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Abstract

We present a simplified and streamlined characterisation of provably total
computable functions of the system ID; of non-iterated inductive definitions.
The idea of the simplification is to employ the method of operator-controlled
derivations that was originally introduced by Wilfried Buchholz and afterwards
applied by the second author to a streamlined characterisation of provably total
computable functions of Peano arithmetic PA.

1 Introduction

As stated by Godel’s first incompleteness theorem, any reasonable consistent formal
system has an unprovable II3-sentence that is true in the standard model of arith-
metic. This means that the total (computable) functions whose totality is provable in
a consistent system, which are known as provably (total) computable functions, form
a proper subclass of total computable functions. Hence it is natural to ask how we
can describe the provably computable functions of a given system. Not surprisingly
provably computable functions are closely related to provable well-ordering, i.e., or-
dinal analysis. Several successful applications of techniques from ordinal analysis to
provably computable functions have been provided by B. Blankertz and A. Weiermann
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(1), W. Buchholz [5], Buchholz, E. A. Cichon and Weiermann [6], or M. Michelbrink
[9].

Modern ordinal analysis is based on the method of local predicativity, that was first
introduced by W. Pohlers, cf. [10, 11]. Successful applications of local predicativity to
provably computable functions contain works by Blankertz and Weiermann [12] and
by Weiermann [2]. However, to the authors’ knowledge, the most successful way in
ordinal analysis is based on the method of operator-controlled derivations, an essential
simplification of local predicativity, that was introduced by Buchholz [3]. In [13] the
second author successfully applied the method of operator-controlled derivations to a
streamlined characterisation of provably computable functions of PA. (See also [11,
Section 2.1.5].) Technically this work aims to lift up the characterisation obtained in
[13] to an impredicative system ID; of non-iterated inductive definitions. We introduce
an ordinal notation system O(Q) and define a computable function f* for a starting
numerical function f : N — N by transfinite recursion on a € O(2). The transfinite
definition of f* stems from [13]. We show that a function is provably computable in
ID; if and only if it is a Kalmar elementary function in {s* | @ € O(Q2) and a < 2},
where s denotes the numerical successor function m — m 4+ 1 and 2 denotes the least
non-computable ordinal (Corollary 6.4).

This paper consists of two materials, a technical report [8] by the authors and a
draft [14] by the second author. Section 3-6 consist of [8] and Section 7 consists of [14].
We mention in particular that the ordinal notation system OT(F) stems from [14].
Most of proofs are omitted due to the page limitation. We note however that there is
a non-trivial error in the technical report [8, p. 8, Lemma 15.5]. We restate Lemma
4.4.5, provide its proof and discuss in detail about embedding (Section 5) affected by
this correction. The full details of missing proofs will appear in [7].

2 Preliminaries

In order to make our contribution precise, in this preliminary section we collect the
central notions. We write Lpa to denote the standard language of first order theories
of arithmetic. In particular we suppose that the constant 0 and the successor function
symbol S are included in Lpa. For each natural m we use the notation m to denote
the corresponding numeral built from 0 and S. Let a set variable X denote a subset
of N. We write X (t) instead of t € X and Lpa(X) for Lpy U{X}. Let FV,(A) denote
the set of free number variables appearing in a formula A and FV3(A) the set of free
set variables in A. And then let FV(A) := FV;(A) U FV;(A). For a fresh set variable
X we call an Lpp(X)-formula A(z) a positive operator form if FV;(A(z)) C {z},
FV2(A(z)) = {X}, and X occurs only positively in A.

Let FVi(A(z)) = {z}. For a formula F(z) such that z € FVi(F(z)) we write
A(F,t) to denote the result of replacing in .A(t) every subformula X(s) by F(s). The
language Lip, of the system ID; of non-iterated inductive definitions is defined by
Lip, := Lpa U {P4 | Ais a positive operator form} where for each positive operator



form A, P4 denotes a new unary predicate symbol. We write 7 (Lip,, V) to denote
the set of Lip,-terms and 7 (Lip,) to denote the set of closed Lip,-terms. The axioms
of ID; consist of the axioms of Peano arithmetic PA in the language Lip, and the
following new axiom schemata (ID;) and (IDs):

(ID1) Vz(A(Pa4,z) — Pa(x)).

(ID2) (The universal closure of) Vz(A(F,z) = F(z)) = Vz(P4s(z) = F(z)), where F
is an Lyp,-formula.

For each n € N we write IX,, to denote the fragment of Peano arithmetic PA with
induction restricted to X£9-formulas. Let k be a natural number and f : N* — N a
numerical function and T be a system of arithmetic containing I¥;. Then we say that
f is provably total computable in T or provably computable in T for short if there exists
a X9-formula Af(z,...,2k,y) such that (i) FV(As) = FVi(A;) = {z4,. .., Tk, ¥}, (ii)
for all m,n € N, f(m) = n holds if and only if Af(mi, n) is true in the standard model
N of PA, and (iii) VZ3lyAs(Z, y) is a theorem in T.

3 A non-computable ordinal notation system OT (F)

In this section we introduce a non-computable ordinal notation system OT(F) =
(OT(F),<). This new ordinal notation system is employed in the next section. For
an element o € OT (F) let OT(F) | « denote the set {8 € OT(F) | B < a}.

Definition 3.1 We define three sets SC C H C OT (F) of ordinal terms and a set F
of unary function symbols simultaneously. Let 0, ¢, Q, S, E and + be distinct symbols.

1. 0 € OT(F) and Q € SC.

{S,E} C F.

Ifa € OT(F) I Q, then S(e) € OT(F) and E(a) € H.
If{ar,...,q} CHand oy > -+ > oy, then oy + - - + oy € OT (F).
If{a, 8} COT(F) | Q, then paf € H.

