in Reverse Mathematics* sponsored by the John Templeton Foundation.

[†]The second author has been supported in part by the John Templeton Foundation and the FWO. Parts of the article have been written during a visit of the author at the Isaac Newton Institute, Cambridge, UK in January 2012. In 2011 the author presented the article at a talk at the Oberseminar Mathematische Logik in Bonn.

[1], W. Buchholz [5], Buchholz, E. A. Cichon and Weiermann [6], or M. Michelbrink [9].

Modern ordinal analysis is based on the method of local predicativity, that was first introduced by W. Pohlers, cf. [10, 11]. Successful applications of local predicativity to provably computable functions contain works by Blankertz and Weiermann [12] and by Weiermann [2]. However, to the authors' knowledge, the most successful way in ordinal analysis is based on the method of operator-controlled derivations, an essential simplification of local predicativity, that was introduced by Buchholz [3]. In [13] the second author successfully applied the method of operator-controlled derivations to a streamlined characterisation of provably computable functions of PA. (See also [11, Section 2.1.5].) Technically this work aims to lift up the characterisation obtained in [13] to an impredicative system ID₁ of non-iterated inductive definitions. We introduce an ordinal notation system $\mathcal{O}(\Omega)$ and define a computable function f^{α} for a starting numerical function $f: \mathbb{N} \to \mathbb{N}$ by transfinite recursion on $\alpha \in \mathcal{O}(\Omega)$. The transfinite definition of f^{α} stems from [13]. We show that a function is provably computable in ID₁ if and only if it is a Kalmar elementary function in $\{s^{\alpha} \mid \alpha \in \mathcal{O}(\Omega) \text{ and } \alpha < \Omega\}$, where s denotes the numerical successor function $m \mapsto m+1$ and Ω denotes the least non-computable ordinal (Corollary 6.4).

This paper consists of two materials, a technical report [8] by the authors and a draft [14] by the second author. Section 3–6 consist of [8] and Section 7 consists of [14]. We mention in particular that the ordinal notation system $\mathcal{OT}(\mathcal{F})$ stems from [14]. Most of proofs are omitted due to the page limitation. We note however that there is a non-trivial error in the technical report [8, p. 8, Lemma 15.5]. We restate Lemma 4.4.5, provide its proof and discuss in detail about embedding (Section 5) affected by this correction. The full details of missing proofs will appear in [7].

2 Preliminaries

In order to make our contribution precise, in this preliminary section we collect the central notions. We write \mathcal{L}_{PA} to denote the standard language of first order theories of arithmetic. In particular we suppose that the constant 0 and the successor function symbol S are included in \mathcal{L}_{PA} . For each natural m we use the notation \underline{m} to denote the corresponding numeral built from 0 and S. Let a set variable X denote a subset of \mathbb{N} . We write X(t) instead of $t \in X$ and $\mathcal{L}_{PA}(X)$ for $\mathcal{L}_{PA} \cup \{X\}$. Let $\mathsf{FV}_1(A)$ denote the set of free number variables appearing in a formula A and $\mathsf{FV}_2(A)$ the set of free set variables in A. And then let $\mathsf{FV}(A) := \mathsf{FV}_1(A) \cup \mathsf{FV}_2(A)$. For a fresh set variable X we call an $\mathcal{L}_{PA}(X)$ -formula A(x) a positive operator form if $\mathsf{FV}_1(A(x)) \subseteq \{x\}$, $\mathsf{FV}_2(A(x)) = \{X\}$, and X occurs only positively in A.

Let $\mathsf{FV}_1(\mathcal{A}(x)) = \{x\}$. For a formula F(x) such that $x \in \mathsf{FV}_1(F(x))$ we write $\mathcal{A}(F,t)$ to denote the result of replacing in $\mathcal{A}(t)$ every subformula X(s) by F(s). The language $\mathcal{L}_{\mathrm{ID}_1}$ of the system ID_1 of non-iterated inductive definitions is defined by $\mathcal{L}_{\mathrm{ID}_1} := \mathcal{L}_{\mathrm{PA}} \cup \{P_{\mathcal{A}} \mid \mathcal{A} \text{ is a positive operator form}\}$ where for each positive operator

form \mathcal{A} , $P_{\mathcal{A}}$ denotes a new unary predicate symbol. We write $\mathcal{T}(\mathcal{L}_{ID_1}, \mathcal{V})$ to denote the set of \mathcal{L}_{ID_1} -terms and $\mathcal{T}(\mathcal{L}_{ID_1})$ to denote the set of closed \mathcal{L}_{ID_1} -terms. The axioms of ID_1 consist of the axioms of Peano arithmetic PA in the language \mathcal{L}_{ID_1} and the following new axiom schemata (ID_1) and (ID_2):

- (ID1) $\forall x (\mathcal{A}(P_{\mathcal{A}}, x) \to P_{\mathcal{A}}(x)).$
- (ID2) (The universal closure of) $\forall x (\mathcal{A}(F,x) \to F(x)) \to \forall x (P_{\mathcal{A}}(x) \to F(x))$, where F is an $\mathcal{L}_{\text{ID}_1}$ -formula.

For each $n \in \mathbb{N}$ we write $\mathrm{I}\Sigma_n$ to denote the fragment of Peano arithmetic PA with induction restricted to Σ_n^0 -formulas. Let k be a natural number and $f: \mathbb{N}^k \to \mathbb{N}$ a numerical function and T be a system of arithmetic containing $\mathrm{I}\Sigma_1$. Then we say that f is provably total computable in T or provably computable in T for short if there exists a Σ_1^0 -formula $A_f(x_1,\ldots,x_k,y)$ such that (i) $\mathsf{FV}(A_f) = \mathsf{FV}_1(A_f) = \{x_1,\ldots,x_k,y\}$, (ii) for all $\vec{m}, n \in \mathbb{N}$, $f(\vec{m}) = n$ holds if and only if $A_f(\underline{\vec{m}},\underline{n})$ is true in the standard model \mathbb{N} of PA, and (iii) $\forall \vec{x} \exists ! y A_f(\vec{x},y)$ is a theorem in T.

3 A non-computable ordinal notation system $\mathcal{OT}(\mathcal{F})$

In this section we introduce a *non-computable* ordinal notation system $\mathcal{OT}(\mathcal{F}) = \langle \mathcal{OT}(\mathcal{F}), < \rangle$. This new ordinal notation system is employed in the next section. For an element $\alpha \in \mathcal{OT}(\mathcal{F})$ let $\mathcal{OT}(\mathcal{F}) \upharpoonright \alpha$ denote the set $\{\beta \in \mathcal{OT}(\mathcal{F}) \mid \beta < \alpha\}$.

Definition 3.1 We define three sets $SC \subseteq \mathbb{H} \subseteq \mathcal{OT}(\mathcal{F})$ of ordinal terms and a set \mathcal{F} of unary function symbols simultaneously. Let $0, \varphi, \Omega, S, E$ and + be distinct symbols.

- 1. $0 \in \mathcal{OT}(\mathcal{F})$ and $\Omega \in SC$.
- 2. $\{S, E\} \subseteq \mathcal{F}$.
- 3. If $\alpha \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$, then $S(\alpha) \in \mathcal{OT}(\mathcal{F})$ and $E(\alpha) \in \mathbb{H}$.
- 4. If $\{\alpha_1, \ldots, \alpha_l\} \subseteq \mathbb{H}$ and $\alpha_1 \geq \cdots \geq \alpha_l$, then $\alpha_1 + \cdots + \alpha_l \in \mathcal{OT}(\mathcal{F})$.
- 5. If $\{\alpha, \beta\} \subseteq \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$, then $\varphi \alpha \beta \in \mathbb{H}$.
- 6. If $\alpha \in \mathcal{OT}(\mathcal{F})$ and $\xi \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$, then $\Omega^{\alpha} \cdot \xi \in \mathbb{H}$.
- 7. If $F \in \mathcal{F}$, $\alpha \in \mathcal{OT}(\mathcal{F})$ and $\xi \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$, then $F^{\alpha}(\xi) \in SC$.
- 8. If $F \in \mathcal{F}$ and $\alpha \in \mathcal{OT}(\mathcal{F})$, then $F^{\alpha} \in \mathcal{F}$.

We write ω^{α} to denote $\varphi 0\alpha$ and m to denote $\omega^{0} \cdot m = \underbrace{\omega^{0} + \cdots + \omega^{0}}_{m \text{ many}}$.

Let Ord denote the class of ordinals and Lim the class of limit ones. We define a semantic $[\cdot]$ for $\mathcal{OT}(\mathcal{F})$, i.e., $[\cdot]:\mathcal{OT}(\mathcal{F})\to \text{Ord}$. The well ordering < on $\mathcal{OT}(\mathcal{F})$ is defined by $\alpha<\beta\Leftrightarrow [\alpha]<[\beta]$. Let Ω_1 denote the least non-computable ordinal ω_1^{CK} . For an ordinal α we write $\alpha=_{NF}\Omega_1^{\alpha_1}\cdot\beta_1+\cdots+\Omega_1^{\alpha_l}\cdot\beta_l$ if $\alpha>\alpha_1>\cdots>\alpha_l$, $\{\beta_1,\ldots,\beta_l\}\subseteq\Omega_1$, and $\alpha=\Omega_1^{\alpha_1}\cdot\beta_1+\cdots+\Omega_1^{\alpha_l}\cdot\beta_l$. Let ε_α denote the α th epsilon number. One can observe that for each ordinal $\alpha<\varepsilon_{\Omega_1+1}$ there uniquely exists a set $\{\alpha_1,\ldots,\alpha_l,\beta_1,\ldots,\beta_l\}$ of ordinals such that $\alpha=_{NF}\Omega_1^{\alpha_1}\cdot\beta_1+\cdots+\Omega_1^{\alpha_l}\cdot\beta_l$. For a set $K\subseteq \text{Ord}$ and for an ordinal α we will write $K<\alpha$ to abbreviate $(\forall \xi\in K)\xi<\alpha$, and dually $\alpha\leq K$ to abbreviate $(\exists \xi\in K)\alpha\leq \xi$.

Definition 3.2 (Collapsing operators) 1. Let α be an ordinal such that $\alpha =_{NF} \Omega_1^{\alpha_1} \cdot \beta_1 + \cdots + \Omega_1^{\alpha_l} \cdot \beta_l < \varepsilon_{\Omega_1+1}$. The set $K_{\Omega}\alpha$ of coefficients of α is defined by

$$K_{\Omega}\alpha = \{\beta_1, \dots, \beta_l\} \cup K_{\Omega}\alpha_1 \cup \dots \cup K_{\Omega}\alpha_l.$$

2. Let $F: \mathsf{Ord} \to \mathsf{Ord}$ be an ordinal function. Then a function $F^{\alpha}: \mathsf{Ord} \to \mathsf{Ord}$ is defined by transfinite recursion on $\alpha \in \mathsf{Ord}$ by

$$\begin{cases} F^{0}(\xi) &= F(\xi), \\ F^{\alpha}(\xi) &= \min\{\gamma \in \operatorname{Ord} \mid \omega^{\gamma} = \gamma, \ K_{\Omega}\alpha \cup \{\xi\} < \gamma \ and \\ (\forall \eta < \gamma)(\forall \beta < \alpha)(K_{\Omega}\beta < \gamma \Rightarrow F^{\beta}(\eta) < \gamma) \}. \end{cases}$$

Corollary 3.3 Let $F : \text{Ord} \to \text{Ord}$ be an ordinal function. Then $F^{\beta}(\eta) < F^{\alpha}(\xi)$ holds if $(\beta < \alpha \wedge K_{\Omega}\beta \cup \{\eta\} < F^{\alpha}(\xi))$ or $(\alpha \leq \beta \wedge F^{\beta}(\eta) \leq K_{\Omega}\alpha)$.