Ifa € OT(F) and £ € OT(F) | Q, then Q*- € € H.

IfFeF,ae OT(F) and £ € OT(F) | Q, then F(£) € SC.

IfF € F and o € OT(F), then F* € F.
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We write w® to denote ¢0a and m to denote w® - m = w®+ -+ + WP
N B e

m many
Let Ord denote the class of ordinals and Lim the class of limit ones. We define

a semantic [-] for OT(F), ie., [] : OT(F) — Ord. The well ordering < on OT (F)
is defined by a < 8 < [o] < [B]. Let ©; denote the least non-computable ordinal
wCK. For an ordinal a we write & =y Q3 - S1+ -+ Q7 - Bifa>a; > - > o,
{Bi,..-,Bi} €1, and a = Q- By + -+ + QP - Bi. Let €4 denote the ath epsilon
number. One can observe that for each ordinal o < eq, 1 there uniquely exists a set
{a,...,qu, B, .., B} of ordinals such that o =nyr Q* - B1 + -+ + Q7" - . For a set
K C Ord and for an ordinal a we will write K < a to abbreviate (V¢ € K)¢ < a, and
dually a < K to abbreviate (3¢ € K)a < €.

Definition 3.2 (Collapsing operators) 1. Let a be an ordinal such that o =nF
QP B+ +QF - B <eq,+1- The set Kqa of coeflicients of o is defined by

Kga={Bl,...,,@l}UKgalU---UKQal.

2. Let F : Ord — Ord be an ordinal function. Then a function F* : Ord — Ord is
defined by transfinite recursion on o € Ord by

FOo(§) = F(§),
F(€)

min{y € Ord | w" =7, KoaU{{} < and '
(Vn < 7)(VB < a)(Kaf < v = FP(n) <)}

Corollary 3.3 Let F : Ord — Ord be an ordinal function. Then FA(n) < F*(£) holds
if (B < aAKoBU{n} < F*(£)) or (a < B AFP(n) < Kqa).

Proposition 3.4 Suppose that o < €q,+1, @ function F : Ord — Ord has a ¥;-
definition in the Q;th stage Lq, of the constructible hierarchy (Ly)acord and that F(§) <
Q; for all £ < Q,. Then F* also has a ¥,-definition in L, and F*(§) < Qy holds for
all £ < Q.

Proposition 3.5 For any o € Ord, for any 0, < ; and for any ordinal function
F:Q = Qy, ifn < F*(§), then F*(n) < F(§).

Definition 3.6 We define the value [a] € Ord of an ordinal term o € OT(F) by
recursion on the length of a.

1. [0] =0 and [Q] = .

2. lo+B] =[] +[B].

3. [paB] = [p] [a][B], where [] is the standard Veblen function, i.e.,
( = WP

[pl(a+1)0 = sup{([p]a)"0|n € w},
[p] 70 = sup{[¢]al|a <~} if v € Lim,
[pl (a+1)(B+1) = sup{([g]e)"([pl(@+1)B+1]|n€w},
[plv(B+1) = sup{[p]a(p]vB+1)|a <~} if v € Lim,
\ [play = sup{[p]aB | B <~} if v € Lim.
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5. [S(a)] = [S)([e]), where [S] denotes the ordinal successor o — a + 1. Clearly
{[SI(€) | € <} C .

6. [E(o)] = [E|([ee]), where the function [E] : Ord — Ord is defined by [E](a) =
min{¢ € Ord | w® = £ and o < €}. It is also clear that {[E](£) | &€ < %} C O
holds.

7. [F()] = [F]* (19)-
Definition 3.7 For all o, 8 € OT(F), a < B if [a] < [B], and a = B if [o] = [3].

We will identify each element a € OT (F) with its value [a] € Ord. Accordingly
we will write Koo instead of Kqla] for o € OT (F). Further for a finite set K C Ord
we write KoK to denote the finite set U§E x Ko&. By this identification, H is the set
of additively indecomposable ordinals and SC is the set of strongly critical ordinals, i.e,
SCCHCLmuU{1} C Ord.

Corollary 3.8 F*(§) < Q for any F € F and € < Q.
Proof. Proof by induction over the build-up of F € F. O

Corollary 3.9 1. Kq0 = KoQ = 0.
2. If Kaa < € and € € SC, then KoS(a) < €.
3. KoE(a) = {E(a)} (since a < Q).
4. If Koa UKqf < € and € € SC, then Kq(a+ ) < €.

5. Kowaf = {paB} (since a,B < Q). Further, if a,8 < £ and £ € SC, then
paf < £.

6. KqF*(&) = {F*(&)} (since & < Q).

By Corollary 3.8 each function symbol in F defines a weakly increasing function
F : Q — Q such that £ < F(£) holds for all £ € Q. In the rest of this section let F
denote such a function. For a finite set K C Ord we will use the notation F[K](£) to
abbreviate F'(max(K U {¢})).
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Lemma 3.10 Let K C Ord be a finite set such that K < Q. Then (F[K])*(¢) <

F*[K](&) for all € < Q.

Lemma 3.11 (F®)A(¢) < F+8(¢) for all € < Q.
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4 An infinitary proof system ID?°

In this section we introduce the main definition of this paper, a new infinitary proof
system ID{°, to which the new ordinal notation system OT (F) is connected, and into
which every (finite) proof in ID; can be embedded in good order. For each positive
operator form A and for each ordinal term a € (OT(F) [ Q) U {Q} let P$* be a new
unary predicate symbol. Let us define an infinitary language £* of IDJ° by £* = Lpp U
{# LY U{Pg*-P5* | a € (OT(F) | Q) U{Q} and A is a positive operator form}.
Let us write P to denote P4 to have the inclusion L, C L£*. We write T(L*) to
denote the set of closed L£L*-terms. Specifically, the language £* contains complementary
predicate symbol —P for each predicate symbol P € L*. We note that the negation —
nor the implication — is not included as a logical symbol. The negation —A is defined
via de Morgan’s law by =(=P(f)) := P(f) for an atomic formula P(f), ~(A A B) :=
-AV-B, =(AVB) := ~AA-B, -VzA := 3z-A and -3z A := Vz—A. The implication
A — B is defined by -A vV B. We start with technical definitions.

Definition 4.1 (Complexity measures lh, rk, k' k¥, k of £*-formulas)

1. The length h(A) of an L*-formula A is the number of the symbols P3%, ~Pz*,
V, A, 3 and V occurring in A.

2. The rank rk(A) of an L*-formula A.
(a) rk(P52(t)) := rk(~Pg(t)) =w- .
(b) rk(A) :=0 if A is an Lip, -literal.
(c) rk(AA B) :=rk(AV B) := max{rk(A), rk(B)} + 1.
(d) rk(VzA) := rk(3zA) := rk(A) + 1.
3. The set k"(A) of Il-coefficients of an L*-formula A.
(a) KI(PZ*(2)) := {0}, k"(=Pz*(t)) == {0,a}.
(b) K(A) := {0} if A is an Lip, -literal.
(c) KY(AA B) := k(A V B) :=k(A) UK(B).
(d) kK(VzA) := k" (IzA) := k"(A).
4. The set k¥(A) of X-coefficients of an L*-formula A.
kE(A) = k(= A).
5. The set k(A) of all the coefficients of an L*-formula A.
K(A) := KI(A) U KE(A).
6. The set ki}(A) of T-coefficients of an L*-formula A less than .
kiI(A) := kT(A) | Q.
The set k5(A) and kq(A) are defined accordingly.
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By definition rk(A) = rk(—A), k(A4) = k(-A) and kq(A) = kq(—A).
Definition 4.2 (Complexity measures val, ord, N of L*-terms)

1. The value val(t) of a term t € T(Lip,) = T(Lpa) is the value of the closed term
t in the standard model N of the Peano arithmetic PA.
2. A complezity measure ord : T(L*) = (OT(F) | Q) U {Q} is defined by
Ol’d(t) = 0 ift € T(EIDI),
ord(a) = a ifaeOT(F).
3. The norm N(a) of a € OT (F).

(a) N(0)=0 and N(Q) = 1.

(b) N(S(a)) = N(a) + 1.

(¢) N(E(a)) = N(a) + 1.

(d) N(a+B) = N(a) + N(B).

(¢) N(paB) =N(a)+N(8) +1,

(f) N(@*-€) = N(a) + N(§) + 1.

(9) N(F*(€)) = N(F(£) + N(a). (Note that F(§) € OT(F) if F*(¢) €

OT(F).)

The norm 1is extended to a complexity measure N : T(L*) = N by

{ N(t) = val(t) ifteT(Lp,),
N@) = N@) ifacOT(F)

By definition N(w®) = N(p0a) = N(a) + 1 and N(m) = N(w® - m) = m for any
m < w. This seems to be a good point to explain why we contain the constant (2 in
OT(F). Having that N(Q2) = 1 removes some technicalities.

Definition 4.3 We define a relation ~ between L*-sentences and (infinitary) propo-
sitional L*-sentences.

1. ~PZ*(t) :~ Agecrr(f) o '“-A(Pj€> t) and P3(t) =~ VgeOT(J-') tox A(Pf,t)-
2. ANB = Aoy A and AV B \/ 1) A, where Ag = A and A, = B.
3. VzA(z) i~ Neer (e, At) and FzA() > Vieroy ) A(t).

We call an £*-senténc_e A a \-type (conjunctive type) if A~ A, ; A, for some A,,
and a \/-type (disjunctive type) if A ~\/,_; A, for some A,. For the sake of simplicity
we will write A, A¢ instead of Accor(r)iq A¢ and write V., A accordingly.
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Lemma 4.4 1. Ifeither A~ N\, ;A or A~ \/,; A, then for alle € J, KT(A,) C
{ord(1)} UKI(A) and kE(A,) € {ord()} U KE(A).

2. For any o € OT(F), if A~ N\eo Ae, then (30 € K (A))(VE < )[¢ < a].
3. For any L*-sentence A, rk(A) = w - maxk(A) +n for some n < Ih(A).
4. Iftk(A) = Q, then either A= P5%(t) or A= -P5%(2).

5. If either A~ \,.; A, or A~/ . A, then N(rk(A,)) < max({N(rk(A))}U{2-
N(t) + Ih(A(-, %) | P5E or ~P5E occurs in A}) for all v € J.

Proof. We only show the non-trivial property, Property 5. By Property 3, rk(4) =
w - max k(A) + n for some n < Ih(A).

CASE. n > 0: In this case rk(4,) = w - maxk(A) + ng for some ny < n < Ih(A).
Hence clearly N(rk(A,)) < N(rk(A)).

CASE. n = 0: In this case without loss of generality let us assume A is of the
form P3*(t) ~ V.., A(P5Et) and hence Ae ~ A(P5*,t). Let ¢ := £ < a. Then
rk(A,) = w - £ +n, for some n, < Ih(A(-,t)). Hence N(rk(4,)) < 2- N(§) + Ih(A(:, *)).
O .

Throughout this section we use the symbol F' to denote a weakly increasing ordinal
function F : Q — Q and the symbol f to denote a numerical function f : N — N that
enjoys the following conditions.

(f.1) f is a strictly increasing function such that 2m + 1 < f(m) for all m. Hence, in
particular, n + f(m) < f(n + m) for all m and n.