Proposition 3.4 Suppose that $\alpha < \varepsilon_{\Omega_1+1}$, a function $F : \text{Ord} \to \text{Ord}$ has a Σ_1 -definition in the Ω_1 th stage L_{Ω_1} of the constructible hierarchy $(L_{\alpha})_{\alpha \in \text{Ord}}$ and that $F(\xi) < \Omega_1$ for all $\xi < \Omega_1$. Then F^{α} also has a Σ_1 -definition in L_{Ω_1} and $F^{\alpha}(\xi) < \Omega_1$ holds for all $\xi < \Omega_1$.

Proposition 3.5 For any $\alpha \in \text{Ord}$, for any $\eta, \xi < \Omega_1$ and for any ordinal function $F: \Omega_1 \to \Omega_1$, if $\eta < F^{\alpha}(\xi)$, then $F^{\alpha}(\eta) \leq F^{\alpha}(\xi)$.

Definition 3.6 We define the value $[\alpha] \in \text{Ord of an ordinal term } \alpha \in \mathcal{OT}(\mathcal{F})$ by recursion on the length of α .

- 1. [0] = 0 and $[\Omega] = \Omega_1$.
- $2. \ [\alpha + \beta] = [\alpha] + [\beta].$

$$3. \ [\varphi\alpha\beta] = [\varphi] \, [\alpha] [\beta], \ where \ [\varphi] \ is \ the \ standard \ Veblen \ function, \ i.e.,$$

$$\left\{ \begin{array}{rcl} [\varphi] 0\beta &=& \omega^{\beta}, \\ [\varphi] (\alpha+1)0 &=& \sup\{([\varphi] \, \alpha)^n 0 \mid n \in \omega\}, \\ [\varphi] \gamma 0 &=& \sup\{[\varphi] \, \alpha 0 \mid \alpha < \gamma\} & \text{ if } \gamma \in \operatorname{Lim}, \\ [\varphi] (\alpha+1)(\beta+1) &=& \sup\{([\varphi] \, \alpha)^n ([\varphi](\alpha+1)\beta+1 \mid n \in \omega\}, \\ [\varphi] \gamma(\beta+1) &=& \sup\{[\varphi] \, \alpha ([\varphi] \, \gamma\beta+1) \mid \alpha < \gamma\} & \text{ if } \gamma \in \operatorname{Lim}, \\ [\varphi] \alpha \gamma &=& \sup\{[\varphi] \, \alpha\beta \mid \beta < \gamma\} & \text{ if } \gamma \in \operatorname{Lim}. \end{array} \right.$$

- 4. $[\Omega^{\alpha} \cdot \xi] = \Omega_1^{[\alpha]} \cdot [\xi]$.
- 5. $[S(\alpha)] = [S]([\alpha])$, where [S] denotes the ordinal successor $\alpha \mapsto \alpha + 1$. Clearly $\{[S](\xi) \mid \xi < \Omega_1\} \subseteq \Omega_1$.
- 6. $[\mathsf{E}(\alpha)] = [\mathsf{E}]([\alpha])$, where the function $[\mathsf{E}] : \mathsf{Ord} \to \mathsf{Ord}$ is defined by $[\mathsf{E}](\alpha) = \min\{\xi \in \mathsf{Ord} \mid \omega^{\xi} = \xi \text{ and } \alpha < \xi\}$. It is also clear that $\{[\mathsf{E}](\xi) \mid \xi < \Omega_1\} \subseteq \Omega_1$ holds.
- 7. $[F^{\alpha}(\xi)] = [F]^{[\alpha]}([\xi]).$

Definition 3.7 For all $\alpha, \beta \in \mathcal{OT}(\mathcal{F})$, $\alpha < \beta$ if $[\alpha] < [\beta]$, and $\alpha = \beta$ if $[\alpha] = [\beta]$.

We will identify each element $\alpha \in \mathcal{OT}(\mathcal{F})$ with its value $[\alpha] \in \mathsf{Ord}$. Accordingly we will write $K_{\Omega}\alpha$ instead of $K_{\Omega}[\alpha]$ for $\alpha \in \mathcal{OT}(\mathcal{F})$. Further for a finite set $K \subseteq \mathsf{Ord}$ we write $K_{\Omega}K$ to denote the finite set $\bigcup_{\xi \in K} K_{\Omega}\xi$. By this identification, \mathbb{H} is the set of additively indecomposable ordinals and SC is the set of strongly critical ordinals, i.e, $\mathsf{SC} \subseteq \mathbb{H} \subseteq \mathsf{Lim} \cup \{1\} \subseteq \mathsf{Ord}$.

Corollary 3.8 $F^{\alpha}(\xi) < \Omega$ for any $F \in \mathcal{F}$ and $\xi < \Omega$.

Proof. Proof by induction over the build-up of $F \in \mathcal{F}$.

Corollary 3.9 1. $K_{\Omega}0 = K_{\Omega}\Omega = \emptyset$.

- 2. If $K_{\Omega}\alpha < \xi$ and $\xi \in SC$, then $K_{\Omega}S(\alpha) < \xi$.
- 3. $K_{\Omega}\mathsf{E}(\alpha) = \{\mathsf{E}(\alpha)\}\ (since\ \alpha < \Omega).$
- 4. If $K_{\Omega}\alpha \cup K_{\Omega}\beta < \xi$ and $\xi \in SC$, then $K_{\Omega}(\alpha + \beta) < \xi$.
- 5. $K_{\Omega}\varphi\alpha\beta = \{\varphi\alpha\beta\}$ (since $\alpha, \beta < \Omega$). Further, if $\alpha, \beta < \xi$ and $\xi \in SC$, then $\varphi\alpha\beta < \xi$.
- 6. $K_{\Omega}F^{\alpha}(\xi) = \{F^{\alpha}(\xi)\}\ (since\ \xi < \Omega).$

By Corollary 3.8 each function symbol in \mathcal{F} defines a weakly increasing function $F:\Omega\to\Omega$ such that $\xi< F(\xi)$ holds for all $\xi\in\Omega$. In the rest of this section let F denote such a function. For a finite set $K\subseteq \operatorname{Ord}$ we will use the notation $F[K](\xi)$ to abbreviate $F(\max(K\cup\{\xi\}))$.

Lemma 3.10 Let $K \subseteq \text{Ord}$ be a finite set such that $K < \Omega$. Then $(F[K])^{\alpha}(\xi) \leq F^{\alpha}[K](\xi)$ for all $\xi < \Omega$.

Lemma 3.11 $(F^{\alpha})^{\beta}(\xi) \leq F^{\alpha+\beta}(\xi)$ for all $\xi < \Omega$.

4 An infinitary proof system ID_1^{∞}

In this section we introduce the main definition of this paper, a new infinitary proof system ID_1^∞ , to which the new ordinal notation system $\mathcal{OT}(\mathcal{F})$ is connected, and into which every (finite) proof in ID_1 can be embedded in good order. For each positive operator form \mathcal{A} and for each ordinal term $\alpha \in (\mathcal{OT}(\mathcal{F}) \upharpoonright \Omega) \cup \{\Omega\}$ let $P_{\mathcal{A}}^{<\alpha}$ be a new unary predicate symbol. Let us define an infinitary language \mathcal{L}^* of ID_1^∞ by $\mathcal{L}^* = \mathcal{L}_{\mathrm{PA}} \cup \{\neq, \neq\} \cup \{P_{\mathcal{A}}^{<\alpha}, \neg P_{\mathcal{A}}^{<\alpha} \mid \alpha \in (\mathcal{OT}(\mathcal{F}) \upharpoonright \Omega) \cup \{\Omega\}$ and \mathcal{A} is a positive operator form}. Let us write $P_{\mathcal{A}}^{<\Omega}$ to denote $P_{\mathcal{A}}$ to have the inclusion $\mathcal{L}_{\mathrm{ID}_1} \subseteq \mathcal{L}^*$. We write $\mathcal{T}(\mathcal{L}^*)$ to denote the set of closed \mathcal{L}^* -terms. Specifically, the language \mathcal{L}^* contains complementary predicate symbol $\neg P$ for each predicate symbol $P \in \mathcal{L}^*$. We note that the negation \neg nor the implication \rightarrow is not included as a logical symbol. The negation $\neg A$ is defined via de Morgan's law by $\neg (\neg P(\vec{t})) :\equiv P(\vec{t})$ for an atomic formula $P(\vec{t}), \neg (A \land B) :\equiv \neg A \lor \neg B, \neg (A \lor B) :\equiv \neg A \lor \neg B, \neg \forall x A :\equiv \exists x \neg A \text{ and } \neg \exists x A :\equiv \forall x \neg A.$ The implication $A \to B$ is defined by $\neg A \lor B$. We start with technical definitions.

Definition 4.1 (Complexity measures lh, rk, k^{Π} k^{Σ} , k of \mathcal{L}^* -formulas)

- 1. The length lh(A) of an \mathcal{L}^* -formula A is the number of the symbols $P_{\mathcal{A}}^{<\alpha}$, $\neg P_{\mathcal{A}}^{<\alpha}$, \vee , \wedge , \exists and \forall occurring in A.
- 2. The rank rk(A) of an \mathcal{L}^* -formula A.
 - (a) $\operatorname{rk}(P_{\mathbf{A}}^{<\alpha}(t)) := \operatorname{rk}(\neg P_{\mathbf{A}}^{<\alpha}(t)) := \omega \cdot \alpha.$
 - (b) $\operatorname{rk}(A) := 0$ if A is an $\mathcal{L}_{\operatorname{ID}}$,-literal.
 - (c) $\operatorname{rk}(A \wedge B) := \operatorname{rk}(A \vee B) := \max\{\operatorname{rk}(A), \operatorname{rk}(B)\} + 1$.
 - (d) $\operatorname{rk}(\forall x A) := \operatorname{rk}(\exists x A) := \operatorname{rk}(A) + 1$.
- 3. The set $k^{\Pi}(A)$ of Π -coefficients of an \mathcal{L}^* -formula A.
 - $(a) \ \mathbf{k}^\Pi(P_{\mathcal{A}}^{<\alpha}(t)) := \{0\}, \ \mathbf{k}^\Pi(\neg P_{\mathcal{A}}^{<\alpha}(t)) := \{0,\alpha\}.$
 - (b) $k^{\Pi}(A) := \{0\}$ if A is an $\mathcal{L}_{\text{ID}_1}$ -literal.
 - $(c)\ \mathbf{k}^\Pi(A\wedge B):=\mathbf{k}^\Pi(A\vee B):=\mathbf{k}^\Pi(A)\cup\mathbf{k}^\Pi(B).$
 - $(d) \ \mathsf{k}^\Pi(\forall xA) := \mathsf{k}^\Pi(\exists xA) := \mathsf{k}^\Pi(A).$
- 4. The set $k^{\Sigma}(A)$ of Σ -coefficients of an \mathcal{L}^* -formula A. $k^{\Sigma}(A) := k^{\Pi}(\neg A).$
- 5. The set k(A) of all the coefficients of an \mathcal{L}^* -formula A. $k(A) := k^{\Pi}(A) \cup k^{\Sigma}(A).$
- 6. The set $\mathsf{k}^\Pi_\Omega(A)$ of Π -coefficients of an \mathcal{L}^* -formula A less than Ω . $\mathsf{k}^\Pi_\Omega(A) := \mathsf{k}^\Pi(A) \upharpoonright \Omega.$ The set $\mathsf{k}^\Omega_\Omega(A)$ and $\mathsf{k}_\Omega(A)$ are defined accordingly.