(£2) 2 f(m) < f(f(m)) for all m.

We will use the notation f[n](m) to abbreviate f(n + m). It is easy to see that
if the conditions (f.1) and (f.2) hold, then for a fixed n the conditions (f[n].1) and
(f[n]-2) also hold.

Definition 4.5 Let f : N — N be a numerical function. Then a function f*: N—> N
is defined by transfinite recursion on o € OT (F) by

fom) = f(m),
fAm) = max{f?(f’(m)) | B <a and N(B) < f[N(@)(m)} f0<o.

Corollary 4.6 1. If f is strictly increasing, then so is f* for any a € OT (F).
2. If B < a and N(B) < f[N(a)](m), then ff(m) < f*(m).
8. fe(f¥(m)) < fo+i(m).

We note that the function f* is not a computable function in general even if f is
computable since the ordinal notation system (OT (F), <) is not a computable system.



Lemma 4.7 Let o € OT(F) and F € F. Then N(a) < fF*O)(0).

Lemma 4.8 Let {o,8} C OT(F) | Q and F € F. Then (f*)?(m) < fF“'°+5(0)(m)
for all m.

Lemma 4.9 1. f*[n](m) < (f[n])*(m).

2. Ifn < m, then (f[n])*(m) < fe[f(f(m)](f(m)).

We write f[n][m] to abbreviate (f[n])(m) and f[n]* to abbreviate (f[n]).
Corollary 4.10 Ifn < m, then (f[n])*(m) < f**2(m).

We define a relation f, F' -9 T' for a quintuple (f,F,a,p,T') where a < eqy1, p <
2+w and I is a sequent of L*-sentences. In this paper a “sequent” means a finite set of
formulas. We write I', A or A, I" to denote 'U{A}. Let us recall that for a finite set K C
Ord, F[K](£) denotes F(max(KU{{})). We will write F[u](€) to denote F[{u}](§). We
write TRUE, to denote the set {A | A is an Lpa-literal true in the standard model N of
PA}. '

Definition 4.11 f,F 5T if
max{N(F(0)), N(a)} < f(0), Koo < F(0), (HYP(f; F;a))
and one of the following holds.

(Ax1) JA(z): an Lip,-literal, 3s,t € T(Lip,) s.t. FV(A) = {z}, val(s) = val(t) and
{~A(s), A@)} C T

(Ax2) T N TRUE, # 0.

(V) 3IA >~V ;AL €T, g <, Jp € J s.t. N(w) < f(0), ord(eo) < min{e, F(0)}
and f,FF5° T, A,,.

(A) 34 ~ AN c;A €T st max{N(o) | o € ki{(A)} < £(0), k3(A) < F(0) and
(Ve € J) (3o, < @) [f[N(v)], Flord(¢)] 5 T, Al].

(Clg) 3t € T(L,), Jop < a s.t. P{*t) €T, Q< a and f, F Foo I, AP ).

(Cut) 3C: an L*-sentence of \/-type, oy < a s.t. max({N(c) | o0 € ko(C)} U
{IN(C)}) < £(0), ka(C) < F(0), 1k(C) < p, f,F % T,C, and f, F %0 T, ~C.

We will call the pair (f, F') operators controlling the derivation that forms f, F -5 T
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In the sequel we always assume that the operator F' enjoys the following condition
HYP(F):

n< F(¢)= F(n) < F() for any ordinals £,1 < . (HYP(F))

We note that the hypothesis HYP(F') reflects the fact stated in Proposition 3.5. It is
not difficult to see that if the condition HYP(F') holds, then the condition HYP(F[K])
also holds for any finite set K < Q.

Lemma 4.12 (Inversion) Assume that A ~ A\ ;A If f,F 5 T, A, then for all
v€J, fIN()], Flord(¢)] FS T, A,.

We write f o g to denote the result of composing f and g: m — f(g(m)).

Lemma 4.13 (Cut-reduction) Assume C ~ \/,.;C,, rk(C) = p # Q, max({N(o) |
o € ka(C)} U {Ih(C)}) < f(9(0)), and ko(C) < F(0). If f,F 5 T,~C and g, F -8
I'C, then fog, F l—;’,‘“‘ T.

For a sequent I' we write kij(T") to denote the set g kG (B).

Lemma 4.14 (First Cut-elimination) Let k <w. If f,F F&, ., T, then fF2O+1
Frlen T

Lemma 4.15 (Predicative Cut-elimination) Assume that {¢, (5,7} <, N(a) <
£7(0) and Koo < F(0). If f,F F5,a T, then fF " O+ Fgaf T,

Definition 4.16 For each L*-formula B let B* be the result of replacing in B every
occurrence of P5® by P5°.

Lemma 4.17 (Boundedness) Assume that f, F F5 T', A. Then for all{ ifa < ¢ <
F(0), N(€) < f(0) and Kaf < F(0), then f, F Fo T, A&

We will write f, F F* T instead of f, F FS T

Lemma 4.18 (Impredicative Cut-elimination)
If f; F }_5_‘_1 F, then fF“(O)_H_, Fa+1 }_.Fa(O) T.

Lemma 4.19 (Witnessing) For each j <l let B;(z) be a AY-Lpa-formula such that
FV(Bj(z)) = {z}. Let ' = Ix0Bo(x0), ...,z Bi—1(i-1). If f,F F§ T for some
a € OT(F), then there exists a sequence my, ..., mMy_1 of naturals such that max{m; |
j <1} < f(0) and Bo(mo) V - - -V Bi_1(mu-1) is true in the standard model N of PA.



5 Embedding ID; into ID{°

In this section we embed the system ID; into the infinitary system ID$°. Following
conventions in the previous section we use the symbol f to denote a strict increasing
function f : N — N that enjoys the conditions (f.1) and (f.2) (p. 8). Let us recall
that the function symbol E € F denotes the function E : @ — Q such that E(a) =
min{€ < Q | w® = fand a < £}. It is easy to see that the condition HYP(E) holds
since E(¢) = €p < E(0) for all £ < E(0) = &.

Lemma 5.1 (Tautology lemma) Lets,t € T(Lip,), T be a sequent of L*-sentences,
and A(z) be an L*-formula such that FV(A) = {z}. If val(s) = val(t), then

fIn], Elka(A)] Fo™W2 T, = A(s), At), (1)

where n = max({N(rk(4))} U {2 N(o) + Ih(A(,*)) | o € ka(4) and P5* or ~P5*
occurs in A}).

Proof. By induction on rk(A). Let n := max({N(rk(A))} U {2 N(o) + Ih(A(-, %)) |
o € ko(A) and P or —P5¢ occurs in A}). From Lemma 4.4.3 one can check that
the condition HYP(f[ |; E(ka(A)); rk(A) - 2) holds. If rk(A) = 0, then A is an Lp,-
literal, and hence (1) is an instance of (Ax1). Suppose that rk(A) > 0. Without loss of
generality we can assume that A ~\/,.; A,. Let « € J. By Lemma 4.4.5 we observe
that N(rk(A4,) < f(n) = f[n][N()](0) since 2m + 1 < f(m) for all m by the condition
(f.1). Further by Lemma 4.4.1 Kq(rk(A,) - 2) C kq(A) U {ord(+)} < E[kq(A)][ord(s)].
Summing up, we have the condition

HYP(f[n][N(+)]; Elka(A)][ord(c)]; rk(A.) - 2).
Hence by IH we can obtain the sequent
FIIIN W), Elka(A)]ford(1)] o2 T, = Au(s), Au(0)- (2)

It is not difficult to see ord(:) < rk(4,) < rk(4,) -2+ 1 and N(rk(4,) -2+ 1) =
N(rk(A,) - 2) +1 < f[n][N(2)](0). This allows us to apply (\/) to the sequent (2)
yielding

FIn]IN(2)], Elka(A)][ord ()] F& 2+ T, ~A,(s), A(t).

We can see that rk(4,) - 2+ 1 < rk(4) - 2, max{N(o) | 0 € k&(A)} < f[n](0) and
ki (A) < Elka(A)]. Hence we can apply (/) concluding (1). O

Lemma 5.2 Let B; be an Lip, -sentence for each j =0,...,1 — 1. Suppose that By V
-V Bi_1 is a logical consequence in the first order predicate logic with equality. Then
there exists a natural k < w such that flm + k],E F¥*** T By, ..., Bi_1, where m =
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max({N(rk(B;)) | 0 < j < I=1}U{Ih(A(-, %)) | Pf or =P occurs in B; for some j}).
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Proof. Let B; be an Lip,-sentence for each j = 0,...,l — 1 and suppose that By V
.-+ V Bj_; is a logical consequence in the first order predicate logic with equality.
Then we can find a cut-free proof of the sequent I', By, . .., B;—; in an LK-style sequent
calculus. More precisely we can find a cut-free proof P of I, By, ..., B;—; in the sequent
calculus that is known as G3,,. Let h denote the tree height of the cut-free proof P.
Then by induction on h one can find a witnessing natural k such that f[m + k], E +§
I, By,...,B;_ for all a > Q+ k. In case h = 0 Tautology lemma (Lemma 5.1) can be
applied since for any Lp,-sentence A, rk(A) € wU{Q+k | k < w} and k(A) C {0,Q},
and hence kq(A) = {0} and max{N (o) | 0 € kq(A)} =0. O

Lemma 5.3 Let m € N and A(z) be an Lip,-formula such that FV(A(z)) = {z}.
Then for any t € T(Lip,) and for any sequent I' of Lip, -sentences, if val(t) = m, then

fln +m), E KA D, 24(0), ~Va(A(e) = A(S(2))), A®), 3)
where n := max({N(rk(A))} U {Ih(A(-, *)) | PS¢ or =P5* occurs in A})

Proof. By induction on m. The base case val(t) = m = 0 follows from Tautology
lemma (Lemma 5.1). For the induction step suppose val(t) = m+1. Fix a sequent I of
Lip,-sentences. Then (3) holds by IH. On the other hand again by Tautology lemma,

fIn], EFp? I, 2 A(0), 32(Al2) A —A(S(2))), Alm), ~A(m). (4)
An application of (A) to the two sequents (3) and (4) yields
fln +m], EFg™*+1 T, - A(0), 3z(A(z) A —A(S(2))), A(t), A(m) A -~A(m),
The final application of (\/) yields
fln+m+ 1), F E{A™ D2 o A0), 3z(A(z) A ~A(S(x))), A).
O

Lemma 5.4 Let¢ < Q, F(z) be an Lip, -formula such that FV(F (z)) = {z} and B(X)
be an X -positive Lpp(X)-formula such that FV(B) = 0. Then

fn), E[Ka€] F D2 L, ~Vz(A(F, z) — F(x)), ~B(P5*), B(F),

where o = rk(F), a = rk(B(P5")) and n := max({N(c + a + 1)} U {In(B) |
P57 or =Pg” occurs in F}).