By definition $\mathsf{rk}(A) = \mathsf{rk}(\neg A)$, $\mathsf{k}(A) = \mathsf{k}(\neg A)$ and $\mathsf{k}_{\Omega}(A) = \mathsf{k}_{\Omega}(\neg A)$.

Definition 4.2 (Complexity measures val, ord, N of \mathcal{L}^* -terms)

- 1. The value val(t) of a term $t \in \mathcal{T}(\mathcal{L}_{ID_1}) = \mathcal{T}(\mathcal{L}_{PA})$ is the value of the closed term t in the standard model \mathbb{N} of the Peano arithmetic PA.
- 2. A complexity measure ord : $\mathcal{T}(\mathcal{L}^*) \to (\mathcal{OT}(\mathcal{F}) \upharpoonright \Omega) \cup \{\Omega\}$ is defined by

$$\left\{ \begin{array}{ll} \operatorname{ord}(t) &:= & 0 & \text{ if } t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1}), \\ \operatorname{ord}(\alpha) &:= & \alpha & \text{ if } \alpha \in \mathcal{OT}(\mathcal{F}). \end{array} \right.$$

- 3. The norm $N(\alpha)$ of $\alpha \in \mathcal{OT}(\mathcal{F})$.
 - (a) N(0) = 0 and $N(\Omega) = 1$.
 - (b) $N(S(\alpha)) = N(\alpha) + 1$.
 - (c) $N(\mathsf{E}(\alpha)) = N(\alpha) + 1$.
 - (d) $N(\alpha + \beta) = N(\alpha) + N(\beta)$.
 - (e) $N(\varphi \alpha \beta) = N(\alpha) + N(\beta) + 1$,
 - (f) $N(\Omega^{\alpha} \cdot \xi) = N(\alpha) + N(\xi) + 1$.
 - (g) $N(F^{\alpha}(\xi)) = N(F(\xi)) + N(\alpha)$. (Note that $F(\xi) \in \mathcal{OT}(\mathcal{F})$ if $F^{\alpha}(\xi) \in \mathcal{OT}(\mathcal{F})$.)

The norm is extended to a complexity measure $N: \mathcal{T}(\mathcal{L}^*) \to \mathbb{N}$ by

$$\begin{cases} N(t) := \operatorname{val}(t) & \text{if } t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1}), \\ N(\alpha) := N(\alpha) & \text{if } \alpha \in \mathcal{OT}(\mathcal{F}). \end{cases}$$

By definition $N(\omega^{\alpha}) = N(\varphi 0\alpha) = N(\alpha) + 1$ and $N(m) = N(\omega^{0} \cdot m) = m$ for any $m < \omega$. This seems to be a good point to explain why we contain the constant Ω in $\mathcal{OT}(\mathcal{F})$. Having that $N(\Omega) = 1$ removes some technicalities.

Definition 4.3 We define a relation \simeq between \mathcal{L}^* -sentences and (infinitary) propositional \mathcal{L}^* -sentences.

- 1. $\neg P_{\mathcal{A}}^{<\alpha}(t) :\simeq \bigwedge_{\xi \in \mathcal{OT}(\mathcal{F}) \upharpoonright \alpha} \neg \mathcal{A}(P_{\mathcal{A}}^{<\xi}, t) \text{ and } P_{\mathcal{A}}^{<\alpha}(t) :\simeq \bigvee_{\xi \in \mathcal{OT}(\mathcal{F}) \upharpoonright \alpha} \mathcal{A}(P_{\mathcal{A}}^{<\xi}, t).$
- 2. $A \wedge B :\simeq \bigwedge_{\iota \in \{0,1\}} A_{\iota}$ and $A \vee B :\simeq \bigvee_{\iota \in \{0,1\}} A_{\iota}$ where $A_{\underline{0}} \equiv A$ and $A_{\underline{1}} \equiv B$.
- 3. $\forall x A(x) :\simeq \bigwedge_{t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})} A(t) \text{ and } \exists x A(x) :\simeq \bigvee_{t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})} A(t).$

We call an \mathcal{L}^* -sentence A a \bigwedge -type (conjunctive type) if $A \simeq \bigwedge_{\iota \in J} A_{\iota}$ for some A_{ι} , and a \bigvee -type (disjunctive type) if $A \simeq \bigvee_{\iota \in J} A_{\iota}$ for some A_{ι} . For the sake of simplicity we will write $\bigwedge_{\xi < \alpha} A_{\xi}$ instead of $\bigwedge_{\xi \in \mathcal{OT}(\mathcal{F}) \mid \alpha} A_{\xi}$ and write $\bigvee_{\xi < \alpha} A_{\xi}$ accordingly.

- **Lemma 4.4** 1. If either $A \simeq \bigwedge_{\iota \in J} A_{\iota}$ or $A \simeq \bigvee_{\iota \in J} A_{\iota}$, then for all $\iota \in J$, $\mathsf{k}^{\Pi}(A_{\iota}) \subseteq \{\mathsf{ord}(\iota)\} \cup \mathsf{k}^{\Pi}(A)$ and $\mathsf{k}^{\Sigma}(A_{\iota}) \subseteq \{\mathsf{ord}(\iota)\} \cup \mathsf{k}^{\Sigma}(A)$.
 - 2. For any $\alpha \in \mathcal{OT}(\mathcal{F})$, if $A \simeq \bigwedge_{\xi < \alpha} A_{\xi}$, then $(\exists \sigma \in \mathbf{k}^{\Pi}(A))(\forall \xi < \alpha)[\xi \leq \sigma]$.
 - 3. For any \mathcal{L}^* -sentence A, $\mathsf{rk}(A) = \omega \cdot \max \mathsf{k}(A) + n$ for some $n \leq \mathsf{lh}(A)$.
 - 4. If $\operatorname{rk}(A) = \Omega$, then either $A \equiv P_A^{<\Omega}(t)$ or $A \equiv \neg P_A^{<\Omega}(t)$.
 - 5. If either $A \simeq \bigwedge_{\iota \in J} A_{\iota}$ or $A \simeq \bigvee_{\iota \in J} A_{\iota}$, then $N(\mathsf{rk}(A_{\iota})) \leq \max(\{N(\mathsf{rk}(A))\} \cup \{2 \cdot N(\iota) + \mathsf{lh}(\mathcal{A}(\cdot, *)) \mid P_{\mathcal{A}}^{<\xi} \text{ or } \neg P_{\mathcal{A}}^{<\xi} \text{ occurs in } A\})$ for all $\iota \in J$.

Proof. We only show the non-trivial property, Property 5. By Property 3, $\mathsf{rk}(A) = \omega \cdot \max \mathsf{k}(A) + n$ for some $n \leq \mathsf{lh}(A)$.

CASE. n > 0: In this case $\mathsf{rk}(A_{\iota}) = \omega \cdot \max \mathsf{k}(A) + n_0$ for some $n_0 < n \leq \mathsf{lh}(A)$. Hence clearly $N(\mathsf{rk}(A_{\iota})) \leq N(\mathsf{rk}(A))$.

CASE. n=0: In this case without loss of generality let us assume A is of the form $P_{\mathcal{A}}^{<\alpha}(t)\simeq\bigvee_{\xi<\alpha}\mathcal{A}(P_{\mathcal{A}}^{<\xi},t)$ and hence $A_{\xi}\simeq\mathcal{A}(P_{\mathcal{A}}^{<\xi},t)$. Let $\iota:=\xi<\alpha$. Then $\operatorname{rk}(A_{\iota})=\omega\cdot\xi+n_{\iota}$ for some $n_{\iota}\leq\operatorname{lh}(\mathcal{A}(\cdot,t))$. Hence $N(\operatorname{rk}(A_{\iota}))\leq 2\cdot N(\xi)+\operatorname{lh}(\mathcal{A}(\cdot,*))$. \square

Throughout this section we use the symbol F to denote a weakly increasing ordinal function $F: \Omega \to \Omega$ and the symbol f to denote a numerical function $f: \mathbb{N} \to \mathbb{N}$ that enjoys the following conditions.

- (f.1) f is a strictly increasing function such that $2m+1 \le f(m)$ for all m. Hence, in particular, $n+f(m) \le f(n+m)$ for all m and n.
- $(f.2) \ 2 \cdot f(m) \le f(f(m))$ for all m.

We will use the notation f[n](m) to abbreviate f(n+m). It is easy to see that if the conditions (f.1) and (f.2) hold, then for a fixed n the conditions (f[n].1) and (f[n].2) also hold.

Definition 4.5 Let $f : \mathbb{N} \to \mathbb{N}$ be a numerical function. Then a function $f^{\alpha} : \mathbb{N} \to \mathbb{N}$ is defined by transfinite recursion on $\alpha \in \mathcal{OT}(\mathcal{F})$ by

$$f^{0}(m) = f(m),$$

$$f^{\alpha}(m) = \max\{f^{\beta}(f^{\beta}(m)) \mid \beta < \alpha \text{ and } N(\beta) \le f[N(\alpha)](m)\} \text{ if } 0 < \alpha.$$

Corollary 4.6 1. If f is strictly increasing, then so is f^{α} for any $\alpha \in \mathcal{OT}(\mathcal{F})$.

- 2. If $\beta < \alpha$ and $N(\beta) \leq f[N(\alpha)](m)$, then $f^{\beta}(m) < f^{\alpha}(m)$.
- 3. $f^{\alpha}(f^{\alpha}(m)) \leq f^{\alpha+1}(m)$.

We note that the function f^{α} is not a computable function in general even if f is computable since the ordinal notation system $\langle \mathcal{OT}(\mathcal{F}), < \rangle$ is not a computable system.

Lemma 4.7 Let $\alpha \in \mathcal{OT}(\mathcal{F})$ and $F \in \mathcal{F}$. Then $N(\alpha) \leq f^{F^{\alpha}(0)}(0)$.

Lemma 4.8 Let $\{\alpha, \beta\} \subseteq \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$ and $F \in \mathcal{F}$. Then $(f^{\alpha})^{\beta}(m) \leq f^{F^{\Omega \cdot \alpha + \beta}(0)}(m)$ for all m.