Proof. By main induction on £ and side induction on rk(B(P5*)). Let Cl4(F) denote
~Vz(A(F,z) — F(z)). Then =Cl4(F) = 3z(A(F,z) A —~F(z)). The argument splits
into several cases depending on the shape of the formula B(X).
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CASE. B(X) is an Lpa-literal: In this case B does not contain the set free variable
X, and hence Tautology lemma (Lemma 5.1) can be applied. Note that the operator

form B does not occur in B.
CASE. B = X(t) for some t € T(Lp,): In this case =B(P5%) = —Pg(t) =
No<e —A(P;",t). Let n < £&. Then by MIH :

flng), ElKan] F§ o2 T, —ClLy(F), ~APLT 1), A(F, t), F(2)

where oy, := rk(A(P3",t)) and n, := max({N(o + a, + 1)} U {lh(B) | P5" or =Pg"
occurs in F'}). We note that n < £ < Q and hence Kqn = {n} = {ord(n)}. Hence this
yields the sequent

N (), Elord(m)] F57 " T, =CLa(F), ~A(PL", 1), A(F, 1), F (2).

An application of (/\) yields the sequent

fInl, E[Ka€] FG* T, ~Cla(F), =P5%t, A(F 1), F(2). (5)
On the other hand by Tautology lemma (Lemma 5.1),

fln), E[Kag] " T, ~CLa(F), ~P5%t, ~F (), F (t). (6)
Another application of (/) to the two sequents (5) and (5) yields the sequent

Fn), E[Ka€] ST T Cly(F), ~P5t, A(F, t) A —F(t), F(2).
An application of (\/) allows us to conclude
fln), E[Ka€] H§TF % T, ~ClLu(F), P, F (2).

CASE. B(X) = VyBy(X,y) for some Lpa-formula By(X,y): Let ap denote the
ordinal rk(By(P5%,0)). Then a = ap + 1. By the definition of the rank function rk,
ap = rk(Bo(P3*,t)) for all t € T(Lip,). Fix a closed term ¢t € T(Lip,). Then from
SIH we have the sequent

f[n]? E[KQS] l_(()a--f_o‘).2 P7 —‘C|A(F)7 ﬁBO('P.ZE) t)? BO(P<£7t)'
An application of (\/) yields the sequent
f[nl, E[Ka€] F6 ! T, ~Cla(F), =Yy Bo(P5%, y), Bo(P5S, ).

And an application of (/) allows us to conclude.
The other cases can be treated in similar ways. O

Lemma 5.5 1. f[n],EF}?™ I V(AP 2) — P5%(x)),
where 1 := max{N (rk(A(P5%,0)), h(A(P5?,0)}
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2. fI3+1,E G T,VgVe{ A(F(,, §),z) = F(z,9)} = Ya{P{(z) = F(z,9)}],
where ¥ = yo,...,Yi_1-

Proof. 1. Let a = rk(A( fgn 0) and t € T(Lip,). By the definition of rk we can
find a natural k < Ih(A(Pg",0) such that o = rk(A(Pg%,t) = Q + k. This implies
k(A(P59,t)) = {0,9Q} and hence ko(A(P5%,t)) = {0} < E(0). By Tautology lemma
(Lemma 5.1),

fln], E R 2R T, PEY(t), ~A(PE, 1), AP, ).

Since < Q-2+ k + 1, we can apply the closure rule (Cly) obtaining the sequent
fln], EFg#HH T, A(PE®, 1), PE(2).
An application of (/) followed by an application of (\/) enables us to conclude
fn], E F¥* I, ¥z (A(P5?, z) — P{%).

2. By definition rk(P5%) = w - Q = , On the other hand rk(F) < w and hence
(fk(F) + k(P +1)-2=Q-2+42. Let 5, = s,t9,...t1_1 € T(Lp,). Then by the
previous lemma (Lemma 5.4)

£12), E FE2 ~Va(A(F (-, 8),2) — F(z,8), ~P5(t), F(s, )

since N(Q2 + 1) = 2. It is not difficult to see that applications of (\/), (A) and (\/) in
this order yield the sequent

f13], E H¥ 25 Vo (A(F (-, 1), 7) = F(z,t)) = Vz(P5%(z) = F(x,1))

Finally, I-fold application of (/\) allows us to conclude. O
Let us recall that s denotes the numerical successor m — m + 1.

Theorem 5.6 Let A = VZJyB(Z,y) be a N13-sentence for a A3-formula B(Z,y) such
that FV(B(Z,y)) = {Z,y}. IfID; A, then we can find an ordinal term o € OT(F) |
Q built up without the Veblen function symbol ¢ such that for allm = my,...,m_; € N
there exists n < s*(mg + -+ -+ my_1) such that B(m,n) is true in the standard model
N of PA.

Proof. Assume ID;  A. Then there exist ID;-axioms Ay, ..., Ax_1 such that (—A4g) VvV
V (—Ak-1)V Ais a logical consequence in the first order predicate logic with equality.

Hence by Lemma 5.2,
fleo), E I"(?'a -Ag, ..., Ax_1,A

for some constant ¢y < w depending on N(rk(Ay)), ..., N(rk(Ax-1)), N(rk(A)) and

max{lh(A(-,*)) | P5* or ~P§* occurs in A; or A}, and depending also on the tree
height of a cut-free LK-derivation of the sequent —A,...,7Ax-1,A. By Lemma
5.3 and 5.5, for each j < k — 1, there exists a constant c¢; depending on rk(4;)
such that flc;],E F&** A;. Hence k-fold application of (Cut) yields f[c],E 33, ,
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A, where ¢ := max({k} U {c; | j < k—1}U{h(4;) | j £ k—1}) and d :=
max({Q, rk(Ag), ..., rk(45-1)})-
For each n € N and o € OT(F) let us define ordinal Q,(a) and 7, by

Qo(a) = «, Yo = Q3,
Qnar(a) = Q%@ yuy = E™(0)+1.

Then d-fold iteration of Cut-reduction lemma (Lemma 4.13) yields the sequent
fle]e, E l—gi(? %) A. Hence Impredicative cut-elimination lemma (Lemma 4.18) yields

(f[c]’rd)Eﬂd(Qa) (o)’ EQa(2-3)+1 I_End(n.s) ©0) n

Let F = E%@3)%1 and g := E%@3)(0). Then (flc]™)?, F F2, A holds. It is not
difficult to check that 8 < Q, N(B8) < (f[c]™)? and Ko < F(0). Hence Predicative
cut-elimination lemma (Lemma 4.15) yields the sequent

(fle))F* 22O+ 158 4

Now let f denote s*. One can check that the conditions (s*.1) and (s*.2) hold. One
will also see that s*[c](m) < s*(s°(m)) < s“t°+!(m) for all m. By these we have the
inequality

(s[c]’Yd)FQ'B+’S'2(0)+1(0) < ((sw+c+1)74)F9’5+5'2(0)+1(O).

Thanks to Lemma 4.8 we can find an ordinal o € OT(F) | Q built up without the
Veblen function symbol ¢ such that

((Sw+c+1)fyd)F““5+5'2(0)+1(0) < Sa(O).

This together with (I-fold application of) Inversion lemma (Lemma 4.12) yields the

sequent
s%[mo] - - - [mu_1], F =§** JyB(1, y),

where m = my,...,my_;. By Witnessing lemma (Lemma 4.19) we can find a natural
n < s¥mg] - - - [my_1](0) = s*(mo+- - - +my_,) such that B(s,n) is true in the standard
model N of PA. O

We say a function f is elementary (in another function g) if f is definable explicitly
from the successor s, projection, zero 0, addition 4, multiplication -, cut-off subtraction
= (and g), using composition, bounded sums and bounded products.

Corollary 5.7 Every function provably computable in ID; is elementary in {s* | a €
OT(F) | Q}.
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6 A computable ordinal notation system O(2)

In order to obtain a precise characterisation of the provably computable functions of
ID;, we introduce a computable ordinal notation system (O(Q), <). Essentially O()
is a subsystem of OT (F).

Definition 6.1 We define three sets SC C H C O(Q) of ordinal terms simultaneously.
Let 0, Q, S, and + be distinct symbols.

1. 0€ O(9) and 2 € SC.

Ifa € OT(F) | Q, then S(a) € O(Q).

If{as,...,q} CHandos > - >, thenoy + -+ o € O(Q).
If o € O(R), then w* € H.

IfaeOf) and £ € OR) [ Q, then Q- € € H.

FaecO®) and € € OQ) | Q, then S*(£) € SC.

S ;™ L e

The relation < on O(RQ) is defined in the obvious way. One will see that O(Q) is
indeed a computable ordinal notation system. Let us define the norm N(w?*) of w* in
the most natural way, i.e., N(w*) = N(a) + 1.

Lemma 6.2 Let a denote an ordinal term built up in OT(F) without the Veblen
function symbol . Then there exists an ordinal term o’ € O(Q) such that o < o and
N(a) £ N(o).

Proof. By induction over the term construction of a € OT (F). In the base case let us
observe that E(a) < S'(a) for all @ < Q and that N(E(a)) = N(a)+1 < N(S(a))+1 =
N(S!(a)). In the induction case we employ Lemma 3.11. O

Lemma 6.3 For any ordinal term a € OT(F) built up without the Veblen function
symbol ¢ there ezists an ordinal term o/ € O(Q) such that s*(m) < s (m) for all m.

Corollary 6.4 A function is provably computable in ID if and only if it is elementary
in{s®|a € OW) I Q}.

The “only if” direction follows from Corollary 5.7 and Lemma 6.3. The “if” direc-
tion can be seen as follows. One can show that for each a € O(Q) [ Q2 the system ID;
proves that the initial segment (O(Q) | @, <) of (O(Q), <) is a well-ordering. For the

“full proof, we kindly refer the readers to, e.g., Pohlers [11, §29]. From this one can
show that for each o € O(Q) | Q the function s* is provably computable in ID;, and
hence the assertion.



7 A quick proof-theoretic analysis of 1D,

In the final section we show that the collapsing function F': Q; X eq, = Q1; (£,a) —
F*(€) can be used for a smooth proof-theoretic analysis of ID;. Suppose a positive
operator form A. Let @4 : P(N) — P(N) denote the operator induced by the operator
form A. Namely ®4(X) = {n € N|N E A(X,n)} if X C N. By positiveness of A the
operator @ 4 is monotone, i.e., X CY = & 4(X) C ®4(Y), and hence ® 4 has the least
fixed point Ip , that corresponds to the predicate P4. Further, for an ordinal o, let g,
denote the a-th stage of iterating ® 4. More precisely, correspondmg to the predlcate
P3e, I3, is defined by I3, = 0 and Ig, = ®4(U,<, LI,A) (0 < @). Recall that
denotes the least non-computable ordinal wCX. From an elementary fact in generalised
recursion theory, it is known that g &4 is consumed at a = {14, i.e., I ; = Is,. The
norm [n|g , of a natural number n is defined by |n|;, = min{a € Ord |nelg,} Ttis
natural to ask what can be said about the norm |n|q, in case that ID; PA(n) holds.
An elegant proof-theoretic way to answer this question can be found in lecture notes
[4] by W. Buchholz. (See [4, Theorem 9.19].) By slightly modifying the exposition in
[4] we present an alternative simplified way to answer this question.