Lemma 4.9 1. $f^{\alpha}[n](m) \leq (f[n])^{\alpha}(m)$.

2. If $n \leq m$, then $(f[n])^{\alpha}(m) \leq f^{\alpha}[f^{\alpha}(f(m))](f(m))$.

We write f[n][m] to abbreviate (f[n])(m) and $f[n]^{\alpha}$ to abbreviate $(f[n])^{\alpha}$.

Corollary 4.10 If $n \leq m$, then $(f[n])^{\alpha}(m) \leq f^{\alpha+2}(m)$.

We define a relation $f, F \vdash^{\alpha}_{\rho} \Gamma$ for a quintuple $(f, F, \alpha, \rho, \Gamma)$ where $\alpha < \varepsilon_{\Omega+1}$, $\rho < \Omega+\omega$ and Γ is a sequent of \mathcal{L}^* -sentences. In this paper a "sequent" means a finite set of formulas. We write Γ , A or A, Γ to denote $\Gamma \cup \{A\}$. Let us recall that for a finite set $K \subseteq \operatorname{Ord}, F[K](\xi)$ denotes $F(\max(K \cup \{\xi\}))$. We will write $F[\mu](\xi)$ to denote $F[\{\mu\}](\xi)$. We write TRUE₀ to denote the set $\{A \mid A \text{ is an } \mathcal{L}_{\operatorname{PA}}\text{-literal true in the standard model } \mathbb{N} \text{ of } \operatorname{PA}\}$.

Definition 4.11 $f, F \vdash^{\alpha}_{\rho} \Gamma$ if

$$\max\{N(F(0)), N(\alpha)\} \le f(0), \quad K_{\Omega}\alpha < F(0), \quad (\mathsf{HYP}(f; F; \alpha))$$

and one of the following holds.

- (Ax1) $\exists A(x)$: an $\mathcal{L}_{\text{ID}_1}$ -literal, $\exists s, t \in \mathcal{T}(\mathcal{L}_{\text{ID}_1})$ s.t. $\text{FV}(A) = \{x\}$, val(s) = val(t) and $\{\neg A(s), A(t)\} \subseteq \Gamma$.
- (Ax2) $\Gamma \cap \mathsf{TRUE}_0 \neq \emptyset$.
- $(\bigvee) \ \exists A \simeq \bigvee_{\iota \in J} A_{\mu} \in \Gamma, \ \exists \alpha_0 < \alpha, \ \exists \iota_0 \in J \ \textit{s.t.} \ N(\iota_0) \leq f(0), \ \text{ord}(\iota_0) < \min\{\alpha, F(0)\} \\ \textit{and} \ f, F \vdash_{\rho}^{\alpha_0} \Gamma, A_{\iota_0}.$
- $\begin{array}{ll} (\bigwedge) \ \exists A \simeq \bigwedge_{\iota \in J} A_\iota \in \Gamma \ \textit{s.t.} \ \max\{N(\sigma) \mid \sigma \in \mathbf{k}^{\Pi}_{\Omega}(A)\} \leq f(0), \ \mathbf{k}^{\Pi}_{\Omega}(A) < F(0) \ \textit{and} \\ (\forall \iota \in J) \ (\exists \alpha_\iota < \alpha) \ [f[N(\iota)], F[\mathrm{ord}(\iota)] \vdash^{\alpha_\iota}_{\rho} \Gamma, A_\iota]. \end{array}$
- $(\mathsf{Cl}_{\Omega}) \ \exists t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1}), \ \exists \alpha_0 < \alpha \ s.t. \ P_{\mathcal{A}}^{<\Omega}(t) \in \Gamma, \ \Omega < \alpha \ and \ f, F \vdash_{\rho}^{\alpha_0} \Gamma, \mathcal{A}(P_{\mathcal{A}}^{<\Omega}, t).$
- $\begin{array}{lll} (\operatorname{Cut}) \ \exists C \colon \ an \ \mathcal{L}^*\text{-}sentence \ of \ \bigvee \text{-}type, \ \exists \alpha_0 < \alpha \ s.t. \ \max(\{N(\sigma) \mid \sigma \in \mathsf{k}_\Omega(C)\} \cup \\ \{\operatorname{lh}(C)\}) \leq f(0), \ \mathsf{k}_\Omega(C) < F(0), \ \mathsf{rk}(C) < \rho, \ f, F \vdash^{\alpha_0}_{\rho} \Gamma, C, \ and \ f, F \vdash^{\alpha_0}_{\rho} \Gamma, \neg C. \end{array}$

We will call the pair (f,F) operators controlling the derivation that forms $f,F\vdash^{\alpha}_{\rho}\Gamma$.

In the sequel we always assume that the operator F enjoys the following condition $\mathsf{HYP}(F)$:

$$\eta < F(\xi) \Rightarrow F(\eta) \le F(\xi)$$
 for any ordinals $\xi, \eta < \Omega$. (HYP(F))

We note that the hypothesis $\mathsf{HYP}(F)$ reflects the fact stated in Proposition 3.5. It is not difficult to see that if the condition $\mathsf{HYP}(F)$ holds, then the condition $\mathsf{HYP}(F[K])$ also holds for any finite set $K < \Omega$.

Lemma 4.12 (Inversion) Assume that $A \simeq \bigwedge_{\iota \in J} A_{\iota}$. If $f, F \vdash_{\rho}^{\alpha} \Gamma, A$, then for all $\iota \in J$, $f[N(\iota)], F[\operatorname{ord}(\iota)] \vdash_{\rho}^{\alpha} \Gamma, A_{\iota}$.

We write $f \circ g$ to denote the result of composing f and $g: m \mapsto f(g(m))$.

Lemma 4.13 (Cut-reduction) Assume $C \simeq \bigvee_{\iota \in J} C_{\iota}$, $\operatorname{rk}(C) = \rho \neq \Omega$, $\max(\{N(\sigma) \mid \sigma \in \mathsf{k}_{\Omega}(C)\} \cup \{\mathsf{lh}(C)\}) \leq f(g(0))$, and $\mathsf{k}_{\Omega}(C) < F(0)$. If $f, F \vdash^{\alpha}_{\rho} \Gamma, \neg C$ and $g, F \vdash^{\beta}_{\rho} \Gamma, C$, then $f \circ g, F \vdash^{\alpha+\beta}_{\rho} \Gamma$.

For a sequent Γ we write $\mathbf{k}_{\Omega}^{\Pi}(\Gamma)$ to denote the set $\bigcup_{B\in\Gamma}\mathbf{k}_{\Omega}^{\Pi}(B)$.

Lemma 4.14 (First Cut-elimination) Let $k < \omega$. If $f, F \vdash_{\Omega+k+2}^{\alpha} \Gamma$, then $f^{F^{\alpha}(0)+1}$, $F \vdash_{\Omega+k+1}^{\Omega^{\alpha}} \Gamma$.

Lemma 4.15 (Predicative Cut-elimination) Assume that $\{\alpha, \beta, \gamma\} < \Omega$, $N(\alpha) \le f^{\gamma}(0)$ and $K_{\Omega}\alpha < F(0)$. If f^{γ} , $F \vdash_{\rho+\omega^{\alpha}}^{\beta} \Gamma$, then $f^{F^{\Omega \cdot \alpha + \gamma + \beta}(0) + 1}$, $F \vdash_{\rho}^{\varphi\alpha\beta} \Gamma$.

Definition 4.16 For each \mathcal{L}^* -formula B let B^{α} be the result of replacing in B every occurrence of $P_{\mathcal{A}}^{\leq \Omega}$ by $P_{\mathcal{A}}^{\leq \alpha}$.

Lemma 4.17 (Boundedness) Assume that $f, F \vdash^{\alpha}_{\rho} \Gamma, A$. Then for all ξ if $\alpha \leq \xi \leq F(0)$, $N(\xi) \leq f(0)$ and $K_{\Omega}\xi < F(0)$, then $f, F \vdash^{\alpha}_{\rho} \Gamma, A^{\xi}$.

We will write $f, F \vdash^{\alpha}_{\cdot} \Gamma$ instead of $f, F \vdash^{\alpha}_{\alpha} \Gamma$.

Lemma 4.18 (Impredicative Cut-elimination) If $f, F \vdash_{\Omega+1}^{\alpha} \Gamma$, then $f^{F^{\alpha}(0)+1}, F^{\alpha+1} \vdash_{\cdot}^{F^{\alpha}(0)} \Gamma$.

Lemma 4.19 (Witnessing) For each j < l let $B_j(x)$ be a Δ_0^0 - \mathcal{L}_{PA} -formula such that $\mathsf{FV}(B_j(x)) = \{x\}$. Let $\Gamma \equiv \exists x_0 B_0(x_0), \ldots, \exists x_{l-1} B_{l-1}(x_{l-1})$. If $f, F \vdash_0^\alpha \Gamma$ for some $\alpha \in \mathcal{OT}(\mathcal{F})$, then there exists a sequence m_0, \ldots, m_{l-1} of naturals such that $\max\{m_j \mid j < l\} \leq f(0)$ and $B_0(m_0) \lor \cdots \lor B_{l-1}(m_{l-1})$ is true in the standard model $\mathbb N$ of PA .

5 Embedding ID_1 into ID_1^{∞}

In this section we embed the system ID_1 into the infinitary system ID_1^∞ . Following conventions in the previous section we use the symbol f to denote a strict increasing function $f:\mathbb{N}\to\mathbb{N}$ that enjoys the conditions (f.1) and (f.2) (p. 8). Let us recall that the function symbol $\mathsf{E}\in\mathcal{F}$ denotes the function $\mathsf{E}:\Omega\to\Omega$ such that $\mathsf{E}(\alpha)=\min\{\xi<\Omega\mid\omega^\xi=\xi\text{ and }\alpha<\xi\}$. It is easy to see that the condition $\mathsf{HYP}(\mathsf{E})$ holds since $\mathsf{E}(\xi)=\varepsilon_0\leq\mathsf{E}(0)$ for all $\xi<\mathsf{E}(0)=\varepsilon_0$.