In contrast to the infinitary system ID° we investigate the associated semiformal
system ID} which is modelled following the lecture notes [4]. As until the previous
section we will identify each element a € OT (F) with its value [a] € Ord, e.g., 2 €
OT(F) with Q; € Ord. We also follow a convention that F :  — Q denotes a weakly
increasing function such that £ < F(£) for all £ < Q. Further in this section we use an
additional convention that wF® = F(¢), and hence E(¢) < F(€) for all £ < Q. (Recall
E(e) = min{¢ € Ord | w® = ¢ and a < £}.) Let us recall that for a sequent I', k(I
denotes the set g ki (B).

Definition 7.1 F F& T if kg(I') U Koo < F(0) and one of the following holds.

(Ax1) 3A(z): an Lip,-literal, 3s,t € T(Lp,) s.t. FV(A) = {z}, val(s) = val(t) and
{-A(s), A)} €T

(Ax2) TN TRUE, 0.

(V) 34>V, ;A €T, Jag < a, Jip € J s.t. ord(y) < F(0), and F 2 T, A,.
(A) JA= A\ A €T st. (Ve€J) Ba, <a) Flord(1)] F2 T, A,].

(Clp) 3t € T(Lp,), Japo < a s.t. PXYt) €T and F Foo T, A(PFY, 1).

(

Cut) 3C: an L*-sentence of \/-type, Jop < a s.t. tk(C) < p, F Feo T, C, and
FFeT,-C.

Lemma 7.2 (Inversion) Assume that A~ A\, ;A If FFST, A, then F [ord(c)] 2
I'VA, forall v € J.

Proof. By induction on a. O

55



56

Lemma 7.3 (Cut-reduction) Assume that C ~\/,.;C, and k(C) = Q+k+1. If
FFE o T,-C and FH5,, . T,C, then F 3% | T.

Proof. By induction on 3. O
Lemma 7.4 (Cut-elimination) Let k <w. If F+g&,,., T, then FF3,, ., T.
Lemma 7.5 F[¢]*(§) < F(§).

Proof. By induction on a. O
Lemma 7.6 Ifn < ¢ and a, < o and Ka, < F(n)(0) then Fln]*n(§) < F*(£).
Lemma 7.7 Ifn < F(0) and o, < a and Koy, < Fn)(0) then Fn]* (&) < F*(£).

Definition 7.8 For each L*-formula B let B*? denote the result of replacing in B
every negative occurrence of PA<Q by P5® and every positive occurrence of Pjn by
P3P, For each sequent T' consisting of L*-formulas let T*# := {B*# | B € T}. It is
known that, viewing ID, as a subsystem of set theory in a standard way, Lo = ID;
holds for the Quth stage Lq of the constructible hierarchy (Lo )acord- We will just write
E B (B is an L* sentence) or =T (T is an L* sequent) to refer to this relation if no
confusion arises.

Theorem 7.9 (Witnessing) If F+&,, I, then | T4F°® for all € < Q.

Proof. By induction on a. O

In embedding ID; into ID], we follow (very closely) the exposition in the lecture
notes [4] and indicate how the operators can be adapted accordingly. As in case of
embedding ID; into ID{°, the condition HYP(E) on page 10 holds.

Lemma 7.10 (Tautology lemma) Let s,t € T(Lp,), I' a sequent of L*-sentences,
and A(z) be an L*-formula such that FV(A) = {z}. If val(s) = val(t), then F I—(')k(A)'2
T, -~A(s), A(t), provided ki (T') U kB (A) < F(0).

Proof. By induction on rk(A). O

Lemma 7.11 Let B; be an Lip,-sentence for each j = 0,...,1 — 1. Suppose that
ByV -V Bi_; is a logical consequence in the first order predicate logic with equality.
Then there exists a natural k < w such that F FY*** T By, ..., B;_,, provided ki}(T) <
F(0).

This can be shown like Lemma 5.2.



Lemma 7.12 Let m € N and A(z) be an Lip,-formula such that FV(A(z)) = {z}.
Then for any t € T(Lip,) and for any sequent I of Lip,-sentences

F OO T, 5 4(0), -Va(Ae) = A(S(@))), A(),
- provided kJ(T") UKZ(A) < F(0).
Proof. By induction on val(t). O

Lemma 7.13 Let £ < Q, A(z) be an Lip,-formula such that FV(A(z)) = {z} and
B(X) be an X -positive Lpa (X )-formula such that FV(A) = 0. Then

F R+ D v (A(A, ) — A(2)), ~B(P5), B(A),
provided kK%(I") UkE(A) U {ord(€)} < F(0) where a := rk(B(P5%)).
Proof. By induction on rk(B(P5%)). O
Lemma 7.14 1. F 8 T,V2(A(P5%, ) = P{%(x)), provided k&(T) < F(0).

2. F bg%™ L Vjivz(A(B(-, ), z) = B(x,7)] = Y2(P{%z) — B(z,7))], provided
KI(T) UKE(B) < F(0).

Let us recall that S denotes the ordinal successor.

Theorem 7.15 Let n € N. If ID; & P4(n), then there erists an ordinal o < €q
such that |n| , < S%(0).

Note that the latter bound is sharp in the sense that for each a < S®+1(0) :=
sup{S*=(*+1)(0) | m < w} there exists an operator form A and a natural number n
such that ID; - P4(n) and o < |n|,.

8 Conclusion

In [13] the second author has started a new approach to provably total computable
functions, providing a streamlined characterisation of those functions provably com-
putable in PA. In this work we extend this approach to those functions provably
computable in the system ID; of non-iterated inductive definitions. The approach
introduced in this work should be extended to stronger impredicative systems. The
obvious next step is to extension to the system ID, of an iterated inductive definitions.
This extension seems to be made possible by employing an additional ordinal operator,
ie., f,Fo, F; F5 I' where Fp is an ordinal function Fp : Q; — 1, Fi is another ordinal
function Fj : Q; — Qo, and Q5 denotes the least recursively regular ordinal above €;.
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