Lemma 5.1 (Tautology lemma) Let $s, t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$, Γ be a sequent of \mathcal{L}^* -sentences, and A(x) be an \mathcal{L}^* -formula such that $\mathsf{FV}(A) = \{x\}$. If $\mathsf{val}(s) = \mathsf{val}(t)$, then

$$f[n], \mathsf{E}[\mathsf{k}_{\Omega}(A)] \vdash_{\mathsf{0}}^{\mathsf{rk}(A) \cdot 2} \Gamma, \neg A(s), A(t), \tag{1}$$

where $n := \max(\{N(\mathsf{rk}(A))\} \cup \{2 \cdot N(\sigma) + \mathsf{lh}(\mathcal{A}(\cdot, *)) \mid \sigma \in \mathsf{k}_{\Omega}(A) \text{ and } P_{\mathcal{A}}^{<\xi} \text{ or } \neg P_{\mathcal{A}}^{<\xi} \text{ occurs in } A\}).$

Proof. By induction on $\mathsf{rk}(A)$. Let $n := \max(\{N(\mathsf{rk}(A))\} \cup \{2 \cdot N(\sigma) + \mathsf{lh}(\mathcal{A}(\cdot, *)) \mid \sigma \in \mathsf{k}_\Omega(A) \text{ and } P_\mathcal{A}^{<\xi} \text{ or } \neg P_\mathcal{A}^{<\xi} \text{ occurs in } A\})$. From Lemma 4.4.3 one can check that the condition $\mathsf{HYP}(f[n]; \mathsf{E}(\mathsf{k}_\Omega(A)); \mathsf{rk}(A) \cdot 2) \text{ holds.}$ If $\mathsf{rk}(A) = 0$, then A is an $\mathcal{L}_{\mathrm{ID}_1}$ -literal, and hence (1) is an instance of (Ax1). Suppose that $\mathsf{rk}(A) > 0$. Without loss of generality we can assume that $A \simeq \bigvee_{\iota \in J} A_\iota$. Let $\iota \in J$. By Lemma 4.4.5 we observe that $N(\mathsf{rk}(A_\iota) \leq f(n) = f[n][N(\iota)](0)$ since $2m+1 \leq f(m)$ for all m by the condition (f.1). Further by Lemma 4.4.1 $K_\Omega(\mathsf{rk}(A_\iota) \cdot 2) \subseteq \mathsf{k}_\Omega(A) \cup \{\mathsf{ord}(\iota)\} \leq \mathsf{E}[\mathsf{k}_\Omega(A)][\mathsf{ord}(\iota)]$. Summing up, we have the condition

$$\mathsf{HYP}(f[n][N(\iota)];\mathsf{E}[\mathsf{k}_{\Omega}(A)][\mathsf{ord}(\iota)];\mathsf{rk}(A_{\iota})\cdot 2).$$

Hence by IH we can obtain the sequent

$$f[n][N(\iota)], \mathsf{E}[\mathsf{k}_{\Omega}(A)][\mathsf{ord}(\iota)] \vdash_{0}^{\mathsf{rk}(A_{\iota}) \cdot 2} \Gamma, \neg A_{\iota}(s), A_{\iota}(t). \tag{2}$$

It is not difficult to see $\operatorname{ord}(\iota) \leq \operatorname{rk}(A_{\iota}) < \operatorname{rk}(A_{\iota}) \cdot 2 + 1$ and $N(\operatorname{rk}(A_{\iota}) \cdot 2 + 1) = N(\operatorname{rk}(A_{\iota}) \cdot 2) + 1 \leq f[n][N(\iota)](0)$. This allows us to apply (\bigvee) to the sequent (2) yielding

$$f[n][N(\iota)], \mathsf{E}[\mathsf{k}_{\Omega}(A)][\mathsf{ord}(\iota)] \vdash_{0}^{\mathsf{rk}(A_{\iota}) \cdot 2+1} \Gamma, \neg A_{\iota}(s), A(t).$$

We can see that $\mathsf{rk}(A_{\iota}) \cdot 2 + 1 < \mathsf{rk}(A) \cdot 2$, $\max\{N(\sigma) \mid \sigma \in \mathsf{k}^{\Pi}_{\Omega}(A)\} \leq f[n](0)$ and $\mathsf{k}^{\Pi}_{\Omega}(A) < \mathsf{E}[\mathsf{k}_{\Omega}(A)]$. Hence we can apply (\bigwedge) concluding (1).

Lemma 5.2 Let B_j be an $\mathcal{L}_{\text{ID}_1}$ -sentence for each j = 0, ..., l-1. Suppose that $B_0 \vee ... \vee B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then there exists a natural $k < \omega$ such that $f[m+k], \mathsf{E} \vdash_0^{\Omega \cdot 2+k} \Gamma, B_0, ..., B_{l-1}$, where $m = \max(\{N(\mathsf{rk}(B_j)) \mid 0 \le j \le l-1\} \cup \{\mathsf{lh}(\mathcal{A}(\cdot,*)) \mid P_{\mathcal{A}}^{<\xi} \text{ or } \neg P_{\mathcal{A}}^{<\xi} \text{ occurs in } B_j \text{ for some } j\}).$

Proof. Let B_j be an $\mathcal{L}_{\mathrm{ID}_1}$ -sentence for each $j=0,\ldots,l-1$ and suppose that $B_0\vee\cdots\vee B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then we can find a cut-free proof of the sequent $\Gamma, B_0, \ldots, B_{l-1}$ in an LK-style sequent calculus. More precisely we can find a cut-free proof P of $\Gamma, B_0, \ldots, B_{l-1}$ in the sequent calculus that is known as $\mathrm{G3}_{\mathrm{m}}$. Let h denote the tree height of the cut-free proof P. Then by induction on h one can find a witnessing natural k such that $f[m+k], \mathsf{E} \vdash_0^\alpha \Gamma, B_0, \ldots, B_{l-1}$ for all $\alpha \geq \Omega + k$. In case h = 0 Tautology lemma (Lemma 5.1) can be applied since for any $\mathcal{L}_{\mathrm{ID}_1}$ -sentence A, $\mathrm{rk}(A) \in \omega \cup \{\Omega + k \mid k < \omega\}$ and $\mathrm{k}(A) \subseteq \{0, \Omega\}$, and hence $\mathrm{k}_{\Omega}(A) = \{0\}$ and $\mathrm{max}\{N(\sigma) \mid \sigma \in \mathrm{k}_{\Omega}(A)\} = 0$.

Lemma 5.3 Let $m \in \mathbb{N}$ and A(x) be an $\mathcal{L}_{\mathrm{ID}_1}$ -formula such that $\mathsf{FV}(A(x)) = \{x\}$. Then for any $t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$ and for any sequent Γ of $\mathcal{L}_{\mathrm{ID}_1}$ -sentences, if $\mathsf{val}(t) = m$, then

$$f[n+m], \mathsf{E} \vdash_0^{(\mathsf{rk}(A)+m)\cdot 2} \Gamma, \neg A(0), \neg \forall x (A(x) \to A(S(x))), A(t), \tag{3}$$

where $n := \max(\{N(\operatorname{rk}(A))\} \cup \{\operatorname{lh}(\mathcal{A}(\cdot, *)) \mid P_{\mathcal{A}}^{<\xi} \text{ or } \neg P_{\mathcal{A}}^{<\xi} \text{ occurs in } A\})$

Proof. By induction on m. The base case $\mathsf{val}(t) = m = 0$ follows from Tautology lemma (Lemma 5.1). For the induction step suppose $\mathsf{val}(t) = m+1$. Fix a sequent Γ of $\mathcal{L}_{\text{ID}_1}$ -sentences. Then (3) holds by IH. On the other hand again by Tautology lemma,

$$f[n], \mathsf{E} \vdash_0^{\mathsf{rk}(A) \cdot 2} \Gamma, \neg A(0), \exists x (A(x) \land \neg A(S(x))), A(\underline{m}), \neg A(\underline{m}). \tag{4}$$

An application of (Λ) to the two sequents (3) and (4) yields

$$f[n+m], \mathsf{E} \vdash_{\mathsf{0}}^{\alpha_m \cdot 2+1} \Gamma, \neg A(0), \exists x (A(x) \land \neg A(S(x))), A(t), A(\underline{m}) \land \neg A(\underline{m}),$$

The final application of (V) yields

$$f[n+m+1], F \vdash_0^{(\mathsf{rk}(A)+m+1)\cdot 2} \Gamma, \neg A(0), \exists x (A(x) \land \neg A(S(x))), A(t).$$

Lemma 5.4 Let $\xi \leq \Omega$, F(x) be an $\mathcal{L}_{\mathrm{ID_1}}$ -formula such that $\mathsf{FV}(F(x)) = \{x\}$ and B(X) be an X-positive $\mathcal{L}_{\mathrm{PA}}(X)$ -formula such that $\mathsf{FV}(B) = \emptyset$. Then

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_0^{(\sigma + \alpha + 1) \cdot 2} \Gamma, \neg \forall x (\mathcal{A}(F, x) \to F(x)), \neg B(P_{\mathcal{A}}^{<\xi}), B(F),$$

where $\sigma := \operatorname{rk}(F)$, $\alpha := \operatorname{rk}(B(P_{\mathcal{A}}^{<\xi}))$ and $n := \max(\{N(\sigma + \alpha + 1)\} \cup \{\operatorname{lh}(\mathcal{B}) \mid P_{\mathcal{B}}^{<\gamma} \text{ or } \neg P_{\mathcal{B}}^{<\gamma} \text{ occurs in } F\})$.

Proof. By main induction on ξ and side induction on $\mathsf{rk}(B(P_{\mathcal{A}}^{<\xi}))$. Let $\mathsf{Cl}_{\mathcal{A}}(F)$ denote $\neg \forall x (\mathcal{A}(F,x) \to F(x))$. Then $\neg \mathsf{Cl}_{\mathcal{A}}(F) \equiv \exists x (\mathcal{A}(F,x) \land \neg F(x))$. The argument splits into several cases depending on the shape of the formula B(X).

CASE. B(X) is an \mathcal{L}_{PA} -literal: In this case B does not contain the set free variable X, and hence Tautology lemma (Lemma 5.1) can be applied. Note that the operator form \mathcal{B} does not occur in B.

CASE. $B \equiv X(t)$ for some $t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$: In this case $\neg B(P_{\mathcal{A}}^{<\xi}) \equiv \neg P_{\mathcal{A}}^{<\xi}(t) \equiv \bigwedge_{\eta < \xi} \neg \mathcal{A}(P_{\mathcal{A}}^{<\eta}, t)$. Let $\eta < \xi$. Then by MIH

$$f[n_{\eta}], \mathsf{E}[K_{\Omega}\eta] \vdash_{0}^{(\sigma + \alpha_{\eta} + 1) \cdot 2} \Gamma, \neg \mathsf{CI}_{\mathcal{A}}(F), \neg \mathcal{A}(P_{\mathcal{A}}^{<\eta}, t), \mathcal{A}(F, t), F(t)$$

where $\alpha_{\eta} := \mathsf{rk}(\mathcal{A}(P_{\mathcal{A}}^{<\eta}, t))$ and $n_{\eta} := \max(\{N(\sigma + \alpha_{\eta} + 1)\} \cup \{\mathsf{lh}(\mathcal{B}) \mid P_{\mathcal{B}}^{<\gamma} \text{ or } \neg P_{\mathcal{B}}^{<\gamma} \text{ occurs in } F\})$. We note that $\eta < \xi \leq \Omega$ and hence $K_{\Omega}\eta = \{\eta\} = \{\mathsf{ord}(\eta)\}$. Hence this yields the sequent

$$f[n][N(\eta)], \mathsf{E}[\operatorname{ord}(\eta)] \vdash_0^{(\sigma + \alpha_{\eta} + 1) \cdot 2} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg \mathcal{A}(P_{\mathcal{A}}^{<\eta}, t), \mathcal{A}(F, t), F(t).$$

An application of (Λ) yields the sequent

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha)\cdot 2} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg P_{\mathcal{A}}^{<\xi}t, \mathcal{A}(F,t), F(t). \tag{5}$$

On the other hand by Tautology lemma (Lemma 5.1),

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_{0}^{\mathsf{rk}(F) \cdot 2} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg P_{\mathcal{A}}^{<\xi}t, \neg F(t), F(t). \tag{6}$$

Another application of (Λ) to the two sequents (5) and (5) yields the sequent

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_{0}^{(\sigma+\alpha)\cdot 2+1} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg P_{\mathcal{A}}^{<\xi}t, \mathcal{A}(F,t) \land \neg F(t), F(t).$$

An application of (\bigvee) allows us to conclude

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_0^{(\sigma+\alpha+1)\cdot 2} \Gamma, \neg \mathsf{CI}_{\mathcal{A}}(F), \neg P_{\mathcal{A}}^{<\xi}t, F(t).$$

CASE. $B(X) \equiv \forall y B_0(X,y)$ for some \mathcal{L}_{PA} -formula $B_0(X,y)$: Let α_0 denote the ordinal $\mathsf{rk}(B_0(P_A^{<\xi},\underline{0}))$. Then $\alpha = \alpha_0 + 1$. By the definition of the rank function rk , $\alpha_0 = \mathsf{rk}(B_0(P_A^{<\xi},t))$ for all $t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$. Fix a closed term $t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$. Then from SIH we have the sequent

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_0^{(\sigma+\alpha)\cdot 2} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg B_0(P_{\mathcal{A}}^{<\xi}, t), B_0(P_{\mathcal{A}}^{<\xi}, t).$$

An application of (V) yields the sequent

$$f[n], \mathsf{E}[K_{\Omega}\xi] \vdash_0^{(\sigma+\alpha)\cdot 2+1} \Gamma, \neg \mathsf{Cl}_{\mathcal{A}}(F), \neg \forall y B_0(P_{\mathcal{A}}^{<\xi}, y), B_0(P_{\mathcal{A}}^{<\xi}, t).$$

And an application of (Λ) allows us to conclude.

The other cases can be treated in similar ways.

Lemma 5.5 1.
$$f[n], \mathsf{E} \vdash_0^{\Omega \cdot 2 + \omega} \Gamma, \forall x (\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, x) \to P_{\mathcal{A}}^{<\Omega}(x)),$$
 where $n := \max\{N(\mathsf{rk}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, \underline{0})), \mathsf{lh}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, \underline{0}))\}$

2. $f[3+l], \mathsf{E} \vdash_0^{\Omega \cdot 2+\omega} \Gamma, \forall \vec{y} [\forall x \{ \mathcal{A}(F(\cdot, \vec{y}), x) \to F(x, \vec{y}) \} \to \forall x \{ P_{\mathcal{A}}^{<\Omega}(x) \to F(x, \vec{y}) \}],$ where $\vec{y} = y_0, \dots, y_{l-1}$.

Proof. 1. Let $\alpha = \mathsf{rk}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega},\underline{0}) \text{ and } t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$. By the definition of rk we can find a natural $k \leq \mathsf{lh}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega},\underline{0}) \text{ such that } \alpha = \mathsf{rk}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega},t) = \Omega + k$. This implies $\mathsf{k}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega},t)) = \{0,\Omega\}$ and hence $\mathsf{k}_{\Omega}(\mathcal{A}(P_{\mathcal{A}}^{<\Omega},t)) = \{0\} < \mathsf{E}(0)$. By Tautology lemma (Lemma 5.1),

$$f[n], \mathsf{E} \vdash_0^{\Omega \cdot 2 + k} \Gamma, P_{\mathcal{A}}^{<\Omega}(t), \neg \mathcal{A}(P_{\mathcal{A}}^{<\Omega}, t), \mathcal{A}(P_{\mathcal{A}}^{<\Omega}, t).$$

Since $\Omega < \Omega \cdot 2 + k + 1$, we can apply the closure rule (Cl_{Ω}) obtaining the sequent

$$f[n], \mathsf{E} \vdash_0^{\Omega \cdot 2 + k + 1} \Gamma, \neg \mathcal{A}(P_{\mathcal{A}}^{<\Omega}, t), P_{\mathcal{A}}^{<\Omega}(t).$$

An application of (Λ) followed by an application of (V) enables us to conclude

$$f[n], \mathsf{E} \vdash_0^{\Omega \cdot 2 + \omega} \Gamma, \forall x (\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, x) \to P_{\mathcal{A}}^{<\Omega} x).$$

2. By definition $\mathsf{rk}(P_{\mathcal{A}}^{<\Omega}) = \omega \cdot \Omega = \Omega$, On the other hand $\mathsf{rk}(F) < \omega$ and hence $(\mathsf{rk}(F) + \mathsf{rk}(P_{\mathcal{A}}^{<\Omega}) + 1) \cdot 2 = \Omega \cdot 2 + 2$. Let $s, \vec{t} = s, t_0, \dots t_{l-1} \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$. Then by the previous lemma (Lemma 5.4)

$$f[2], \mathsf{E} \vdash_0^{\Omega \cdot 2 + 1} \neg \forall x (\mathcal{A}(F(\cdot, \vec{t}), x) \to F(x, \vec{t})), \neg P_{\mathcal{A}}^{<\Omega}(t), F(s, \vec{t})$$

since $N(\Omega + 1) = 2$. It is not difficult to see that applications of (\bigvee) , (\bigwedge) and (\bigvee) in this order yield the sequent

$$f[3], \mathsf{E} \vdash_0^{\Omega \cdot 2 + 5} \forall x (\mathcal{A}(F(\cdot, \vec{t}), x) \to F(x, \vec{t})) \to \forall x (P_{\mathcal{A}}^{<\Omega}(x) \to F(x, \vec{t}))$$

Finally, l-fold application of (\bigwedge) allows us to conclude.

Let us recall that **s** denotes the numerical successor $m \mapsto m+1$.

Theorem 5.6 Let $A \equiv \forall \vec{x} \exists y B(\vec{x}, y)$ be a Π_2^0 -sentence for a Δ_0^0 -formula $B(\vec{x}, y)$ such that $\mathsf{FV}(B(\vec{x}, y)) = \{\vec{x}, y\}$. If $\mathsf{ID}_1 \vdash A$, then we can find an ordinal term $\alpha \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$ built up without the Veblen function symbol φ such that for all $\vec{m} = m_0, \ldots, m_{l-1} \in \mathbb{N}$ there exists $n \leq \mathsf{s}^{\alpha}(m_0 + \cdots + m_{l-1})$ such that $B(\vec{m}, n)$ is true in the standard model \mathbb{N} of PA .

Proof. Assume $ID_1 \vdash A$. Then there exist ID_1 -axioms A_0, \ldots, A_{k-1} such that $(\neg A_0) \lor \cdots \lor (\neg A_{k-1}) \lor A$ is a logical consequence in the first order predicate logic with equality. Hence by Lemma 5.2,

$$f[c_0], \mathsf{E} \vdash_0^{\Omega \cdot 3} \neg A_0, \ldots, \neg A_{k-1}, A$$

for some constant $c_0 < \omega$ depending on $N(\mathsf{rk}(A_0)), \ldots, N(\mathsf{rk}(A_{k-1})), \ N(\mathsf{rk}(A))$ and $\max\{\mathsf{lh}(\mathcal{A}(\cdot,*)) \mid P_{\mathcal{A}}^{-\xi} \text{ or } \neg P_{\mathcal{A}}^{-\xi} \text{ occurs in } A_j \text{ or } A\}, \text{ and depending also on the tree height of a cut-free LK-derivation of the sequent } \neg A_0, \ldots, \neg A_{k-1}, A. By Lemma 5.3 and 5.5, for each <math>j \leq k-1$, there exists a constant c_j depending on $\mathsf{rk}(A_j)$ such that $f[c_j], \mathsf{E} \vdash_0^{\Omega \cdot 2 + \omega} A_j$. Hence k-fold application of (Cut) yields $f[c], \mathsf{E} \vdash_{\Omega + d + 1}^{\Omega \cdot 3}$

A, where $c := \max(\{k\} \cup \{c_j \mid j \leq k-1\} \cup \{\mathsf{lh}(A_j) \mid j \leq k-1\})$ and $d := \max(\{\Omega, \mathsf{rk}(A_0), \dots, \mathsf{rk}(A_{k-1})\})$.

For each $n \in \mathbb{N}$ and $\alpha \in \mathcal{OT}(\mathcal{F})$ let us define ordinal $\Omega_n(\alpha)$ and γ_n by

$$\begin{array}{rclcrcl} \Omega_0(\alpha) & = & \alpha, & \gamma_0 & = & \Omega \cdot 3, \\ \Omega_{n+1}(\alpha) & = & \Omega^{\Omega_n(\alpha)}, & \gamma_{n+1} & = & \mathsf{E}^{\gamma_n}(0) + 1. \end{array}$$

Then d-fold iteration of Cut-reduction lemma (Lemma 4.13) yields the sequent $f[c]^{\gamma_d}$, $\mathsf{E} \vdash_{\Omega+1}^{\Omega_d(\Omega\cdot 3)} A$. Hence Impredicative cut-elimination lemma (Lemma 4.18) yields

$$(f[c]^{\gamma_d})^{\mathsf{E}^{\Omega_d(\Omega\cdot 3)}(0)}, \mathsf{E}^{\Omega_d(\Omega\cdot 3)+1} \vdash^{\mathsf{E}^{\Omega_d(\Omega\cdot 3)}(0)}_{\cdot} A.$$

Let $F := \mathsf{E}^{\Omega_d(\Omega \cdot 3)+1}$ and $\beta := \mathsf{E}^{\Omega_d(\Omega \cdot 3)}(0)$. Then $(f[c]^{\gamma_d})^{\beta}, F \vdash_{\omega^{\beta}}^{\beta} A$ holds. It is not difficult to check that $\beta < \Omega$, $N(\beta) \le (f[c]^{\gamma_d})^{\beta}$ and $K_{\Omega}\beta < F(0)$. Hence Predicative cut-elimination lemma (Lemma 4.15) yields the sequent

$$(f[c]^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0) + 1} F \vdash_0^{\varphi \beta \beta} A.$$

Now let f denote s^{ω} . One can check that the conditions $(s^{\omega}.1)$ and $(s^{\omega}.2)$ hold. One will also see that $s^{\omega}[c](m) \leq s^{\omega}(s^{c}(m)) \leq s^{\omega+c+1}(m)$ for all m. By these we have the inequality

$$(\mathbf{s}[c]^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0) + 1}(0) \le ((\mathbf{s}^{\omega + c + 1})^{\gamma_d})^{F^{\Omega \cdot \beta + \beta \cdot 2}(0) + 1}(0).$$

Thanks to Lemma 4.8 we can find an ordinal $\alpha \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$ built up without the Veblen function symbol φ such that

$$((\mathsf{s}^{\omega+c+1})^{\gamma_d})^{F^{\Omega\cdot\beta+\beta\cdot2}(0)+1}(0)\leq \mathsf{s}^\alpha(0).$$

This together with (l-fold application of) Inversion lemma (Lemma 4.12) yields the sequent

$$\mathsf{s}^{\alpha}[m_0]\cdots[m_{l-1}], F\vdash_0^{\varphi\beta\beta}\exists yB(\underline{\vec{m}},y),$$

where $\vec{m} = m_0, \dots, m_{l-1}$. By Witnessing lemma (Lemma 4.19) we can find a natural $n \leq s^{\alpha}[m_0] \cdots [m_{l-1}](0) = s^{\alpha}(m_0 + \cdots + m_{l-1})$ such that $B(\vec{m}, n)$ is true in the standard model \mathbb{N} of PA.

We say a function f is elementary (in another function g) if f is definable explicitly from the successor f, projection, zero 0, addition f, multiplication f, cut-off subtraction f (and f), using composition, bounded sums and bounded products.

Corollary 5.7 Every function provably computable in ID_1 is elementary in $\{s^{\alpha} \mid \alpha \in \mathcal{OT}(\mathcal{F}) \mid \Omega\}$.

6 A computable ordinal notation system $\mathcal{O}(\Omega)$

In order to obtain a precise characterisation of the provably computable functions of ID₁, we introduce a *computable* ordinal notation system $\langle \mathcal{O}(\Omega), < \rangle$. Essentially $\mathcal{O}(\Omega)$ is a subsystem of $\mathcal{OT}(\mathcal{F})$.

Definition 6.1 We define three sets $SC \subseteq \mathbb{H} \subseteq \mathcal{O}(\Omega)$ of ordinal terms simultaneously. Let $0, \Omega, S$, and + be distinct symbols.

- 1. $0 \in \mathcal{O}(\Omega)$ and $\Omega \in SC$.
- 2. If $\alpha \in \mathcal{OT}(\mathcal{F}) \upharpoonright \Omega$, then $S(\alpha) \in \mathcal{O}(\Omega)$.
- 3. If $\{\alpha_1, \ldots, \alpha_l\} \subseteq \mathbb{H}$ and $\alpha_1 \geq \cdots \geq \alpha_l$, then $\alpha_1 + \cdots + \alpha_l \in \mathcal{O}(\Omega)$.
- 4. If $\alpha \in \mathcal{O}(\Omega)$, then $\omega^{\alpha} \in \mathbb{H}$.
- 5. If $\alpha \in \mathcal{O}(\Omega)$ and $\xi \in \mathcal{O}(\Omega) \upharpoonright \Omega$, then $\Omega^{\alpha} \cdot \xi \in \mathbb{H}$.
- 6. If $\alpha \in \mathcal{O}(\Omega)$ and $\xi \in \mathcal{O}(\Omega) \upharpoonright \Omega$, then $S^{\alpha}(\xi) \in SC$.

The relation < on $\mathcal{O}(\Omega)$ is defined in the obvious way. One will see that $\mathcal{O}(\Omega)$ is indeed a computable ordinal notation system. Let us define the norm $N(\omega^{\alpha})$ of ω^{α} in the most natural way, i.e., $N(\omega^{\alpha}) = N(\alpha) + 1$.

Lemma 6.2 Let α denote an ordinal term built up in $\mathcal{OT}(\mathcal{F})$ without the Veblen function symbol φ . Then there exists an ordinal term $\alpha' \in \mathcal{O}(\Omega)$ such that $\alpha \leq \alpha'$ and $N(\alpha) \leq N(\alpha')$.

Proof. By induction over the term construction of $\alpha \in \mathcal{OT}(\mathcal{F})$. In the base case let us observe that $\mathsf{E}(\alpha) \leq \mathsf{S}^1(\alpha)$ for all $\alpha < \Omega$ and that $N(\mathsf{E}(\alpha)) = N(\alpha) + 1 < N(\mathsf{S}(\alpha)) + 1 = N(\mathsf{S}^1(\alpha))$. In the induction case we employ Lemma 3.11.

Lemma 6.3 For any ordinal term $\alpha \in \mathcal{OT}(\mathcal{F})$ built up without the Veblen function symbol φ there exists an ordinal term $\alpha' \in \mathcal{O}(\Omega)$ such that $s^{\alpha}(m) \leq s^{\alpha'}(m)$ for all m.

Corollary 6.4 A function is provably computable in ID_1 if and only if it is elementary in $\{s^{\alpha} \mid \alpha \in \mathcal{O}(\Omega) \upharpoonright \Omega\}$.

The "only if" direction follows from Corollary 5.7 and Lemma 6.3. The "if" direction can be seen as follows. One can show that for each $\alpha \in \mathcal{O}(\Omega) \upharpoonright \Omega$ the system ID_1 proves that the initial segment $\langle \mathcal{O}(\Omega) \upharpoonright \alpha, < \rangle$ of $\langle \mathcal{O}(\Omega), < \rangle$ is a well-ordering. For the full proof, we kindly refer the readers to, e.g., Pohlers [11, §29]. From this one can show that for each $\alpha \in \mathcal{O}(\Omega) \upharpoonright \Omega$ the function \mathbf{s}^{α} is provably computable in ID_1 , and hence the assertion.

7 A quick proof-theoretic analysis of ID_1

In the final section we show that the collapsing function $F:\Omega_1\times \varepsilon_{\Omega_1}\to \Omega_1; (\xi,\alpha)\mapsto F^\alpha(\xi)$ can be used for a smooth proof-theoretic analysis of ID_1 . Suppose a positive operator form \mathcal{A} . Let $\Phi_{\mathcal{A}}:\mathcal{P}(\mathbb{N})\to\mathcal{P}(\mathbb{N})$ denote the operator induced by the operator form \mathcal{A} . Namely $\Phi_{\mathcal{A}}(X)=\{n\in\mathbb{N}\mid\mathbb{N}\models\mathcal{A}(X,n)\}$ if $X\subseteq\mathbb{N}$. By positiveness of \mathcal{A} the operator $\Phi_{\mathcal{A}}$ is monotone, i.e., $X\subseteq Y\Rightarrow \Phi_{\mathcal{A}}(X)\subseteq \Phi_{\mathcal{A}}(Y)$, and hence $\Phi_{\mathcal{A}}$ has the least fixed point $I_{\Phi_{\mathcal{A}}}$ that corresponds to the predicate $P_{\mathcal{A}}$. Further, for an ordinal α , let $I_{\Phi_{\mathcal{A}}}^\alpha$ denote the α -th stage of iterating $\Phi_{\mathcal{A}}$. More precisely, corresponding to the predicate $P_{\mathcal{A}}^{<\alpha}$, $I_{\Phi_{\mathcal{A}}}^\alpha$ is defined by $I_{\Phi_{\mathcal{A}}}^0=\emptyset$ and $I_{\Phi_{\mathcal{A}}}^\alpha=\Phi_{\mathcal{A}}(\bigcup_{\xi<\alpha}I_{\Phi_{\mathcal{A}}}^\xi)$ $(0<\alpha)$. Recall that Ω_1 denotes the least non-computable ordinal ω_1^{CK} . From an elementary fact in generalised recursion theory, it is known that $I_{\Phi_{\mathcal{A}}}^\alpha$ is consumed at $\alpha=\Omega_1$, i.e., $I_{\Phi_{\mathcal{A}}}^{\Omega_1}=I_{\Phi_{\mathcal{A}}}$. The norm $|n|_{\Phi_{\mathcal{A}}}$ of a natural number n is defined by $|n|_{\Phi_{\mathcal{A}}}=\min\{\alpha\in\mathrm{Ord}\mid n\in I_{\Phi_{\mathcal{A}}}^\alpha\}$. It is natural to ask what can be said about the norm $|n|_{\Phi_{\mathcal{A}}}$ in case that $\mathrm{ID}_1\vdash P_{\mathcal{A}}(\underline{n})$ holds. An elegant proof-theoretic way to answer this question can be found in lecture notes [4] by W. Buchholz. (See [4, Theorem 9.19].) By slightly modifying the exposition in [4] we present an alternative simplified way to answer this question.

In contrast to the infinitary system ID_1^∞ we investigate the associated semiformal system ID_1^* which is modelled following the lecture notes [4]. As until the previous section we will identify each element $\alpha \in \mathcal{OT}(\mathcal{F})$ with its value $[\alpha] \in \mathrm{Ord}$, e.g., $\Omega \in \mathcal{OT}(\mathcal{F})$ with $\Omega_1 \in \mathrm{Ord}$. We also follow a convention that $F:\Omega \to \Omega$ denotes a weakly increasing function such that $\xi < F(\xi)$ for all $\xi < \Omega$. Further in this section we use an additional convention that $\omega^{F(\xi)} = F(\xi)$, and hence $\mathsf{E}(\xi) \leq F(\xi)$ for all $\xi < \Omega$. (Recall $\mathsf{E}(\alpha) = \min\{\xi \in \mathrm{Ord} \mid \omega^{\xi} = \xi \text{ and } \alpha < \xi\}$.) Let us recall that for a sequent Γ , $\mathsf{k}_{\Omega}^{\Pi}(\Gamma)$ denotes the set $\bigcup_{B \in \Gamma} \mathsf{k}_{\Omega}^{\Pi}(B)$.

Definition 7.1 $F \vdash_{\rho}^{\alpha} \Gamma$ if $k_{\Omega}^{\Pi}(\Gamma) \cup K_{\Omega}\alpha < F(0)$ and one of the following holds.

- (Ax1) $\exists A(x)$: an $\mathcal{L}_{\mathrm{ID}_1}$ -literal, $\exists s, t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$ s.t. $\mathrm{FV}(A) = \{x\}$, $\mathrm{val}(s) = \mathrm{val}(t)$ and $\{\neg A(s), A(t)\} \subseteq \Gamma$.
- (Ax2) $\Gamma \cap \mathsf{TRUE}_0 \neq \emptyset$.
- $(\bigvee) \ \exists A \simeq \bigvee_{\iota \in J} A_{\mu} \in \Gamma, \ \exists \alpha_0 < \alpha, \ \exists \iota_0 \in J \ s.t. \ \operatorname{ord}(\iota_0) < F(0), \ and \ F \vdash_{\rho}^{\alpha_0} \Gamma, A_{\iota_0}.$
- $(\bigwedge) \ \exists A \simeq \bigwedge_{\iota \in J} A_\iota \in \Gamma \ \textit{s.t.} \ (\forall \iota \in J) \ (\exists \alpha_\iota < \alpha) \ F[\mathsf{ord}(\iota)] \vdash^{\alpha_\iota}_{\rho} \Gamma, A_\iota].$
- $(\mathsf{Cl}_\Omega) \ \exists t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1}), \ \exists \alpha_0 < \alpha \ s.t. \ P_{\mathcal{A}}^{<\Omega}(t) \in \Gamma \ and \ F \vdash^{\alpha_0}_{\rho} \Gamma, \mathcal{A}(P_{\mathcal{A}}^{<\Omega}, t).$
- (Cut) $\exists C: \ an \ \mathcal{L}^*$ -sentence of \bigvee -type, $\exists \alpha_0 < \alpha \ s.t. \ \mathsf{rk}(C) < \rho, \ F \vdash^{\alpha_0}_{\rho} \Gamma, C, \ and F \vdash^{\alpha_0}_{\rho} \Gamma, \neg C.$

Lemma 7.2 (Inversion) Assume that $A \simeq \bigwedge_{\iota \in J} A_{\iota}$. If $F \vdash_{\rho}^{\alpha} \Gamma, A$, then $F[\operatorname{ord}(\iota)] \vdash_{\rho}^{\alpha} \Gamma, A_{\iota}$ for all $\iota \in J$.

Proof. By induction on α .

Lemma 7.3 (Cut-reduction) Assume that $C \simeq \bigvee_{\iota \in J} C_{\iota}$ and $\mathsf{rk}(C) = \Omega + k + 1$. If $F \vdash_{\Omega+k+1}^{\alpha} \Gamma, \neg C$ and $F \vdash_{\Omega+k+1}^{\beta} \Gamma, C$, then $F \vdash_{\Omega+k+1}^{\alpha+\beta} \Gamma$.

Proof. By induction on β .

Lemma 7.4 (Cut-elimination) Let $k < \omega$. If $F \vdash_{\Omega+k+2}^{\alpha} \Gamma$, then $F \vdash_{\Omega+k+1}^{\Omega^{\alpha}} \Gamma$.

Lemma 7.5 $F[\xi]^{\alpha}(\xi) \leq F^{\alpha}(\xi)$.

Proof. By induction on α .

Lemma 7.6 If $\eta < \xi$ and $\alpha_{\eta} < \alpha$ and $K\alpha_{\eta} < F[\eta](0)$ then $F[\eta]^{\alpha_{\eta}}(\xi) \leq F^{\alpha}(\xi)$.

Lemma 7.7 If $\eta < F(0)$ and $\alpha_{\eta} < \alpha$ and $K\alpha_{\eta} < F[\eta](0)$ then $F[\eta]^{\alpha_{\eta}}(\xi) \leq F^{\alpha}(\xi)$.

Definition 7.8 For each \mathcal{L}^* -formula B let $B^{\alpha,\beta}$ denote the result of replacing in B every negative occurrence of $P_A^{<\Omega}$ by $P_A^{<\alpha}$ and every positive occurrence of $P_A^{<\Omega}$ by $P_A^{<\beta}$. For each sequent Γ consisting of \mathcal{L}^* -formulas let $\Gamma^{\alpha,\beta} := \{B^{\alpha,\beta} \mid B \in \Gamma\}$. It is known that, viewing ID_1 as a subsystem of set theory in a standard way, $L_{\Omega} \models \mathrm{ID}_1$ holds for the Ω th stage L_{Ω} of the constructible hierarchy $(L_{\alpha})_{\alpha \in \mathrm{Ord}}$. We will just write $\models B$ (B is an \mathcal{L}^* sentence) or $\models \Gamma$ (Γ is an \mathcal{L}^* sequent) to refer to this relation if no confusion arises.

Theorem 7.9 (Witnessing) If $F \vdash_{\Omega+1}^{\alpha} \Gamma$, then $\models \Gamma^{\xi,F^{\alpha}(\xi)}$ for all $\xi < \Omega$.

Proof. By induction on α .

In embedding ID_1 into ID_1^* , we follow (very closely) the exposition in the lecture notes [4] and indicate how the operators can be adapted accordingly. As in case of embedding ID_1 into ID_1^{∞} , the condition HYP(E) on page 10 holds.

Lemma 7.10 (Tautology lemma) Let $s, t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$, Γ a sequent of \mathcal{L}^* -sentences, and A(x) be an \mathcal{L}^* -formula such that $\mathsf{FV}(A) = \{x\}$. If $\mathsf{val}(s) = \mathsf{val}(t)$, then $F \vdash_0^{\mathsf{rk}(A) \cdot 2} \Gamma, \neg A(s), A(t)$, provided $\mathsf{k}_{\Omega}^{\Pi}(\Gamma) \cup \mathsf{k}_{\Omega}^{\Pi}(A) < F(0)$.

Proof. By induction on rk(A).

Lemma 7.11 Let B_j be an $\mathcal{L}_{\mathrm{ID}_1}$ -sentence for each $j=0,\ldots,l-1$. Suppose that $B_0 \vee \cdots \vee B_{l-1}$ is a logical consequence in the first order predicate logic with equality. Then there exists a natural $k < \omega$ such that $F \vdash_0^{\Omega \cdot 2 + k} \Gamma, B_0, \ldots, B_{l-1}$, provided $\mathsf{k}_{\Omega}^{\Pi}(\Gamma) < F(0)$.

This can be shown like Lemma 5.2.

Lemma 7.12 Let $m \in \mathbb{N}$ and A(x) be an $\mathcal{L}_{\mathrm{ID}_1}$ -formula such that $\mathsf{FV}(A(x)) = \{x\}$. Then for any $t \in \mathcal{T}(\mathcal{L}_{\mathrm{ID}_1})$ and for any sequent Γ of $\mathcal{L}_{\mathrm{ID}_1}$ -sentences

$$F \vdash_0^{(\operatorname{rk}(A) + \operatorname{val}(t)) \cdot 2} \Gamma, \neg A(0), \neg \forall x (A(x) \to A(S(x))), A(t),$$

 $provided \ \mathbf{k}_{\Omega}^{\Pi}(\Gamma) \cup \mathbf{k}_{\Omega}^{\Pi}(A) < F(0).$

Proof. By induction on val(t).

Lemma 7.13 Let $\xi \leq \Omega$, A(x) be an $\mathcal{L}_{\mathrm{ID}_1}$ -formula such that $\mathsf{FV}(A(x)) = \{x\}$ and B(X) be an X-positive $\mathcal{L}_{\mathrm{PA}}(X)$ -formula such that $\mathsf{FV}(A) = \emptyset$. Then

$$F \vdash_0^{(\operatorname{rk}(A) + \alpha + 1) \cdot 2} \Gamma, \neg \forall x (\mathcal{A}(A, x) \to A(x)), \neg B(P_{\mathcal{A}}^{<\xi}), B(A),$$

provided $\mathbf{k}_{\Omega}^{\Pi}(\Gamma) \cup \mathbf{k}_{\Omega}^{\Pi}(A) \cup \{ \operatorname{ord}(\xi) \} < F(0) \text{ where } \alpha := \operatorname{rk}(B(P_{\mathcal{A}}^{<\xi})).$

Proof. By induction on $\mathsf{rk}(B(P_{\mathcal{A}}^{<\xi}))$.

Lemma 7.14 1. $F \vdash_0^{\Omega + \omega} \Gamma, \forall x (\mathcal{A}(P_{\mathcal{A}}^{<\Omega}, x) \to P_{\mathcal{A}}^{<\Omega}(x)), \ provided \ \mathsf{k}_{\Omega}^{\Pi}(\Gamma) < F(0).$

2.
$$F \vdash_{\Omega}^{\Omega \cdot 2 + \omega} \Gamma, \forall \vec{y} [\forall x (\mathcal{A}(B(\cdot, \vec{y}), x) \rightarrow B(x, \vec{y})] \rightarrow \forall x (P_{\mathcal{A}}^{<\Omega}(x) \rightarrow B(x, \vec{y}))], provided \mathbf{k}_{\Omega}^{\Pi}(\Gamma) \cup \mathbf{k}_{\Omega}^{\Pi}(B) < F(0).$$

Let us recall that S denotes the ordinal successor.

Theorem 7.15 Let $n \in \mathbb{N}$. If $\mathrm{ID}_1 \vdash P_{\mathcal{A}}(\underline{n})$, then there exists an ordinal $\alpha < \varepsilon_{\Omega+1}$ such that $|n|_{\mathcal{A}} < \mathsf{S}^{\alpha}(0)$.

Note that the latter bound is sharp in the sense that for each $\alpha < \mathsf{S}^{\varepsilon_{\Omega+1}}(0) := \sup\{\mathsf{S}^{\Omega_m(\Omega+1)}(0) \mid m < \omega\}$ there exists an operator form $\mathcal A$ and a natural number n such that $\mathrm{ID}_1 \vdash P_{\mathcal A}(\underline n)$ and $\alpha \leq |n|_{\mathcal A}$.

8 Conclusion

In [13] the second author has started a new approach to provably total computable functions, providing a streamlined characterisation of those functions provably computable in PA. In this work we extend this approach to those functions provably computable in the system ID_1 of non-iterated inductive definitions. The approach introduced in this work should be extended to stronger impredicative systems. The obvious next step is to extension to the system ID_2 of an iterated inductive definitions. This extension seems to be made possible by employing an additional ordinal operator, i.e., $f, F_0, F_1 \vdash_{\rho}^{\alpha} \Gamma$ where F_0 is an ordinal function $F_0: \Omega_1 \to \Omega_1$, F_1 is another ordinal function $F_1: \Omega_2 \to \Omega_2$, and Ω_2 denotes the least recursively regular ordinal above Ω_1 .

References

- [1] B. Blankertz and A. Weiermann. How to Characterize Provably Total Functions by the Buchholz Operator Method. *Lecture Notes in Logic*, 6:205–213, 1996.
- [2] B. Blankertz and A. Weiermann. A Uniform Approach for Characterizing the Provably Total Number-Theoretic Functions of KPM and (Some of) its Subsystems. *Studia Logica*, 62:399–427, 1999.
- [3] W. Buchholz. A Simplified Version of Local Predicativity. In P. Aczel, H. Simmons, and S. Wainer, editors, *Proof Theory*, pages 115–148. Cambridge University Press, Cambridge, 1992.
- [4] W. Buchholz. Beweistheorie. Lecture Notes, Munich. Available from the homepage of Wilfried Buchholz, 1997/1998.
- [5] W. Buchholz. Finitary Treatment of Operator Controlled Derivations. *Mathematical Logic Quarterly*, 47(3):363–396, 2001.
- [6] W. Buchholz, E. A. Cichon, and A. Weiermann. A Uniform Approach to Fundamental Sequences and Hierarchies. *Mathematical Logic Quarterly*, 40(2):273–286, 1994.
- [7] N. Eguchi and A. Weiermann. A Simplified Characterisation of Provably Computable Functions of the System ID₁ of Inductive Definitions. Submitted.
- [8] N. Eguchi and A. Weiermann. A Simplified Characterisation of Provably Computable Functions of the System ID₁ of Inductive Definitions. Technical Report. arXiv:1205.2879 [math.LO], 27 pages, May 2012.
- [9] M. Michelbrink. A Buchholz Derivation System for the Ordinal Analysis of KP + Π_3 -reflection. *Journal of Symbolic Logic*, 71(4):1237–1283, 2006.
- [10] W. Pohlers. Proof Theory. An Introduction, volume 1407 of Lecture Notes in Mathematics. Springer, 1989.
- [11] W. Pohlers. Subsystems of Set Theory and Second Order Number Theory. In S. R. Buss, editor, *Handbook of Proof Theory*, pages 210–335. North Holland, Amsterdam, 1998.
- [12] A. Weiermann. How to Characterize Provably Total Functions by Local Predicativity. *Journal of Symbolic Logic*, 61(1):52–69, 1996.
- [13] A. Weiermann. Classifying the Provably Total Functions of PA. Bulletin of Symbolic Logic, 12(2):177–190, 2006.
- [14] A. Weiermann. A Quick Proof-theoretic Analysis of ID_1 . Draft, 7 pages, 2011.